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We develop a more general methodology for a dual photoelastic modulator (PEM) system that is used
for the determination of the Stokes parameters of an arbitrary light beam. This allows for a degree of
arbitrariness in the setting of the retardation amplitudes of both PEMs, thus permitting a robust and
effective optimization of the detection system. Various experimental issues are considered and a calibra-
tion procedure is described that ensures accurate measurement of the absolute values of the Stokes para-
meters. Measurements of the Faraday rotation of a CoPt multilayer film are provided as a demonstration
of the sensitivity of the dual-PEM system. © 2010 Optical Society of America

OCIS codes: 120.2130, 230.3810.

1. Introduction

The introduction of the photoelastic modulator
(PEM) some 40 years ago by Billardon and Badoz
[1] has transformed the experimental measurement
of the Stokes parameters [2,3]. The subject has con-
tinued to evolve insofar as modern practice tends to
favor a dual-PEM setup [4–9] rather than the use of a
single modulator [10–22]. The main advantage to be
gained is that signals relevant to the four Stokes
parameters may be collected simultaneously, thus
allowing the measurement of rapidly time-varying
polarization states [5,23].
Many key aspects of PEM-based polarimetry (both

practical and experimental) were established by the
pioneering work of Kemp [24]. Further important
contributions were made by Kuldepp et al.[8] and
Boyer et al.[9]. In a previous paper [23], we presented
a generalized methodology for the use of a dual-PEM
system, but subject to the condition that the retarda-
tion amplitudes of the modulators were set at a

specified fixed value in order to make the zero-order
Bessel functions vanish. The adoption of this con-
straint allows for a comparatively easy analysis of
the data. It also leads to a calibration procedure that
gives a determination of the coefficients that relate
measured signals directly to the values of the Stokes
parameters. Using a detailed error analysis, it was
also shown that the number of instrumental vari-
ables assigned fixed (as distinct from arbitrary) va-
lues should be kept to a minimum in order to reduce
systematic error. Henceforth, we shall refer to this
experimental setup as the “diagonalized case,” for
reasons that will emerge later.

In this paper, based on the theory previously
described [23], we investigate the case in which no
constraint is laid upon the retardation amplitudes
of the two modulators. The retention of two addi-
tional degrees of freedom enhances the flexibility
of the setup and offers several advantages compared
with the diagonalized case, e.g., allowing the optimi-
zation of a particular signal recovery, if required, and
stabilization with respect to changes in ambient
temperature. These advantages will be discussed
in this paper. A detailed description of experimental

0003-6935/10/142644-09$15.00/0
© 2010 Optical Society of America

2644 APPLIED OPTICS / Vol. 49, No. 14 / 10 May 2010



methods is presented, together with a more general
calibration procedure. Results of a comparison
between the diagonalized and the present (nondiago-
nalized) cases are also presented. Finally, as an illus-
tration of its efficacy, the technique is applied to the
observation of the Faraday effect of a CoPt multi-
layer film.

2. Background Theory

The disposition of relevant optical components is
shown in Fig. 1. The dual-PEM detection system con-
sists of two PEMs, an analyzer, and the photodetec-
tor. The modulation axis of PEM2 defines the x axis
of the laboratory coordinate system. The angles
between the x axis and the modulation axis of
PEM1, and between the x axis and the passing axis
of the analyzer, are denoted as α and β, respectively.
The laser, polarizer, and compensator are used only
to calibrate the dual-PEM system, a procedure dis-
cussed in more detail in Section 4. The angle between
the polarizer and the x axis is denoted θ.
For a monochromatic light beam of arbitrary polar-

ization state passing through the two PEMs and an
analyzer, the total theoretical intensity I0 received at
the photodetector can be written [23] as

I0 ¼
1

2
I þ

1

2
Qcos2ð2αÞ cosð2βÞ þ

1

4
U sinð4αÞ cosð2βÞ

þ
1

2
sinð2αÞ cosð2βÞ½Q sinð2αÞ −U cosð2αÞ�J0ðδ10Þ

þ
1

2
sinð2αÞ sinð2βÞ½Q cosð2αÞ þU sinð2αÞ�J0ðδ20Þ

−
1

2
cosð2αÞ sinð2βÞ½Q sinð2αÞ −U cosð2αÞ�J0ðδ10ÞJ0ðδ20Þ

þ fsinð2αÞ sinð2βÞ½1 − J0ðδ10Þ�½Q cosð2αÞ þU sinð2αÞ� þU sinð2βÞJ0ðδ10Þg
X

∞

n

Jnðδ20Þ cosðnΩ2tÞ

þ ½sinð2αÞ cosð2βÞ − cosð2αÞ sinð2βÞJ0ðδ20Þ�½Q sinð2αÞ −U cosð2αÞ�
X

∞

n

Jnðδ10Þ cosðnΩ1tÞ

∓ sinð2βÞ½Q sinð2αÞ −U cosð2αÞ�
X

∞

m1

X

∞

m2

Jm1
ðδ10ÞJm2

ðδ20Þ cos½ðm1Ω1 �m2Ω2Þt�

− cosð2αÞ sinð2βÞ½Q sinð2αÞ −U cosð2αÞ�
X

∞

n1

X

∞
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Jn1
ðδ10ÞJn2

ðδ20Þ cos½ðn1Ω1 � n2Ω2Þt�

þ V sinð2βÞJ0ðδ10Þ
X

∞

m

Jmðδ20Þ sinðmΩ2tÞ

þ V ½cosð2αÞ sinð2βÞJ0ðδ20Þ − sinð2αÞ cosð2βÞ�
X

∞

m

Jmðδ10Þ sinðmΩ1tÞ

þ V cosð2αÞ sinð2βÞ
X

∞

m

X

∞

n

Jmðδ10ÞJnðδ20Þ sin½ðmΩ1 � nΩ2Þt�

� V sinð2βÞ
X

∞

n

X

∞

m

Jnðδ10ÞJmðδ20Þ sin½ðnΩ1 �mΩ2Þt�; ð1Þ

Here, I, Q, U, and V are the Stokes parameters of
the incident light beam whose polarization state is
sought. Ω1 and Ω2 are the fundamental modulation
frequencies of the two PEMs. Jmðδ10Þ and Jnðδ10Þ re-
present standard Bessel functions of the first kind,
withm an odd integer and n an even integer (exclud-
ing zero). δ10 is the retardation amplitude (in
radians) of the first modulator and may be written
as ð2π=λÞΔ10, where Δ10 is the maximum path differ-
ence (usually expressed in units of wavelength λ) in-
troduced by the modulator. A similar notation
pertains to the second modulator.

Four distinct signals (one dc and three ac) must be
collected to ensure a complete determination of the
Stokes parameters. The terms in the first four lines
of Eq. (1) comprise the dc signal; this is needed to ob-
tain I. Any of the terms in the ninth to twelfth lines
in Eq. (1) may be used to derive V. To findU andQ, it
is essential to monitor a term in the fifth line asso-
ciated with cosðnΩ2tÞ, together with any one of the
terms in the sixth to eighth lines. (The latter all con-
tain the common factor ½Q sinð2αÞ −U cosð2αÞ�, which
makes them insufficient to determine bothU and Q.)
We denote any one of the terms in the sixth to eighth
lines as IQU1 and in the fifth line as IQU2. Taking
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account of Eq. (1), we may, therefore, write the four
required signals in the form:

Idc ¼ v1I þ v2Qþ v3U; IQU1 ¼ v4Qþ v5U;

IQU2 ¼ v6Qþ v7U; IV ¼ v8V: ð2Þ

In this equation, vi ði ¼ 1…8Þ are constants that, in
general, depend on the angular variables and para-
meters associated with the modulators (Ω and δ).
However, these terms are not the actual signals re-

covered by the detector. This may be so for at least
two reasons: (i) the quantum efficiency of the detec-
tor is not usually unity and (ii) the gain of the signal
recovery electronics may be frequency dependent.
Nevertheless, for a given frequency, and assuming
that the detector is operating in a region of linear re-
sponse, there is proportionality between the “theore-
tical” signals and the recorded signals. Thus, we may
write

Idc ¼ cdcSdc; IQU1 ¼ cQU1SQU1;

IQU2 ¼ cQU2SQU2; IV ¼ cVSV ; ð3Þ

in which, for example, Idc, Sdc, and cdc represent the
theoretical signal, the actual signal collected, and the
corresponding proportionality constant, respectively.
Equations (2) and (3) may be combined to give the
following matrix relation:

0

B

B

@

Sdc

SQU1

SQU2

SV

1

C

C

A

¼

0

B

B

@

g1 g2 g3 0

0 g4 g5 0

0 g6 g7 0

0 0 0 g8

1

C

C

A

0

B

B

@

I

Q

U

V

1

C

C

A

¼ G

0

B

B

@

I

Q

U

V

1

C

C

A

:

ð4Þ

The matrix G contains eight new constants, which
are of the form g ¼ v=c. The individual Stokes para-
meters can be found by a straightforward inversion
of G, i.e.,

0

B

B

@

I

Q

U

V

1

C

C

A

¼

0

B

B

@

k1 k2 k3 0

0 k4 k5 0

0 k6 k7 0

0 0 0 k8

1

C

C

A

0

B

B

@

Sdc

SQU1

SQU2

SV

1

C

C

A

¼ K

0

B

B

@

Sdc

SQU1

SQU2

SV

1

C

C

A

; ð5Þ

in which the elements ki (i ¼ 1; 2;…8) in K are the
nonzero parameters. It is these elements that are de-
termined experimentally through the calibration
procedure. It should be noted that k1 can only be
found if the quantum efficiency of the photodetection
system is known. However, for the majority of appli-
cations. this is not necessary and it is sufficient to
determine the normalized calibration constants
ki=k1 (i ¼ 2;…8) or effectively setting k1 ¼ 1.

A further relationship is admissible if the light is
100% polarized, namely,

I2 ¼ Q2 þU2 þ V2: ð6Þ

Generally, the determination of K will require a non-
linear regression to a set of experimental data.

3. Experimental Considerations

The experimental setup is shown in Fig. 1. The opti-
cal components comprise a diode laser source (wave-
length λ ¼ 670nm), Glan–Thompson polarizers (Karl
Lambrecht) with an extinction coefficient of 10−6, two
modulators (PEM-90, Hinds Instruments), and a si-
licon photodiode detector (Melles Griot). The modu-
lators must operate at different frequencies (Ω1 ¼
42kHz and Ω2 ¼ 50kHz in our experiment) so that
fundamentals and harmonics may be distinguished.
The modulation axis of PEM2 defines the x axis of
the laboratory coordinate system. The retarder used
in the calibration is manufactured by Spectral Optics
(8-400-IP Soleil-Babinet compensator). Finally, it
should be noted that, because the laser emits highly
linearly polarized light, there is a large variation in
beam intensity as the polarizer is rotated. This is
inconvenient in some instances and is rectified by
placing the compensator (set for approximately quar-
ter-wave retardation) between the laser and the po-
larizer. When elliptically polarized light is required,
the polarizer and the compensator are interchanged:
the fast axis of the latter is then oriented parallel to
the laboratory x axis and the polarizer rotated
to �45°.

The ac components of the signal from the photode-
tector are measured with lock-in amplifiers (Perkin-
Elmer 7265, Stanford Research Systems SR810DSP
and EG&G 5209) with either the PEM modulation
frequencies of Ω1 and Ω2 or combinations thereof
used as references. The dc component is measured
with a high-precision electrometer (Keithley 6517).
Although the use of three lock-in amplifiers is

Fig. 1. (Color online) Schematic diagram of the dual-PEM-based
Stokes polarimeter.
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preferable, a single amplifier may suffice to collect all
three ac signals at each measurement point. It is
straightforward to monitor fundamentals and har-
monics, but combinatorial frequencies can also be
measured either with custom-built electronics or
by employing the “virtual reference” function of a
lock-in amplifier with this facility (e.g., the PerkinEl-
mer 7265). The virtual reference range of the lock-in
is 0–120kHz, which means that (Ω1–Ω2) and
(2Ω1–Ω2) are easily attainable, given that Ω1 ¼
42kHz and Ω2 ¼ 50kHz. Owing to bandwidth limita-
tions of the electronics, as well as the usually asym-
metric terms associated with PEM1 and PEM2 in Eq.
(1), the response of the measurement system to the
2Ω2 frequency may be less than that at the lower fre-
quencies, which can lead to a somewhat attenuated
SQU2 signal. This has deleterious consequences be-
cause, in order to minimize errors [10], it is desirable
that the eigenvalues of the product KTK be of similar
magnitude; KT is the transpose of K. The freedom to
adjust the values of δ10, δ20, and β enables K to be
tuned to possess such a property. A further advan-
tage is the elimination of any setting errors asso-
ciated with δ10 and δ20. In practice, the lack of
constraint on δ10 and δ20 allows a PEM to be mounted
with a slight tilt, thereby avoiding interference due
to multiple reflections in the optical head.

4. Calibration

To find the elements of K, it is normal practice to im-
pose additional experimental constraints. The most
common procedure [5,9] is to force the condition

J0ðδ10Þ ¼ J0ðδ20Þ ¼ 0 ð7Þ

by setting the retardation amplitude of both PEMs
at δ10 ¼ δ10 ¼ ð2π=λÞð0:383λÞ ¼ 2:4048 rad. Addition-
ally, the number of constants in K may be reduced by
choosing particular values of α and β. Thus, for
α ¼ 45°, we find from Eq. (1) that ν2 ¼ ν3 ¼ ν5 ¼ ν6 ¼
0 (and, similarly, for the constants gi and ki). Effec-
tively, the matrix K is assumed diagonalized and the
off-diagonal elements are assumed to be zero, and,
hence, the calibration constants may be extracted
by a standard linear regression method. (This is
why we refer to the setup as the diagonalized case.)
The only possible conditions permitting direct appli-
cation of linear regression are α ¼ 45° (sinð2βÞ ≠ 0)
and β ¼ 45° (sinð2αÞ ≠ 0) [23]. In the former case,
there is a one-to-one correspondence between the sig-
nals received and the Stokes parameters; this is not
true of the latter case. The calibration curves and cor-
responding linear relations for four different setups
are shown in Figs. 2(a) and 2(b). At best, the error in
any of the normalized constants does not exceed 2%.
Although this procedure is relatively straightfor-
ward, it does have disadvantages. The PEMs must
be calibrated in situ and the values of δ10 and δ20
set accurately to ensure that K is diagonalized. Also,
we find that the measurements are affected by small
variations in ambient temperature, which induce

changes in the values of δ10 and δ20 (and, hence,
the response of the PEMs).

As shown in Fig. 3, for a light beam of given polar-
ization state, the signals calculated from Eq. (1) are
strongly dependent on the settings of δ10 and δ20. In
the diagonalized case (Δ10 ¼ Δ20 ¼ 0:383λ), the sig-
nals are sensitive to small fluctuations in retardation
amplitude because of the large value of the first de-
rivative of the Bessel functions with respect to the
retardation. This situationmay be ameliorated by re-
laxing the condition implied in Eq. (7). Thus, if we
putΔ10 ¼ Δ20 ¼ 0:486λ, then Idc, IQU1, and IQU2 vary
much less with retardation amplitude. By choosing
this operating point, the signals become more resis-
tive to ambient temperature fluctuation. However, IV
is proportional to J1ðδ10Þ, which is not at its most
stable when Δ10 ¼ 0:486λ. This makes it impossible
to stabilize all signals simultaneously.

When Eq. (7) is not satisfied, the determination of
K becomes a nonlinear problem. We now outline a
two-step method by which this may be done. Essen-
tially, the calibration constants associated with the

Fig. 2. (Color online) Calibration results forJ0ðδ10Þ ¼ J0ðδ20Þ ¼ 0.
(a) Angle α is set at 45° and β is set at two arbitrary angles for curves
(1) and (2). (b) Angle β is set at 45° and α is set at 30° and 60° for
curves (3) and (4), respectively.
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linearly and circularly polarized components are
found consecutively. For the first step, a quarter-
wave plate and polarizer are inserted between the
source and the detection system: the light is now
100% linearly polarized and V ¼ 0. The analyzer
may be placed at any angle subject to the condition
that sinð2βÞ ≠ 0, but PEM1 is set at an angle of
α ¼ 45°. This means that k5 ¼ k6 ¼ 0 and K is effec-
tively reduced to a 3 × 3 matrix with four nonzero
normalized elements. Four special orientations are
now chosen for the polarizer (0°, 45°, 90°, and
−45°), which allow simple relationships to be set
up among the parameters I, Q, and U. These can

be used in conjunction with Eq. (5) to derive four
equations connecting the calibration coefficients.
These are written in the third column of Table 1.

The quantities a, b, c, and d are ratios of two sig-
nals measured at each polarizer orientation. In turn,
the equations in Table 1 can be used to obtain explicit
expressions for the calibration constants normalized
to k1, namely,

k2
k1

¼ −
aþ c

2
;

k3
k1

¼ −
bþ d

2
;

k4
k1

¼
a − c

2
;

k7
k1

¼
b − d

2
: ð8Þ

As already stated, the dc and 2Ω2 signals must be
monitored in order to provide Sdc and SQU2, respec-
tively. According to Eq. (1), a choice of signal is avail-
able for SQU1, but we have used 2Ω1, thus avoiding
composite frequencies of the type m1Ω1 þm2Ω2

(although these can be measured as mentioned in
Section 3). As a demonstration of reproducibility,
the first calibration step was repeated a number of
times. The results are shown in Table 2. The accuracy
with which the polarizer can be set to the same posi-
tions during each repetition of the procedure is deter-
mined by the precision of its rotary mount; 5 arc min
in this case. However, we are aided by the fact that,
at each setting, either SQU1 or SQU2 reduces to zero;
the polarizer is adjusted to attain this condition.

To complete the calibration procedure, a Soleil–
Babinet compensator, set to produce an approxi-
mately quarter-wave retardation, is inserted between
the polarizer and PEM1, as illustrated in Fig. 1. Vary-
ing degrees of circular polarization can now be gener-
ated by rotating the polarizer. The Ω2 frequency
(recorded as SV ) is collected in addition to the dc,
2Ω1, and 2Ω2 signals. Assuming that the compensator
does not introduce any significant depolarization,
then the matrix K in Eq. (5) effectively decouples
the linear and circular polarized components. Using
the calibration constants previously determined,
the values of I, Q, and U can be found from Eq. (5).
The value of V is now calculated from Eq. (6) and
k8=k1 is obtained from the relation V ¼ ðk8=k1ÞSV .
Owing to the quadratic form of Eq. (6), the sign of
the calibration constant k8=k1 remains unknown

Table 1. Four Special Settings of the Polarizer Used to Determine the

Relationships among k 1, k 2, k 3, k 4, and k 7

θ

Relationships among
I, Q, and U

Derived
Expression

Measured
Signals

0° I ¼ Q, U ¼ 0
Sdc

SQU1

¼ k4−k2
k1

¼ a Sdc;0, SQU1;0

45° I ¼ U, Q ¼ 0
Sdc

SQU2

¼ k7−k3
k1

¼ b Sdc;45, SQU2;45

90° I ¼ −Q, U ¼ 0
Sdc

SQU1

¼ −
k2þk4
k1

¼ c Sdc;90, SQU1;90

−45° I ¼ −U, Q ¼ 0
Sdc

SQU2

¼ −
k7þk3
k1

¼ d Sdc;−45, SQU2;−45

Table 2. Normalized Calibration Constants Determined over Five

Independent Sets of Measurements
a

Calibration Set k2=k1 k3=k1 k4=k1 k7=k1

1 0.47563 0.45475 2.09541 2.12227
2 0.47468 0.45745 2.09398 2.12227
3 0.47614 0.45733 2.09451 2.12249
4 0.47454 0.45663 2.09425 2.12232
5 0.47562 0.45689 2.09503 2.12294

Mean 0.47532 0.45661 2.09464 2.12246
Standard deviation 0.00069 0.00109 0.00058 0.00028

Standard deviation (%) 0.15 0.24 0.03 0.01

aThe PEM retardation amplitudes are set to Δ10 ¼ Δ20 ¼
0:486λ.

Fig. 3. (Color online) Normalized “theoretical” signals derived
from Eq. (1) plotted as a function of Δ10 and Δ20 for an arbitrary
polarization state.
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(unimportant for many applications). The sign of
k8=k1 is easily resolved, provided that (as is usually
the case) the fast axis of the compensator is known.
In principle, k8=k1 can be determined from a single

azimuthal orientation of the polarizer. However, the
procedure was repeated for several settings, thus
providing k8=k1 over a wide range of polarization
states. Figure 4(a) plots the calculated values of
k8=k1 against the ellipticity angle, χ, defined as

χ ¼
1

2
sin−1

�

V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q2 þU2 þ V2
p

�

: ð9Þ

As χ decreases, k8=k1 becomes increasingly sensitive
to small errors in I, Q, and U, resulting in a 7% de-
viation from the mean at χ ¼ 8° (not shown on the
graph). For this reason, only measurements made
with an ellipticity angle greater than 15° were used
to determine the mean value of k8=k1.
To illustrate the general validity of the calibration

procedure, the Stokes parameters were measured
for a set of different polarization states of a fully
polarized light beam (both linearly and elliptically
polarized). The results are presented in Fig. 4(b)
as I2 versus Q2 þU2 þ V2. The gradient in the figure
should remain constant (with a value of unity)

regardless of the polarization state. The linear rela-
tionship demonstrates precisely this point, with the
error in the gradient being no larger than 0.05%. It
should be noted that the construction of Fig. 4(b)
involves use of all the calibration constants.

5. Comparison of the Methods

A brief critique of the relative merits of the diagona-
lized and nondiagonalized cases will now be given.
The angle of polarization of plane polarized light
was calculated for given orientations Ψ of the polar-
izer. Ψ is given by

Ψ ¼
1

2
tan−1ðU=QÞ: ð10Þ

The degree of polarization was also determined.
The mean error and maximum error in both these
quantities hεPi, hεψi, εPmax, and εψ max are presented
in Table 3 for the three configurations under discus-
sion, which were obtained from datasets of linearly
polarized light of different polarization angles and el-
liptically polarized states with a varying degree of el-
lipticity. The columns headed Δ10 ¼ Δ20 ¼ 0:383λ
represent the situation where the retardations are
taken as read from the PEMs. It is clear that the er-
rors in the diagonalized case are significant and
much larger than those incurred in the nondiagona-
lized case. This is because the readings of retardation
indicated on the modulators do not represent their
actual values. (In this specific example, in situ cali-
bration showed that retardation amplitudes were out
by −6% and −3% for the two PEMs used). In the col-
umns headed J0ðδ10Þ ¼ J0ðδ20Þ ¼ 0, the modulators
were carefully calibrated in situ in order to ensure
as far as possible the condition specified by Eq. (7).
Now there is a dramatic improvement in the diago-
nalized case, but little difference between the diago-
nalized and nondiagonalized cases. Finally, results
are shown for the setup where Δ10 ¼ Δ20 ¼ 0:486λ;
there is little change compared with the procedure
when J0ðδ10Þ ¼ J0ðδ20Þ ¼ 0. The same behavior is
also evident in Fig. 5.

In view of the last observation, it might be argued
that there is little advantage to be gained by moving
away from a standard diagonalized procedure, espe-
cially so if themodulators are calibrated in situ. How-
ever, the nondiagonalized method offers a more
robust approach. It has been found that the set point
of J0ðδ10Þ ¼ J0ðδ20Þ ¼ 0 is prone to drift as a result of
changes in ambient temperature. In practice, the
system would have to be recalibrated on a regular
basis in an environment where the temperature
changes by only a few degrees Celsius. Such instabil-
ity can result in appreciable errors in the measured
polarization state. For example, the ratio U=Q used
to calculate the azimuth angle, as given by Eq. (10),
depends strongly on the ratio of the second-order
Bessel functions J2ðδ20Þ=J2ðδ10Þ. By setting Δ10 ¼
Δ20 ¼ 0:486λ, the first derivatives of J2ðδ10Þ and
J2ðδ20Þ become zero and, consequently, the azimuth

Fig. 4. (Color online) Tests for consistency for Δ10 ¼
Δ20 ¼ 0:486λ. (a) Calculated value of k8=k1 as a function of ellip-
ticity angle. (b) Plot showing the experimental validity of Eq. (6).
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measurement is less susceptible to small changes in
PEM retardation. A factor of 5 improvement in the
temperature stability of the azimuth measurement
was achieved using this configuration.
Finally, we have investigated the possible effects of

stray birefringence by introducing a constant retar-
dation of 16nm after the second PEM. All the calibra-
tion procedures coped well with a minimal increase
in the measurement errors. Although, in principle,
the precise impact of the stray birefringence can
be analyzed by introducing an additional Mueller
matrix to the formula [23], the resulting analytical
expression is very complex. However, the residual re-
tardation of the PEMs is claimed to be of the order of
0:1nm and, therefore, we conclude that it has
negligible impact on our results.

6. Measurement of Magneto-Optical Properties

To illustrate the sensitivity of the system, we have
investigated the magneto-optical Faraday effect of a
CoPt multilayer film with a strong magnetic easy
axis perpendicular to the film plane. The sample
comprises a 10nm Pt seed layer followed by 15 bi-
layers of Co (0:4nm) and Pt (1nm), giving a total film

Fig. 6. (Color online) (a) Reduced Stokes parameters, (b) Faraday
rotation angle, and (c) ellipticity angle of a CoPt multilayer mea-
sured with the calibrated dual-PEM system.

Table 3. Comparison of Mean and Maximum Errors in the Degree and Angle of Polarization

Diagonalized Method Nondiagonalized Method

hεPi εPmax hεΨi εΨmax hεPi εPmax hεΨi εΨmax

Δ10 ¼ Δ20 ¼ 0:383λ 0.0908 0.1823 0:1041° 0:1844° 0.0013 0.0038 0:0244° 0:0442°
J0ðδ10Þ ¼ J0ðδ20Þ ¼ 0 0.0020 0.0068 0:0138° 0:0418° 0.0009 0.0062 0:0160° 0:0442°
Δ10 ¼ Δ20 ¼ 0:486λ — — — — 0.0011 0.0054 0:0242° 0:0511°

Fig. 5. (Color online) Comparison of experimental validity in
terms of Eq. (6) for (a) setting Δ10 and Δ20 to the nominal value
of 0:383λ and (b) ensuring the value of the zero-order Bessel func-
tion to be zero.
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thickness of 31nm (including the seed layer) depos-
ited on a glass substrate. The experimental setup is
identical to that of Fig. 1, except that the sample and
electromagnet are substituted for the compensator.
The reduced Stokes parameters, such as Q=I, are
plotted in Fig. 6(a), which shows that the field-
induced changes to the polarization state are
relatively small.
The Faraday rotation angle, θF, is calculated using

Eq. (10) and the ellipticity angle, χF, is found from the
Eq. (9). These quantities are shown in Figs. 6(b) and
6(c). They show that, whereas the accuracy in the de-
termination of the absolute angles of polarization
from Q and U is usually of the order of 0:05°, the
sensitivity to changes in polarization state is several
orders of magnitude superior. The typical noise level
in the polarization angle, θF , is about 0:06 arc sec.
This is obtained without any optimization of the
detector-signal recovery electronics, implying a
strong potential for further improvement.

7. Conclusion

The retardation amplitude of a PEM is typically fac-
tory calibrated to a few percent, and it is often oper-
ated at a slightly tilted angle with respect to the laser
beam to avoid the interference of multiple reflec-
tions. However, both are likely to introduce errors
in the precise setting of the retardation amplitude,
such that J0ðδ10Þ ¼ J0ðδ20Þ ¼ 0, and may cause sig-
nificant error in the Stokes parameter measure-
ments when the diagonalized method is employed.
A more general methodology for a dual-PEM system
that permits the relaxation of the fixed retardation
amplitudes of the PEMs has been developed. This of-
fers more flexibility and robustness in the detection
of polarization states. Although it is not possible to
optimize all measured signals simultaneously, the
theory can indicate the ideal choice of experimental
setup for any given application, for instance, to max-
imize or improve temperature stability of the desired
signals by avoiding J0ðδ10Þ ¼ J0ðδ20Þ ¼ 0.
In conjunction with the theory, a two-step proce-

dure that gives the calibration constants to an accu-
racy of better than 1% and also preserves their sign
has been devised. This means that the signs of the
Stokes parameters are known unambiguously. The
only preset or known value required is α, the angle
between the two PEMs. The calibration procedure
may be verified with simple tests for self-consistency
by the application of Eq. (6) using a coherent light
source with a range of different polarization states.
Indeed, if necessary, a refinement of the calibration
constants can be sought by use of a multiparameter
nonlinear optimization procedure, where the con-
straint on α can also be relaxed. While the latter de-
tails will be published elsewhere, our conclusion is
that the two-step procedure will suffice for the major-
ity of applications.
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