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mechanism responsible for this development 
is hyperglycemia, which activates the polyol 
pathway, increasing the production of sorbitol. 
This increase results in cellular stress that leads 
to a decrease in the intracellular antioxidant 
defenses. It can also result in the concentra-
tion of the products of advanced glycosylation, 
thus altering cell function. However, hyperg-
lycemia can also activate nuclear transcription 
factors, triggering an increase in the expression 
of the inflammatory mediators. The combina-
tion of these mechanisms alters the production 
of oxidants, causing cellular stress and conse-
quently the structural damage.(10)

With the objective of evaluating the increase 
of oxidative stress and possible damages to the 
lung structure caused by DM, the experimental 

The prevalence of diabetes mellitus (DM) 
has increased in recent years, principally due to 
the great number of patients with type 2 DM, 
which is related to the prevalence of obesity and 
sedentary lifestyle.(1)

Functional abnormalities in the respiratory 
system, such as reduced lung elastic recoil, lung 
volumes and diffusing capacity, are caused by 
DM.(2-4) Various cross-sectional studies(5-7) have 
shown the effect that type 1 and 2 DM have on 
pulmonary function tests in adults. It is known 
that DM is an independent risk factor for the 
development of sleep apnea,(8) and patients who 
present DM are more susceptible to contamina-
tion through airborne particulate matter.(9)

One of the factors responsible for pulmo-
nary alterations can be oxidative stress. The 
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Abstract
Diabetes mellitus is an endocrine/metabolic disorder characterized by hyperglycemia. Its impact on the respiratory 
system is characterized by functional changes and alterations in gas exchange. The objective of this study was to 
evaluate the increase in oxidative stress and the potential damages to the lung structure in an experimental model 
of streptozotocin-induced diabetes. We conducted histological, biochemical and blood gas analyses in the lungs 
of diabetic rats. We concluded that the effects of experimental diabetes mellitus include oxidative stress, structural 
changes in the lung tissue and altered gas exchange.
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Resumo
O diabetes mellitus é uma desordem endócrino-metabólica caracterizada pela hiperglicemia. O seu impacto no 
sistema respiratório é caracterizado por alterações funcionais e na troca gasosa. O objetivo deste estudo foi avaliar 
o aumento do estresse oxidativo e os possíveis danos na estrutura pulmonar no modelo de diabetes experimental 
induzido por estreptozotocina. Foram realizadas análises histológicas, bioquímicas e gasométricas no pulmão 
de ratos diabéticos. Concluiu-se que o estresse oxidativo está presente no diabetes mellitus experimental e que 
ocorrem alterações estruturais no tecido pulmonar, bem como alterações na troca gasosa.
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gist in the Pathology Laboratory of the Porto 
Alegre Hospital de Clínicas.

Data were analyzed using the program 
Statistical Package for the Social Sciences, 
version 13 (SPSS Inc., Chicago, IL, USA). The 
Student-Newman-Keuls test was used. In all 
comparisons, the level of significance was set at 
5%.

Blood glucose concentration was significantly 
higher in the diabetic group when compared 
with the control group, as in the evaluation 
of pulmonary lipid peroxidation, in which the 
TBARS concentration was significantly higher 
in the diabetic animals when compared with 
the controls. When evaluating the antioxidant 
enzyme SOD activity in the lung tissue, we 
observed a significant decrease in the diabetic 
group when compared with the controls.

In the blood gas analysis, we observed an 
increased PaCO2 in the diabetic group when 
compared with the controls, and a decreased 
PaO2. There was no difference regarding the 
SaO2 between the groups (Table 1).

In histology, we evidenced the presence of 
intravascular macrophages in the diabetic group, 
which suggests the presence of inflammatory 
process. We also observed an increase in the 
extracellular matrix, expressed by the presence 
of fibrosis, as well as an increase in the thickness 
of the alveolocapillary membrane (Figure 1).

In our study, we observed an increase in lung 
oxidative stress in diabetic rats in relation to the 
controls, as well as a decrease in the antioxidant 
enzyme SOD activity. Those data are in accord-
ance with the findings of other authors,(16) who 
demonstrated the increase of the oxidative stress 

rat model of streptozotocin-induced DM was 
developed. Histological techniques were used in 
order to determine the alterations in the lung 
structure; biochemical measurements were taken 
in order to evaluate the oxidative injury, as were 
blood gas measurements, in order to evaluate 
gas exchange alterations.

This was a controlled experimental study 
involving Wistar rats with a mean body weight 
of 300 g. All animals were treated in accord-
ance with the World Health Organization 
Ethical Code for Animal Experimentation. The 
animals were divided into two groups, control 
and diabetic, each comprising 10 animals. 
The study period was 60 days, starting on the 
day the diabetic animals presented glycemia 
greater than 250 mg/dL. We induced DM using 
an only  intraperitoneal injection of streptozo-
tocin (70 mg/kg; Sigma Chemical, St. Louis, MO, 
USA).(11) A enzymatic colorimetric assay was used 
to determine the glycemia.

On day 60 of the experiment, the animals 
were sacrificed after having been i.p. anesthe-
tized with ketamine (100 mg/kg) and xylazine 
(50 mg/kg). Subsequently, the thoraco-abdom-
inal region was submitted to trichotomy, and a 
mid-ventral laparotomy was conducted. Blood 
from the abdominal aorta was collected in order 
to evaluate the arterial blood gases. An ABL 700 
analyzer (Radiometer, Copenhagen, Denmark) 
was used to determine PaO2, PaCO2 and SaO2. 
The lungs were removed and fixed in 4% para-
formaldehyde for histological analysis and stored 
at −80ºC in order to subsequently quantify the 
thiobarbituric acid reactive substances (TBARS) 
and evaluate the activity of the antioxidant 
enzyme superoxide dismutase (SOD).

In order to conduct the biochemical analysis, 
the lung tissue was homogenized,(12) after which 
protein levels were quantified in accordance with 
the Lowry et al. method.(13) Measurement of the 
TBARS was conducted as established by Buege 
& Aust.(14) Determination of the SOD activity was 
performed according to the technique described 
by Misra & Fridovich.(15)

The samples for the histological analysis 
of the lung tissue were collected and stored 
for 12 h in 10% formaldehyde solution, trans-
ferred to 70% alcohol and stained with H&E. 
The anatomopathological examination was 
performed in double-blind fashion by a patholo-

Table 1 - Comparison between the control group 
and the diabetic group in relation the glycemia, lipid 
peroxidation, superoxide dismutase and blood gas 
analysis.

Parameters Control group Diabetic  
group

TBARS, nmol/mg 
protein

0.889 ± 0.17 1.585 ± 0.55*

SOD, IU/mg protein 14.35 ± 3.98** 4.64 ± 2.3
PaCO2, mmHg 46.2 ± 4.6 56.7 ± 9*
PaO2, mmHg 105.9 ± 9.3** 90.2 ± 17.1
SaO2, % 97.7 ± 0.4 95.7 ± 1.9
TBARS: thiobarbituric acid reactive substances; and SOD: 
superoxide dismutase enzyme. Values expressed as mean 
± SD. *p < 0.05 vs. control group. **p < 0.05 vs. diabetic 
group.
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the fact that the phospholipid and phosphati-
dylcholine content is decreased in proportion 
to the alveolar surface. We also observe, in the 
lung tissue of diabetic animals, the occurrence 
of alterations in the morphology of the type II 
pneumocytes.(20)

We concluded that oxidative stress is present 
in experimental DM, and that structural altera-
tions in the pulmonary tissue are observed, as 
are alterations in blood gases.
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Figure 1 - Photomicrographs of lung tissue samples: a) control; b) diabetic (H&E; magnification, ×200).
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