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Abstract – The experimental study of a highly compressible porous material, made of cellulose fibers, and
imbibed with water, during stress relaxation tests on a rheometer, shows that the material relaxes when
kept at constant strain as long as there are open pores. Using the relaxation curves, the behaviour under
compression can be divided into two distinct zones, a poro-elastic one and a purely-elastic one, bounded
by the zero-porosity limit. In the poro-elastic zone, the “non-hookean” stress-strain curve is fitted using
Spriggs’ expression of the elastic modulus dependence with porosity. Therefore, the elastic modulus of
the porous material is expressed as an exponential function with two parameters: the elastic modulus of
the fibers and the initial porosity of the material. For the purely – elastic zone the variation of stress is
expressed as a sum of the residual stress obtained from the continuity equation and a Hookean stress-
strain variation of a thinner material with the elastic modulus of the fibers – determined previously. The
relaxation curves are fitted with a relationship between the decay stress and time, approximated with three
terms of Prony series expansion of the generalized Maxwell model.
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1 Introduction

A new lubrication mechanism, named ex-poro-
hydrodynamic (XPHD) lubrication [1], explains the lift-
ing effect produced by the flow of a fluid through the pores
of an extremely compressible porous material subjected to
compression. Studies performed recently on the behaviour
of such materials under impact, for various contact config-
urations, reveal good potential in shock absorption. The
same observations were established by Weinbaum and co-
workers, for porous materials with extremely high porosi-
ties imbibed with gases [2,3]. Recently, the research group
led by Bou-Säıd has published a series of papers on similar
studies related to complex rheological fluid properties and
fluid inertia for planar configuration (disk-on-plane) [4,5].

Demo-experiments were done in the laboratory of Uni-
versity Politehnica of Bucharest, on various porous mate-
rials imbibed with fluids (water, glycerine, paste, gel) im-
pacted with velocities of 1–2 m.s−1. The goal of our work
is to model the squeeze process and establish the damping
capacity of such materials; but first, one should charac-
terize the behaviour of the imbibed material. The present
study presents the viscoelastic properties of such complex

a Corresponding author: mihaela.radu@upb.ro

materials imbibed with water, using low-speed compres-
sion tests. In order to establish the elastic modulus of such
porous materials, water was used as a fluid – since its vis-
cosity is small, and it will not influence the parameters
of the flow. Since porous materials have a changing cross-
sectional area when compressed, one has to determine the
dependence of porosity on the elastic properties.

2 Experiments description

The experimental studies on porous materials imbibed
with water presented herein are focused to determine,
with typical mathematical expressions, the viscoelastic
characteristics under compression at low speed.

2.1 Materials

This study analyses three materials that presented
good damping characteristics under impact in the demo-
experiments: Material A and Material B are cellulose
sponges, while Material C is a superabsorbent woven tex-
tile (Fig. 1). Samples of diameter 15 mm, 22 mm and
3 mm imbibed with water were used in different types of
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Nomenclature

B Exponent in Spriggs’ model [–]

E Elastic modulus of the porous material [kPa]

E0 Elastic modulus of the fibers [kPa]

h Thickness of the compressed material [mm]

h0 Initial thickness of the uncompressed material [mm]

hmin Thickness of the material that corresponds to zero-porosity [mm]

t Time [s]

t0 Time when the relaxation period begins [s]

δ Strain [–]

δmin Strain that corresponds to zero-porosity [mm] [–]

ε Porosity of the material at a given compression [–]

ε0 Initial porosity (uncompressed material) [–]

λ1,2,3 Stress relaxation times [s]

σ Stress [kPa]

σ0 Peak value of the stress at the beginning of the relaxation period [kPa]

Material A Material B Material C 

Scale:     1mm

Fig. 1. Macro pictures of the tested materials (in dry condi-
tion).

tests. To ensure that the material is well imbibed, it was
submersed in water and squeezed in order to remove any
air-bubbles inside and then left for 2 h in water. Different
imbibition levels of Material A were tested by weighting
the dry sample (0% water) and the fully imbibed in water
(100% water), the mass of the water absorbed being cal-
culated as the difference between the two. The material
was then squeezed of water and using a digital balance,
water was added until it reached the mass of a material
with 30%, respectively 60% of the mass of the maximum
quantity of water imbibed calculated previously.

The study focuses mostly on Material A, which was
used in all tests presented in Section 3, while Materials B
and C were used only to validate the model presented in
Section 3.5.

Material A is a superabsorbent cleaning cloth made
of cellulose fibers characterized by open pores. Since the
material is brought from a producer of cleaning products,
composition or other information are scarce. In Figure 2
is presented a picture of a sample of 12 mm in diameter
in dry and wet condition. The material presents severe
swelling after imbibition, especially in thickness, increas-
ing its total volume with 75%.

A SEM (Scanning Electron Microscopy) analysis of
the dry material which was previously done [6] shows large
and small cavities made of disordered, long fibers of di-

Dry material Material imbibed with water 

(top view)                 (side view) 

Material    A 

Scale:        
1mm 

1mm 1mm

Fig. 2. Macro pictures of Material A in dry and wet condition.

ameters around 10 µm to 19 µm (Fig. 3). The dimension
of the pores varies a lot (from 20 µm to 500 µm).

The initial porosity of the materials was measured
prior as the ratio of the volume of water absorbed into
the material and the total volume of the material, sup-
posing that the water fills every pore of the material. The
measurement of the initial porosity ε0 is a very subjective
task, therefore one can say that Material A has a porosity
between 0.75–0.8, depending on the level of imbibition of
the material.

Under compression, the geometry of the pores
changes, squeezing out the water in the material. In this
process, we introduce the assumption that the transversal
area of the sample does not change and that the fibers of
the materials are rigid. Therefore the volume of the solid
skeleton is conserved until the porosity becomes zero; re-
sulting in:

h0(1 − ε0) = h(1 − ε) (1)
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Fig. 3. SEM analysis of dry Material A.
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Fig. 4. Porosity variation with respect to strain and thickness
for Material A.

where index “0” represents the initial state (uncom-
pressed).

Using the above equation, we are able to extract the
expression of the porosity at any state of compression,
denoted by ε(h):

ε(h) = 1 −
h0(1 − ε0)

h
(2)

and the value of the thickness of the material at zero-
porosity, hmin, as:

hmin = h0(1 − ε0) (3)

The variation of porosity with strain, correspondingly
with thickness of the compressed material is presented
in Figure 4. When compressing beyond the zero-porosity
limit, meaning more than hmin, the porosity is zero, so

Water bath 

Porous material 

imbibed with water 

Moving plate 

Stationary plate 

Force transducer 

Fig. 5. Experimental set-up of compression tests.

it will be a compact material with no pores. The exact
value of initial porosity used in Figure 4 for material A is
determined in Section 3.5.

2.2 Experimental procedure

The low velocity squeeze tests were done using the
rheometer ARES-LS1. The material imbibed with water
is positioned between two parallel circular plates (Fig. 5)
and compressed with a constant strain rate. The com-
pression was done at room temperature (in a tempera-
ture controlled environment 18 ± 1 ◦C) using different
constant velocities; the normal force was recorded, and as
a result, the compressive stress was calculated. The force
transducer has a normal/axial range of 0.002 N–20 N.
The probe was fully imbibed with water and immersed
in a water bath, except for the case of partially imbibed
samples (presented in Sect. 3.4) where no water bath was
used.

At the beginning of each experiment, a test of pre-
charge was done to ensure that the material is in contact
with the compression plate: when it is in contact with the
top surface of the porous material imbibed with water, the
force transducer will begin to show a value increase. The
thickness of Material A corresponding to a small force of
0.01 N was found to be 4.49 mm, which was considered the
initial thickness of the material h0. Water was added at
the same level of the material to ensure the full imbibition
of the material.

Several types of tests were performed, where the sam-
ple was:

• Compressed and immediately uncompressed with a
certain velocity.

• Compressed with different velocities and kept over
time under a fixed strain.

• Compressed in several steps with pauses of constant
strain over time.

The reproducibility of the results was checked by superpo-
sition of the stress-strain experimental data for the three
samples of different diameters and the results were agree-
able (maximum 6% relative error at any given strain).
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Fig. 6. Stress-strain variation for loading and unloading Ma-

terial A.

3 Experimental results

The experiments described in the previous section
have led to results that can be analysed independently
or in comparison after several criteria. Following are the
results that are most important to the authors.

3.1 Tests regarding the damping capacity

The damping capability of such a material is demon-
strated in the stress versus strain variation which shows
that when compressing Material A up to 70% strain and
then immediately uncompressed, a hysteresis curve will
appear (Fig. 6). Furthermore, like most of fibrous ma-
terials, the selected material shows a nonlinear varia-
tion of stress with respect to strain, which means that
Hooke law does not apply for this material. That could
be because the porosity, and therefore, the geometry of
the cross-sectional area, is changing dramatically under
compression.

3.2 Tests regarding the dependence on compression
velocity

Material A was compressed 66% strain with three dif-
ferent velocities: 0.1 mm.s−1, 0.2 mm.s−1, 0.5 mm.s−1 and
results were very similar (Fig. 7). The stress-strain varia-
tion does not depend much on speed of compression, but
it should be noted that these are low values of compres-
sion test speed. Unfortunately the rheometer limitations
do not allow faster compression tests. The difference in
the values of the stress at the maximum compression is
in accordance with the degree of repeatability of the ex-
periments.

The plots in Figure 8 represent the relaxation of the
material after the compression tests presented in Figure 7.
The normalized stress is defined as the ratio of the stress
σ(t) to the peak value of stress at the beginning of the

Stress

σ[kPa]

Strain δ [-]

0.5

Fig. 7. Stress-strain variation with different speeds of com-
pression of Material A.
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Fig. 8. Dimensionless stress variation in time with different
speeds of compression of Material A.

relaxation, σ0 and it’s useful to bring all values of the
stress to a common value, 1. The tests clearly show that
the stress relaxes more rapidly after a higher velocity of
compression, which can explain the capacity of damping
of these materials: the higher is the impact velocity, the
faster the material tends to relieve the state of stress.

3.3 Tests regarding the relaxation stress

Another type of typical rheological test is to com-
press the sample in steps, with relaxation pauses after
each step. Figure 9 presents a compression test, where
the material is compressed in 4 steps for 10 s with a con-
stant strain rate, each followed by a constant strain pause
of 200 s.

The four stress relaxation curves from Figure 9 were
normalized by dividing the stress to the peak value at the
beginning of the relaxation, σ0. For comparison purposes,
the four curves were translated to the same origin of time
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Fig. 10. Normalized relaxation curves of a four step-
compression for Material A.

(Fig. 10). One can observe that the rate of relaxation de-
pends on the gap, due to the porosity and the quantity
of water inside. They can be divided into two types of re-
laxation curves: at low compressions (δ < δmin) the stress
has the tendency to decrease, while at high compressions
(δ > δmin), the stress decreases slightly at the beginning
but then it increases and remains constant. The mate-
rial compressed after δmin has an elastic behaviour, which
means that it keeps the same level of stress when kept
compressed. This limit is associated with the porosity be-
cause the material relaxes as long as there are open pores,
hence space for the structure of the material to rearrange
itself.
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Fig. 11. Stress values obtained from peaks versus strain for
Material A.
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Fig. 12. Relaxation curves for compression until δ = 0.26 for
different imbibition levels for Material A.

3.4 Tests regarding the dependence on imbibition level

The samples of different imbibition levels were com-
pressed in four steps with relaxation pauses of 200 s be-
tween them. In Figure 11 we can observe that the level of
imbibition does not influence so much the stress, which is
a very useful result in terms of performance – the material
does not have to be carefully imbibed. The dry material
is more rigid and compact (h0 = 2 mm) than the imbibed
material and has greater values in stress when compressed
at the same strains.

The normalized relaxation curves after the first com-
pression (δ = 0.26 or h = 3.3 mm) from Figure 11 is
represented in Figure 12. Since the dry material relaxes,
one can say that the relaxation is due to the skeleton of
cellulose fibers relaxing in the material and not because
of the presence of water. If the material is compressed be-
yond zero porosity, the response is elastic. The relaxation
is actually faster with less water inside the material, in
identical compression conditions.
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Fig. 13. Stress-strain curve for Material A.
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Fig. 14. Experimental curves and theoretical points of stress
variation with strain for Material A.

3.5 Tests regarding the elastic modulus

A sample of 12 mm diameter of Material A was com-
pressed in twelve steps with relaxation pauses of 200 s
between steps. The small diameter was chosen in order
to compress the material as much as possible in the limit
of the force transducer. The values denoted “in peaks”
(Fig. 13) are obtained from the highest values of stress σ0,
at the beginning of each of the twelve relaxation curve.
Comparing the stresses obtained from a continuous com-
pression of a 35 mm diameter sample and the ones ob-
tained from this test, one can observe that there is only
a slight difference – again considered in the repeatability
limit. Therefore, the model of the stress-strain curve can
be discussed using the twelve steps experimental data.

The peak values of the twelve steps have an expo-
nential variation with strain until a critic value of the
strain – defined by δmin (Fig. 14). Following the peak val-
ues of stress at high compression strains (after δmin), one
can observe a linear variation of the stress-strain curve
Therefore, the compression behaviour can be divided into
two distinct zones – delimited by the zero-porosity limit
– δmin. This limit can be more precisely determined from
the relaxation curves – when the normalized stress is con-
stant, the material was compressed beyond zero-porosity
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Fig. 15. Experimental curves and theoretical points of stress
variation with strain for Material B.

and it behaves as an elastic material. Analytically, it can
be divided into 2 curves: an exponential variation and a
linear variation.

The exponential variation corresponds to the compres-
sion within a positive range of porosity in the interval
ε ∈ (0, ε0) where the geometry of the pores changes with
compression. As the initial porosity cannot be estimated
very precisely, it was adjusted within the measured range
0.75–0.8, in order to isolate the last three experimental
points in the “elastic zone”. Therefore, the initial poros-
ity was chosen ε0 = 0.77.

The law of variation of stress with respect to strain was
confirmed as Spriggs’ model – an exponential model for
porous materials having pores with arbitrary shape [7–9]:

E = E0e
−Bε (4)

where ε is calculated according to Equation (2), E is the
Young’s modulus of porous material, E0 is Young’s mod-
ulus of the fibers. The exponent B = 2.5 was fitted in
order to obtain the best deviation from the experimental
points in Figure 14. The effective elastic modulus of the
fibers was found as E0 = 70.4 kPa.

When the material is compressed after the porosity
is zero, the material behaves purely elastic. The following
equation is built as the sum of a residual stress that comes
from the porous material compression (calculated using
the continuity equation at hmin) and a Hookean stress of
a “new”, thinner sample of thickness hmin.

σ = E
h0 − hmin

h0
+ E0

hmin − h

hmin
(5)

The two equations describing the variation of stress with
strain of extremely compressible porous materials im-
bibed with water are plotted over the experimental points
in Figure 14 – and the fitting is very accurate.

Just for the purpose of validating the model, this
model is applied for Materials B and C. Since Material B
is very similar with Material A, being also cellulose fibers,
the results are very similar and satisfying (Fig. 15).

Material C, is a woven textile and the behaviour in
the elastic zone does not fit at all the experimental data
(Fig. 16).
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Table 1. The properties of the tested material, as resulted from measurements and fitting of the experimental data.

Material Increase Initial porosity Initial thickness Minimum thickness Coefficient Modulus of elasticity

in volume ε0 [–] h0 [mm] hmin [mm] in Equation (4) B [–] E0 [kPa]

Material A ∼90% 0.77 4.5 1.03 2.5 70.4

Material B ∼90% 0.76 2.8 0.67 3.2 71.2

Material C ∼25% 0.65 2.1 0.73 3.6 104
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Fig. 16. Experimental curves and theoretical points of stress
variation with strain for Material C.

A summary of the tested materials is presented in
Table 1.

3.6 Tests regarding the Maxwell model
for visco-elasticity

We assume that when the material is compressed,
there is an elastic effect, due to the elasticity of the mate-
rial and a viscous effect due to the flow of the fluid through
the pores, neglecting that the skeleton of the material can
be viscoelastic.

One can build up a model of linear viscoelasticity
by considering combinations of the linear elastic spring
and the linear viscous dashpot. Many complex materials,
like polymers, do not relax with a single relaxation time.
When considered necessary to incorporate the effect of
more relaxation times, the Wiechert model (also known as
the generalized Maxwell) can have many spring-dashpot
Maxwell elements needed to approximate the distribution
satisfactorily. The absence of the isolated dash-pot would
ensure an instantaneous response. Similar behaviour of
stress relaxation of chicken fibrinogen with three initial
strain levels were fitted with generalized Maxwell model
in reference [9].

The equation used for fitting the experimental results
is a Maxwell model approximated with only 3 Prony series
terms:

σ(t)

σ0
= 1 −

σ1

σ0

(

1 − e−(t−t0)/λ1

)

−
σ2

σ0

(

1 − e−(t−t0)/λ2

)

−
σ3

σ0

(

1 − e−(t−t0)/λ3

)

(6)
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Fig. 17. Normalized stress with respect to correlated time for
experiment and its approximations for Material A.

In Figure 17 a compression test of Material A up to
δ = 0.26 strain and a long relaxation curve of 3000 s is pre-
sented. This curve was approximated using the Genetic
algorithm with one, two or three Prony terms, named
“1/2/3 – prony”. The relaxation curve of max 300 s can
be approximated well using two terms Prony series, while
the approximation of a 3000 s curve needs the third term.

The fitted curve with three Prony terms is equivalent

in terms of elastic modulus because σ(t)
σ0

= E(t)
E0

. Taking
the elastic modulus calculated above, as E0 = 70 kPa,
the algorithm gives: E1 = 3.71 kPa, E2 = 6.44 kPa, E3 =
6.93 kPa corresponding to the relaxation times of λ1 =
13 s, λ2 = 135 s and λ3 = 2680 s.

4 Discussions and conclusions

The studies on porous materials imbibed with liquids
developed in the paper herein regarding the viscoelastic
characteristics of porous materials are trying to bring new
information to the table regarding the behaviour under
squeeze process at constant speed.

Viscoelasticity is confirmed by the material relaxation
when kept at constant strain as long as there are open
pores. The relaxation depends on the gap, due to the
porosity. We can observe two types of relaxation curves of
the stress: for a positive range of porosity in the interval
ε ∈ (0, ε0) the stress has the tendency to decrease after a
curve that seems to be going asymptotically to zero; when
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ε = 0, the stress decreases slightly at the beginning, but
then recovers close to its initial value – which is a clear
proof of a purely elastic behaviour. The relaxation curves
for different imbibition levels prove that the relaxation is
due to the matrix or yarns relaxing in the material and
not because of the water inside. The relaxation is actually
faster with less water imbibed in the material, in identical
compression conditions. The stress relaxes more quickly
with a higher velocity, which can explain the damping
capacity of these materials imbibed with water. A more
intuitive result that supports this capacity is the hystere-
sis curve.

The stress-strain curve has to be divided into two
zones, delimited by the zero-porosity limit hmin. In the
poro-elastic zone, h ∈ (hmin, h0), the exponential varia-
tion of stress with respect to strain is defined as Spriggs’
model – an exponential model for pores with arbitrary
shape. For the elastic zone, h ∈ (0, hmin), the variation of
stress is expressed as the sum of a residual stress that is
calculated as the sum of the stress of the porous material
at hmin (ε = 0) and a Hookean stress of a “new” sample,
elastic, of thickness hmin.

The mathematical expressions of the stress-strain vari-
ation for the two domains (poro-elastic and elastic) are
applicable to other similar materials, with different values
for the elastic modulus of the fibers, E0 and exponent, B.

Acknowledgements. The authors would like to thank LaMCoS
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