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Abstract. An interferometric technique based on the use of a diffraction grating is used to
recover the intensity distribution across a spatially incoherent planar source. Information about
the source profile is obtained through measurements of visibility and position of the fringe
pattern at transverse planes beyond the grating. Such quantities are shown to be independent of
the wavelength of the radiation, so that broadband sources can be analysed without any spectral
filtering. Experimental results are given.

1. Introduction

A look at the numerous papers published concerning coherence theory shows that an exciting
subject is the possibility of obtaining information about a source starting with knowledge
of the spatial correlation of the light field at pairs of points in the space surrounding the
source itself [1]. Starting points for these investigations are often the Young interference
experiment and the van Cittert–Zernike theorem. The connection between the features
of the interference fringe pattern and the complex degree of coherence of the light at
the two apertures in the Young scheme is well known [2]. On the other hand, if the
field illuminating the interferometer originates from an incoherent source, due to the van
Cittert–Zernike theorem, the correlation between fields at the Young apertures is simply
related to the intensity distribution across the source [2]. These concepts are at the basis
of techniques used to determine angular diameters of sources (as in Michelson’s stellar
interferometry [2, 3]) and, more generally, the intensity distributions across them (as in
multiple-element interferometry, employed in radio astronomy [4]). In both cases it is
necessary to filter the signal to make it quasi-monochromatic. Alternatively, by making use
of the so-called space–frequency equivalence principle [5], the same information can be
obtained from spectral measurements, provided that the bandwidth of the radiation is broad
enough [5–13].

In this paper we use a different method to recover the intensity distribution across a
one-dimensional spatially incoherent source, whose power spectrum is assumed to be space
independent. The double aperture characterizing the Young interferometer is replaced by
a grating with a sinusoidal transmission function. Information about the source intensity
distribution is obtained by measuring the visibility and the position of the fringes in the
field propagated at different planes beyond the grating.
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One of the advantages of this modified interference scheme is that white fringes are
produced on the observation plane, so that measurements on the fringe pattern may be
performed without any spectral filtering of the radiation. This means that the amount of
power available for the measurements is much higher than in a traditional Young scheme.
Of course, the use of achromatic fringes in grating interferometry is rather well known
[14, 15] and has been put to use in high brightness interferometry and imaging devices
[16–18]. The role of the mutual coherence function in these devices has also been noted
[17].

Our method recalls the achromatic Michelson interferometer proposed by Cutter and
Lohmann in 1974 [19]. Here, experimental results pertaining to the case of an incoherent
source consisting of two parallel bright strips are reported. We show that, by making use
of a cooled CCD camera to record the fringe patterns and an algorithm based on the fast
Fourier transform (FFT) to evaluate the visibility pertaining to each image, a very easy and
accurate reconstruction of the intensity distribution across the source can be obtained.

Similar procedures were also presented in [20, 21], where a rotating grating was used
to determine the degree of coherence of a partially coherent light field, but limited to the
quasi-monochromatic case.

2. Theoretical analysis

We shall consider the scheme illustrated in figure 1. A spatially incoherent planar source
lies in the planeξη. In a planexy, whose distance from the source is denoted byD, a one-
dimensional grating is placed. The latter is considered as characterized by the transmission
function

τ(x) = cos

(
2π

P
x

)
(1)

where P is the period. Actually, in a practical implementation of the method, the
transmission function of the grating may be arbitrary, provided that a suitable 4f optical
system is used beyond the grating to retain only two symmetric diffraction orders (see
figure 2). We shall study the intensity distribution at a distancez from the grating (uv
plane).

Figure 1. Geometry and notations of the scheme used.
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Figure 2. Detection apparatus using a 4f optical processor.

In the present analysis a one-dimensional source will be considered, i.e. a source which
is very long in theη direction and whose power spectrum [2] is independent of the coordinate
η. Let us denote byS0(ξ ; ν) the power spectrum at the source plane and assume that the
normalized power spectrum [2],s0, does not depend on theξ coordinate within the source
domain, so that we can write

S0 (ξ ; ν) = I0 (ξ) s0 (ν) (2)

whereI0 is the optical intensity, defined as

I0 (ξ) =
∫ ∞

0
S0 (ξ ; ν) dν. (3)

Let WG(x1, x2; ν) be the cross spectral density [2] at frequencyν between two points
x1 andx2 on the grating plane . It can be written in the general form

WG(x1, x2; ν) =
√
SG (x1; ν) SG (x2; ν) µG(x1, x2; ν) (4)

whereSG andµG are the power spectrum and the spectral degree of coherence, respectively,
of the field illuminating the grating. Since the source is assumed to be completely spatially
incoherent, these quantities can be evaluated through the van Cittert–Zernike theorem,
yielding

µG(x1, x2; ν) = exp

[
i
2πν

cD

(
x2

2 − x2
1

)] Ĩ0[ν(x2− x1)/cD]

Ĩ0(0)
(5)

and

SG (x; ν) = 1

D
s0 (ν) Ĩ0 (0) (6)

where the tilde denotes Fourier transform andc is the speed of light. Note that the power
spectrum at the grating plane is actually independent of the coordinatex.

The quadratic phase factor in equation (5), which arises when the cross spectral density is
propagated under paraxial approximation, will be neglected in the following. This is allowed
if the planexy is in the far zone with respect to the source plane. In general, we can always
consider using a lens of suitable focal length to counterbalance the spherical curvature.
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Hence the spectral degree of coherence becomes a function, sayhG, of ν(x2 − x1)/c and
equation (5) can be written as

µG(x1, x2; ν) = hG
[ν
c
(x2− x1)

]
= Ĩ0

[
ν (x2− x1)/cD

]
Ĩ0 (0)

. (7)

On using the propagation laws for the cross spectral density [22], the power spectrum
at the observation plane turns out to be

Sz (u; ν) =
∫ ∫

τ ∗(x1) τ (x2)WG(x1, x2; ν)K∗z (u, x1; ν)Kz(u, x2; ν) dx1 dx2 (8)

where the asterisk denotes the complex conjugate andKz is the paraxial propagation kernel,
given by

Kz(u, x; ν) =
√−iν

cz
exp

[
π i
ν

cz
(u− x)2

]
. (9)

After simple calculations we find, for the power spectrum at the output plane, the
following expression:

Sz (u; ν) = s0(ν) Ĩ0 (0)

2D

[
1+

∣∣∣∣hG (2z

P

)∣∣∣∣ cos

(
4π

P
u− α

)]
(10)

where equation (7) has been used, and

α = arg

{
hG

(
2z

P

)}
(11)

arg denoting the argument.
Equation (10) has the typical structure of an interference pattern. Note, however, that

fringe period and position are independent of the frequencyν. As a consequence, if we use
a source emitting broadband radiation, white fringes are formed on the observation plane
instead of the coloured ones that would be seen by making use of a Young scheme. On
integrating equation (10) with respect toν, the following intensity distribution, detectable
at the output plane, is obtained:

Iz (u) = Ĩ0 (0)

2D

[
1+

∣∣∣∣hG (2z

P

)∣∣∣∣ cos

(
4π

P
u− α

)]
. (12)

From equation (12) we see that the modulus and phase of the spectral degree of
coherence of the light impinging on the grating may be determined by measuring the
visibility and position of the fringes for different distances (z) of the observation plane.
It follows from equation (7) that the source intensity distribution can be recovered, up to
a constant factor, by means of the inverse Fourier transform ofhG. Since I0 is a real
function, analysis of the fringe patterns at planesz > 0 is sufficient to completely retrieve
the intensity profile of the source, because in this casehG is Hermitian, i.e.hG(−t) = h∗G(t)
[23].

From an experimental point of view, the functionhG has to be sampled at a discrete set
of values ofz. From Shannon’s theorem [23] it follows that the sampling interval, say1z,
depends on the spatial extent of the source. One generally has ana priori estimate of such
an extension, say1ξ . It then follows from the sampling theorem that1z 6 PD/21ξ .

On the other hand, the resolution of the system is related to the maximum value of the
distance, sayzM , where measurements are performed, the maximum spatial frequency on
the source plane being given by 2zM/PD.
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3. Experimental results

The experimental set-up basically reproduces the scheme sketched in figure 1. The source
consists of a pair of slits uniformly illuminated by an incandescent lamp, which is placed
fairly close to the slits, in order to ensure that they are illuminated incoherently. The slits
are 1.55 mm wide, their centres are 5.1 mm apart and the distanceD between the source and
the grating is 175 cm. The latter is a 80 lines/mm phase grating, and diffraction orders other
than+1 and−1 are filtered by means of a 4f optical system (see figure 2) consisting of two
lenses and a suitable transmission mask at their common focal plane. The mask consists of
an opaque screen with two holes, wide enough to allow the chromatically dispersed spectral
components of the source to pass through.

The fringe pattern at the output plane is acquired by a CCD camera. Images are sent to
a personal computer to evaluate the parameters (position and visibility) of the fringe pattern.
Since the incoherent source is chosen to be symmetrical, the phaseα (related to the position
of the fringes) only assumes values 0 orπ and is then simply determined by observing
modulation inversions in the fringe pattern. As far as visibility determination is concerned,
an FFT-based algorithm has been implemented which is able to extract information even
from very low-contrast images.

Experimental values (dots) ofhG(2z/PD) versusz are shown in figure 3, where a fitted
curve (broken) has been added to improve the data presentation. The recovered intensity
distribution on the source plane is reported in arbitrary units in figure 4 (dots), together
with the actual profile of the source (full curve). It is seen that the agreement is quite good,
although the number of samples(N = 32) is not very high. The symmetry of the resulting
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Figure 3. Experimental values ofhG (dots) versusz with an interpolating curve (broken).
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Figure 4. Recovered (dots) and actual (full curve) intensity profile of the source (arbitrary
units).

curve with respect to the origin of theξ -axis is due the fact that in the present case the
Hermitian functionhG is real, so that it is also symmetric.

4. Conclusions

The determination of the intensity profile of a spatially incoherent broadband source has
been obtained by means of a modified Michelson stellar interferometer. It is accomplished
through measurements of the spectral degree of coherence of the field radiated from the
source at a transverse plane, where a diffraction grating is placed. Measurements are
performed by determining the position and visibility of fringe patterns produced beyond the
grating. In contrast to techniques based on Young interferometers, this method gives higher
light throughput and leads to white light fringe patterns.

The greatest distance from the grating where measurements are performed fixes the
resolution limit of the system. Since the maximum value of such a distance depends
on the transverse size of the grating, the maximum available resolution turns out to be
comparable to that pertinent to a conventional telescope with the same aperture as the
grating. Nonetheless, our approach presents some advantages with respect to conventional
image-forming optical systems. For example, it does not suffer from chromatic aberrations
and the use of lenses is not necessary. Hints for further improvements of resolution and
performance of systems of this kind can be found in [21].

The case of a one-dimensional source has been studied, but the proposed technique can
be extended to the case of a general planar source.
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