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Abstract

The present article analyses the in�uence of �ow forming input parameters on the development of “cylindricity error” in 
H30 aluminum alloy seamless tubes fabricated by a single pass reverse �ow forming process. Measurement and control 
of geometrical precision in terms of cylindricity encompassing straightness and roundness are critical for the success of 
component manufacturing by �ow forming. The experimental trials with a prede�ned range of input parameters con-
forming to the full factorial design of experiments approach have been performed, and corresponding cylindricity data 
have been recorded as the outcome. An empirical relation has been established between the input parameters and the 
cylindricity. It has been established that cylindricity value increases sharply with an increase in axial stagger contributing 
39% to the outcome, whereas the percentage contributions of in-feed and feed-speed ratio are found to be less than 1%. 
The adequacy of the proposed model has further been analyzed and validated through the con�rmation tests. In order 
to obtain better control over the overall process towards achieving higher productivity and accuracy, 2 meta-heuristic 
optimization algorithms namely, teaching and learning-based algorithm and genetic algorithm have been utilized for 
optimization of input process parameters to minimize cylindricity error. Both the algorithms predict that a combination 
of higher feed rate and lower value of axial stagger and in-feed parameters is essential to achieve the lowest cylindricity 
error in H30 Al alloy. Con�rmatory experimental trials have been carried out to validate both the regression model and 
optimization, and have been found to agree well with the model predictions described herein.
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1 Introduction

Flow-forming is the preferred process for the realization of 
thin-walled cylindrical products requiring a high degree of 
geometrical precision. In this process, the inner diameter 
of the cylinder remains constant, but length increases by 
reduction of thickness. The generic overview of the �ow 
forming process and in�uence of various input parameters 
are described in detail by Kalpakjian et al. [1]. Among the 

several controlling parameters the speed of the spindle, 
axial feed, in-feed/thickness reduction (IF), axial stagger 
(AS), and roller geometry are considered to be the most 
signi�cant parameters that determine the quality of the 
product. Jiang et al. [2] have proposed an accurate and 
e�cient methodology to evaluate the cylindricity error. 
Alrazzaq et al. [3] have carried out an experimental inves-
tigation on geometrical accuracy for the metal spinning 
process and established a relation between spinning 
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parameters and roundness. Analysis and validation of 
the phenomenon of diametrical growth with the change 
in input parameters have been attempted by Fong et al. 
[4]. Davidson et al. [5] have carried out a detailed study 
on �ow-formed aluminum tubes to establish a relation 
between the qualities of the tube with a change in input 
parameters. Ebrahimi et al. [6], on other hand, have studied 
the quality of surface, dimensional accuracy, and mechani-
cal properties of �ow-formed titanium tubes. The e�ects 
of input parameter on the ovality, internal diameter, and 
spring back of �ow formed AA6082 aluminum alloy tubes 
have been examined by Podder et al. [7]. Conventionally, 
a meta-heuristic search algorithm called the genetic algo-
rithm (GA) has widely been applied to optimization related 
problems due to its robustness and �exibility [8]. Deb et al. 
have explained the power of GA in tackling real-parame-
ter optimization problems [8]. Recently, a new algorithm 
called the teaching learning-based optimization algorithm 
(TLBO) for optimization of process parameters for multi-
pass turning has been proposed by Venkata Rao and co-
workers [9]. It has been claimed that the method can be 
used generically to solve several optimization problems 
and it yields a better result with lesser computational load 
and time.

From the aforementioned discussion, it is amply clear 
that the input parameters play an important role in deter-
mining the geometry of the �nal formed products [10]. 
Although there is a large body of literature on the sub-
ject, deliberations on the overall geometrical precision of 
the formed tube are rather scarce in the open literature. A 
�ow formed product with minimum diametrical growth 
and higher ovality or vice-versa cannot be considered as a 
precision tube. Optimization of one individual parameter 
may improve some of the output parameters, but simulta-
neously it may deteriorate some di�erent output param-
eters. The interdependency of the response parameters 
further adds to the complexity of the problem. Quality of 
�ow-forming is largely dependent on the accuracy of the 
formed cylinder. The geometrical accuracy of the �ow-
formed product can be de�ned with a single parameter 
i.e., “cylindricity”. Cylindricity is a three-dimensional geo-
metrical tolerance that de�nes the form of the cylindrical 
feature. Cylindricity error encompasses the combined inac-
curacies due to straightness and roundness error. Control-
ling the cylindricity error by controlling the level of input 
parameters is therefore a work of prime importance to 
meet the challenges of high geometrical accuracy. In the 
present article, three input parameters are systematically 
varied, and their e�ects on cylindricity have been meas-
ured and a generic mathematical relation has been gen-
erated to establish the relation between cylindricity and 
input variables. Further, two meta-heuristic optimization 
algorithms namely, teaching and learning based algorithm 

(TLBO) and genetic algorithm (GA) are utilized to achieve 
the optimum level of input variables for attaining the mini-
mum cylindricity error. Optimization results of both the 
algorithms are compared and validated with respect to 
the experimental result.

It is the purpose of the present study to optimize the 
processing parameter in order to minimize the cylindricity 
error during the �ow forming of the AA6082 Al alloy tube. 
The experimental values of cylindricity error have been 
obtained within a predetermined range of parameters 
conforming to the full factorial DOE and a mathematical 
relationship is established based on a statistical analysis 
of experimental results. Two meta-heuristic optimization 
algorithms have been applied to the developed model and 
the optimum levels of processing parameters have been 
achieved. The validity of the optimized processing param-
eters has been well corroborated by experimentation and 
thus, provides valuable guidance for bulk production.

2  Experimental procedure

Flow forming trials for the present study were performed 
in a three-roller CNC machine (make: Lei�eld). A previ-
ously-optimized range of processing parameters was uti-
lized for forming trials [7], and in all the cases, the required 
reduction in thickness was achieved in a single pass keep-
ing in mind the productivity of �ow-formed tubes. Con-
sequently, the number of forming passes was not con-
sidered as an input variable during the experimentation. 
The reverse �ow forming process was adapted, and the 
industrially accepted roller geometry and roller combina-
tions have been used for the present testing (Fig. 1a). The 
process details and the speci�cation of the machine are 
reported elsewhere [11]. The tools used for the experi-
ment were mandrel assembly, toothed ring, and stripper 
ring. The inner diameter of the preform was machined so 
as to �t the outer diameter mandrel with suitable clear-
ance. The preform was mounted on the mandrel with 
the help of a toothed ring and stripper ring. The toothed 
ring and stripper ring were assembled to the mandrel 
by keyway and the typical assembly set up is shown in 
Fig. 1b. The deformation of the preform was carried out 
with the hydraulically operated rollers that were sym-
metrically placed at 120° apart. All three rollers were stag-
gered both axially and radially to avoid overlapping of 
the deformation zone. Quality of �ow forming depends 
on mainly three factors viz., preform material condition, 
roller geometry, and machine setting [1, 12]. The present 
study focuses on 4 main machine setting parameters i.e. 
feed, mandrel speed, axial stagger (AS) of rollers, and in-
feed (IF) for a given perform material and roller geometry. 
The ratio of feed and speed or feed rate gives the axial 
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movement of rollers which is a more practical parameter 
for rotary forming processes. This ratio was considered as 
the feed speed ratio (FS) in the present study. All the three 
parameters were varied at 4 levels within a feasible range 
of �ow forming without defects. According to the design 
of experiment (DOE) concept, a full factorial design com-
prising of  43 (i.e., 64) components has been considered. 
Consequently, three selected input parameters, i.e., feed 
speed ratio, axial stagger, and in-feed, were taken into con-
sideration at 4 equal levels of variations. The lower and 

upper limits of the independent variables for the present 
study are shown in Table 1. Following the matrix of input 
parameters, 64 numbers of �ow formed tubes were pro-
duced (Fig. 1c). For each �ow formed tube so produced, 
the inner surface cylindricity was measured with the help 
of portable CMM (Laser Tracker). 

2.1  ‘Preform’ material

H30 (equivalent to AA6082) aluminum alloy was used 
as ‘preform’ material for the present study. The analyzed 
chemical composition of the perform material (wt.% of 
constituent elements) and mechanical properties are 
given in Tables 2 and 3, respectively. Flow forming was 
carried out in the solution annealed condition. In order 
to counter any unintentional distortion due to solution 
annealing operation, a 2 mm �nish-machining allowance 
was been maintained for all the preform material. Fol-
lowing the solution treatment and water quenching, the 
‘preform’ was immediately transferred to a freezer at 4 °C 
to minimize the e�ect of natural aging. Subsequently, �n-
ish machining operation was carried out on the preforms 
before they were subjected to forming trials. A schematic 
diagram of the pre-form is shown in Fig. 2. A strict process 
sequence has been maintained to ensure a uniform time 
gap of 48 h between solution annealing and �ow forming.

2.2  Cylindricity measurement methodology

Cylindricity is the three-dimensional geometrical tol-
erance that de�nes the form of a cylindrical feature. It 
encompasses both the roundness and straightness of a 
cylinder along its axis. The de�nition of cylindricity has 
been clearly explained in standard ASME Y 14.5 [13]. For 
the present study, cylindricity was measured using a port-
able CMM laser tracker. The laser tracker is a polar-based 
measurement system. Laser tracker measures a point in 
3D space by measuring the azimuth (θ), elevation (Φ) 
angles, and distance (R). The angle and distance data are 
converted into X, Y, Z Cartesian coordinates as: x = r(sinΦ.
cosθ), y = r(sinθ.sinΦ), z = r.cosΦ. The distance measure-
ment was carried out using an interferometer (IFM) and 
an absolute distance meter (ADM) devices. Incremental 
distance measurement is made within an interferometer. 
A stabilized, helium–neon laser is divided into 2 beams. 

Fig. 1  a Photograph of �ow forming machine, b mandrel assem-
bly, c �ow formed tubes produced using the range of processing 
parameters

Table 1  Input variables and their levels of variations

Input Level-1 Level-2 Level-3 Level-4

Feed Speed Ratio (FS) 0.5 0.6 0.7 0.8

Axial Stagger (AS) 9.5 11.0 12.5 14.0

Infeed (IF) 3.0 3.5 4.0 4.5
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One beam moves directly into the interferometer and the 
other one comes out of the system and re�ects o� the cor-
ner cube re�ector (CCR) and back into the interferometer. 
The CCR has three mirror surfaces meeting at right angles 
to each other like a corner of the cube with a pivot. Inter-
ference takes place between 2 beams having the same 
frequency, but there exists a phase di�erence between 
2 beams because of the di�erence in distance traveled 
by them. Two beams interfere inside the interferometer 
and result in a cyclic change each time the CCR moves by 
a distance equal to one-fourth of the wavelength of the 
light (~ 0.16 μm). The counter counts the number of cyclic 
changes to evaluate the distance traveled. Since the wave-
length of the helium–neon laser is 633 nm, a very �ner res-
olution of one-quarter of the wavelength (i.e., ~ 0.16 μm) 
can be achieved.

The length is checked for both 0.5″ and 1.5″ re�ectors 
using both the IFM and ADM. If the di�erence between 
the speci�ed length and measured length is more than 
the speci�ed limit, then the instrument is recalibrated. 
The calibration is done for the quali�cation of the system 
before measurement. Calibration of both the IFM and ADM 
equipment was done for the system quali�cation for an 
actual measurement. The invar scale bar was checked for 
its length before starting the measurement. Coordinates 
of points spreading on the cylindrical object surface were 

collected with the CCR. The best �t cylinder was derived 
by the least square method considering the coordinates of 
the points of the object [14]. A Leica laser tracker (model 
Ltd 840) was used for the present study. The Metrolog XG 
(V 8.001) software was used for �tting the best �t cylin-
der of more than a hundred data points captured on the 
surface of the cylinder. The radial distance of the best �t 
cylinder axis for minimum point and maximum point on 
the surface has been reported as ‘cylindricity’ value. Cylin-
dricity of the mandrel used for �ow forming has been 
measured as 0.052 mm. The measurement setup is shown 
in Fig. 3.

2.3  Regression model

The �ow forming trials have been designed based on full 
factorial DOE having 3 factors, and 4 levels for each factor. 
Hence, a total number of 64(= 43) experiments have been 
carried out. The cylindricity value for each tube is meas-
ured as a response parameter after each forming opera-
tion. The response parameter is expressed as a function 
of the independent variable, as shown in Eq. (1). Cylin-
dricity is expressed in terms of individual variables and 
their interaction terms. A mathematical relation has been 
established by �nding out the values of all constants i.e., 
 a0 to  a7 of Eq. (2). For each term of independent variables, 
signi�cance tests have been carried out using ANOVA.

2.4  Teaching learning based algorithm

Teaching learning based algorithm (TLBO) is a heuristic 
search algorithm speci�c to a problem. TLBO is proposed 
by Rao et al. [15]. TLBO needs only the size of the popu-
lation and generation number for execution. Rao [16] 
has successfully implemented the algorithm for several 
mechanical optimization problems. The algorithm can 
solve both constrained and unconstrained problems. 
One major advantage of TLBO is that it does not require 
any parameters to be controlled during its execution. 
Besides, it has a higher degree of repeatability. To obtain 
a global solution for a continuous non-linear function, 

(1)Y = f (X1, X2, X3)

(2)

Y = a
0
+ a

1
X
1
+ a

2
X
2
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3
X
3
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1
⋅ X

2

+ a
5
X
2
⋅ X

3
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3
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⋅ X

3

Table 2  Chemical composition 
of H30 aluminium alloy

Constituent Si Mg Mn Fe Cu Al

Wt% 0.96 0.6 0.57 0.24 0.008 balance

Table 3  Mechanical properties of Preform

Yield Strength Tensile Strength % Elongation Hardness

163 ± 4 MPa 285 ± 3 MPa 30 ± 2 105 ± 5 VHN

Fig. 2  Sketch of a pre-form with dimensions
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the algorithm calls for a relatively reduced computational 
load. This is based on the traditional teaching–learning 
phenomena of a class for reaching the optimum point. 
Here, the initial population is a group of students. Di�erent 
input variables are considered as the di�erent subjects of 
the students. The result scored by the student is assumed 
as the value of �tness. The teacher is decided based on 
the best solution among the population. This algorithm 
consists of two major phases: (a) teaching phase, and (b) 
learner phase.

2.4.1  Teaching phase

Here, the teacher tries to increase the knowledge of the 
student to a particular level for the subject which he/she 
is teaching. The teacher cannot enhance the knowledge 
of the students to the desired level. So, the teacher makes 
an e�ort to enhance the mean level of knowledge of the 
population. The best knowledgeable person of the pop-
ulation is considered a teacher. At any iteration, i, ’m’ is 
considered as the number of subjects i.e., input variables, 
and ‘n’ is the number of learners i.e. population size. Here, 
the population size ‘k’ varies from 1 to n.  Mi,j is the mean 
result for a particular subject ‘j’(j = 1,2,3…,m) of the popu-
lation.  Xtotal-kbest,i is the overall best result considering all 
subjects. Considering the teacher as the most knowledge-
able person of the population,  Xtotal-kbest,i is considered as 
the teacher. The solution is modi�ed by the di�erence 
between the existing mean for each subject the corre-
sponding result of the teacher. It is expressed in Eq. (3).

Here,  Xj,kbest,i is the result of the teacher in subject ‘j’ and 
 ri is the random number within 0 to 1. The teaching factor 
 (TF) decides the change in the mean.TF is either 1 or 2.  TF is 
taken randomly and shown in Eq. (4).  TF may be decided by 
the program randomly. It has been found that for a value of 
 TF = 1 or 2, the algorithm gives a better result [16].  TF is not 
to be considered as a parameter in the TLBO algorithm. It is 
one of the steps.

Considering the value of  Di�erence_Meanj,k,i, the exiting 
solution is changed as per Eq. (5). Here, X’j,k,i is the updated 
value of  Xj,k,i.. X’j,k,i which is to be considered if it yields a bet-

ter result. Accepted values of the teacher phase are saved 
and used as initial values to the learner phase.

2.4.2  Learner phase

Students may learn either from the teacher or by interact-
ing among themselves. In this phase, learners interact with 
themselves randomly. Generally, the learner learns from the 
other learner who is having better knowledge. Learner P and 
Q interact within themselves for the population size (n). This 
phase of P and Q is shown in Eqs. (6) and (7) for minimization 
function and Eqs. (8) and (9) for a maximization problem. For 
both the cases X’ total-P,i ≠ X’ total-Q,i..

For minimization problem:

(3)Difference_Meanj,k,i = ri
(

Xj,kbest,i − TFMj,i

)

(4)TF =round
[

1 + rand(0, 1){2 − 1}
]

(5)X�

j,k,i
= Xj,k,i + Difference_Meanj,k,i

Fig. 3  Cylindricity measurement set up: a laser tracker, b �ow formed tube, c schematic representation of cylindricity
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For maximization problem:

2.4.3  Steps for TLBO

• Obtaining the optimization function
• De�ning the size of the population
• Generating the population
• The identi�cation of teacher (best in the population)
• Updating the learner considering the knowledge of the 

teacher
• Calculating the objective function of the new learner
• Comparing the new and initial population and select 

the better one to get a new population
• Using the new population as the input to the learner 

phase
• Learners’ interaction randomly to upgrade their knowl-

edge
• New population generation by interaction
• Comparing the outputs with the output of the teacher 

phase
• Selection of better one to generate a new population
• Using a new population as an input to the next genera-

tion as an initial population
• Repeating above steps until the speci�ed number of 

generation is reached.

2.5  Genetic algorithm

Genetic Algorithm (GA) is a meta-heuristic search tech-
nique that deploys a higher strategy level for controlling a 
lower level in the algorithm. The concept of GA is inspired 
by nature. GA mimics the concept of Darwin’s natural evo-
lution theory. The search methodology is very robust and 
�exible [17]. The required solution is modeled as a �tness 
function. The optimization of the objective function is car-
ried out by �nding suitable values of input variables. Next-
generation is formed by genetic operators (viz., cross-over, 
and mutation). Variables are taken in the form of a chromo-

some. Sub-string is a combination of various parameters. 
The values of input variables are considered as Genes in 
the sub-string [17]. There are six modules in GA as shown 

(6)X��

j,P,i
= X�

j,P,,i
+ ri

(

X�

j,P,,I
− X�

j,Q,,i

)

if X�

total−P,i
< X�

total−Q,I

(7)X��

j,P,i
= X�

j,P,,i
+ ri

(

X�

j,Q,,i
− X�

j,P,,i

)

if X�

total−Q,i
< X�

total−P,I

(8)X��

j,P,i
= X�

j,P,,i
+ ri

(

X�

j,P,,I
− X�

j,Q,,i

)

if X�

total−P,i
> X�

total−Q,I

(9)X��

j,P,i
= X�

j,P,,i
+ ri

(

X�

j,Q,,i
− X�

j,P,,i

)

if X�

total−Q,i
> X�

total−P,I

in Fig.4. The highest rank chromosome of the population is 
selected. In the cross-over process, the exchange of desir-
able qualities between parents occurs. In this stage, the 
random cutting of chromosomes is done, and substrings 
are exchanged. The cross-over o�springs are taken into 
mutation operation. After reaching the termination crite-
ria, the optimized result is displayed. The optimization tool 
of MATLAB software is used to solve the present problem.

3  Results and discussion

The aim of the present study is to estimate the constants 
of Eq. (2) using experimental data through the full-facto-
rial design of experiments. An empirical model has been 
developed between 3 input variables and one response 
variable. The analysis of variance (ANOVA) is performed 
to evaluate the model adequacy for the correlation of 

Fig. 4  A �ow-chart showing steps of genetic algorithm
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cylindricity error with input variables. For each term of 
independent variables, signi�cance tests have been car-
ried out using ANOVA. The model summary statistics and 
associated fit summary for cylindricity measurements 
for the model are shown in Table 4. The signi�cance of 
all input terms and their interactions as proposed in the 
model has been evaluated out by the ‘P-test’. Furthermore, 
the so-called ‘F-test’ is also carried out to rule out the null 
hypothesis.  R2 and  R2-adj values are also tabulated to 

ascertain the �t of the present model. The regression equa-
tion of cylindricity with FS, AS, and IF is given in Eq. (10). 
The percentage contribution (PC) of each input parameter 
and their interaction terms are also tabulated to under-
stand the sensitivity of the input parameter on cylindricity. 
The residual plots of the model are shown in Fig.5. Sur-
face plots for input variables and cylindricity are shown 
in Fig. 6. Plots for main e�ect and interaction terms in the 
model are shown in Figs.7 and 8, respectively. MINITAB 

Table 4  Regression model 
summary statistics evaluated 
by ANOVA

R2 = 90.51%, R2 (adj) = 89.33%

Source DF SEQ SS C
ontribution 
(%)

ADJ-SS ADJ-MS F-VAL p-VAL

Regression 7 0.203194 90.51 0.20319 0.029028 76.32 0.0000

 FS 1 0.000846 0.38 0.02670 0.026698 70.20 0.0000

 AS 1 0.087848 39.13 0.02316 0.023159 60.89 0.0000

 IF 1 0.000017 0.01 0.02198 0.021977 57.78 0.0000

 FS*AS 1 0.059341 26.43 0.02002 0.020020 52.64 0.0000

 FS*IF 1 0.029316 13.06 0.01686 0.016865 44.34 0.0000

 AS*IF 1 0.014432 6.43 0.01577 0.015766 41.45 0.0000

 FS*AS*IF 1 0.011394 5.08 0.01139 0.011394 29.96 0.000001

Error 56 0.021298 9.49 0.02130 0.000380

Total 63 0.224493 100.00

Fig. 5  Residual plots of cylindricity
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software is used to solve the present problem. The regres-
sion equation for cylindricity error as a function of input 
variables is given in Eq. (10).

The empirical model as described by Eq. (10) has been 
developed through experimentally measured cylindric-
ity values corresponding to the 3 input variables with 

(10)CYL = 6.39 − 8.77FS − 0.453AS − 1.38IF + 0.64FS ∗ AS + 1.84FS ∗ IF + 0.09AS ∗ IF − 0.12FS ∗ AS ∗ IF

predefined levels conforming to the full factorial DOE 
approach (the complete dataset has been provided as sup-
plementary data). To summarize the test for signi�cance 

on individual model co-efficient, the model adequacy 
is further considered through ANOVA. The result of the 
‘P-test’ shows that p < 0.05 for all individual terms and their 
interaction, which con�rms the signi�cance of all terms in 

Fig. 6  Surface plots for the input variables
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the model. From the ‘F-test’, it is evident that the value of 
F > 10 for all cases and thus, the null hypothesis nulli�ed. 
The value  R2 re�ects the correspondence between input 
and output variables. The value is  R2 (90.51% i.e., close to 
unity) implies a better �tness of the model. It is generally 
believed that the model �ts better with actual data when 
the  R2 value approaches unity [18]. However, it is worth 
considering the fact that the value of  R2 also increases 
with the increase in independent variables in the model. 
So, strictly speaking, a higher value of  R2 does not always 
necessarily indicate a better �t of the model. The precision 
of the regression model can be enhanced by adjusting the 
coe�cient of determination  (R2) value for the degrees of 
freedom.  R2 (adj.) meets this purpose by comparing residu-
als per unit degree of freedom. Therefore,  R2 (adj.) is further 
evaluated and compared with  R2. For the present problem, 
the di�erence between  R2 and  R2-adj is only 1.18%. This 
con�rms that all of the signi�cant terms are available in 
the model. As shown in Fig. 5, the residuals lie in normal 

lines in the plot. The residuals do not exhibit any particular 
pattern. It con�rms that there is no measurement error 
during the collection of data. The main e�ect plot in Fig. 7 
indicates that the cylindricity error becomes higher with 
an increase in AS, but with FS, it increases marginally from 
0.6 to 0.7 and decreases for initial and end phases. The 
main e�ect plot further shows that there is a marginal 
change in the cylindricity value with thickness reduction 
(IF). The interaction plot as displayed in Fig. 8 exhibits that 
the cylindricity value increases with interaction terms 
AS-FS and AS-IF, but change is marginal for FS-IF. The sur-
face plots in Fig. 6 shows the complex contour of varia-
tions in the cylindricity with the employed range of input 
variables. Surface plots show that cylindricity errors hardly 
changes with change in the in-feed levels, but it increases 
signi�cantly with axial stagger. The feed speed ratio has a 
mixed e�ect on cylindricity error. The percentage contri-
bution of input parameters and the interaction terms for 
cylindricity error has been tabulated in Table 4. It is evident 
from the analyses of the results that the axial stagger is 
the most in�uential parameter, which contributes 39%. On 
the contrary, both feed-speed ratio and in-feed evolve as 
relatively less signi�cant parameters regarding control of 
cylindricity value. The percentage contributions of interac-
tion parameters (AS*FS, FS*IF, and AS*IF) are estimated to 
be 26%, 13%, and 6.43%, respectively. However, among 
all the interaction parameters, the more signi�cant ones 
contain axial stagger and it reinforces the axial stagger as 
the dominant input parameter in the present case.

Optimization is carried out with both TLBO and GA 
concepts. Several iterations are performed with a di�er-
ent combination of population size and generation. The 
best among them are reported here. The range of the out-
put of TLBO varies signi�cantly for several iterations, but 

Fig. 7  Main e�ect plots of the model

Fig. 8  Interaction e�ect plot of the model

Fig. 9  Convergence graph for minimization of cylindricity error by 
genetic algorithm
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GA produces results with almost the same values for the 
number of iterations. The optimization result of GA and 
TLBO are shown in Figs.9 and 10, respectively. The output 
levels for both the optimization algorithms are similar. 
However, GA provides a marginally better result for the 
present problem.

From the aforementioned analyses, it is rather interest-
ing to note the di�erential e�ects of the input parameters 
on the development of cylindricity error. Notwithstand-
ing the dominance of the axial stagger on the cylindric-
ity as demonstrated by regression analysis, two heuris-
tic- algorithm based optimization techniques insist that 
a combination of higher feed rate and lower value of axial 
stagger and in-feed parameters is essential to achieve the 
lowest cylindricity error. A mechanistic appraisal is there-
fore attempted. It is generally believed that the cylindricity 
of �ow formed tube originates from the tolerance (gap) 
between the inner diameter of the preform and the outer 
diameter of the mandrel. In order to eliminate the possible 
interference of such unavoidable operational necessity, a 
constant tolerance of 50 μm has been maintained between 
the preform and mandrel for the present study. Under such 
a condition, higher levels of in-feed cause diminished dia-
metrical growth but more ovality [18]. On the other hand, 
for a higher degree of thickness reduction (> 40%), the 
through-thickness deformation is generally found to be 

uniform [19]. A thickness reduction of 35–60% maintained 
in the present study eliminates the possibility of deforma-
tion heterogeneity across the thickness of the tube. Similar 
results have been obtained by Safari and Joudaki [20]. It 
has been shown that by increasing the forming increment 
thickness reduction becomes uniform while fabricating a 
complicated specimen with a two-point incremental form-
ing process. Due to the higher deformation level, and a 
relatively smaller clearance between the mandrel and the 
tube, the in-feed (IF) is believed to exert an almost neg-
ligible e�ect in developing cylindricity error. However, 
adequate caution must be exercised in choosing a higher 
deformation level. Although cylindricity is relatively insen-
sitive to the level of the in-feed, it can cause uneven thick-
ness variation as demonstrated by Tabatabaei et al. [21] 
during bulge forming of tubes utilizing several aluminum 
alloys. The cylindricity error is a combined e�ect of dia-
metrical growth, out of roundness or ovality, and straight-
ness of the tube. If the feed-speed ratio is increased, the 
value of diametrical growth is reduced but the value of 
ovality increases [11, 22]. So, FS is having a mixed e�ect 
on cylindricity error. For the starting and higher ranges, 
its e�ect on cylindricity error is opposite to the middle 
range. This is further corroborated by the results reported 
by Wang et al. [23] who have studied the spinning stability 
as a function of the process parameters. It has been found 
that the increase in the feed rate causes a decrease in the 
equivalent plastic strain and it is predicted that a larger 
or smaller feed rate than the optimum one will result in 
excessive diameter expansion. For the present stagger 
�ow forming experiments, three rollers are positioned 120° 
apart to balance the forces on the mandrel and to balance 
the forces acting on it. The positioning of the 3 rollers axi-
ally depends on the roller geometry and in-feed for a par-
ticular pass to avoid any kind of overlapping zone between 
rollers. The axial stagger reported for the present study is 
the axial distance between the �rst and the third roller. 
Both the ovality and diametrical growth increase with the 
increase in AS [15, 15]. Higher levels of axial stagger induce 
a higher localized bending e�ect and cause straightness 
error between 2 extreme rollers. So, axial stagger is hav-
ing maximum in�uence in creating cylindricity error in a 
�ow-formed tube. Axial stagger is selected based on the 

Fig. 10  Convergence graph for minimization of cylindricity error by 
TLBO algorithm

Table 5  Results of con�rmation test of the Regression Model and Optimization

Experiments FS (mm/Rev) AS (mm) IF (mm) Predicted 
Results(mm)

Experimental 
Results (mm)

Error(%)

Regression1 (Intermediate point) 0.75 12.0 4.2 0.276 0.241 12.6

Regression2 (Intermediate point) 0.65 10.0 3.2 0.225 0.255 13.3

GA 0.8 12.0 3.0 0.104 0.096 7.6

TLBO 0.8000 0.9516 3.005 0.105 0.096 8.5
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value of roller angle and in-feed. In-feed has a lesser in�u-
ence on cylindricity error. The production rate of the �ow 
formed tube can be increased by increasing in-feed while 
maintaining the axial stagger in the lesser sensitive range. 
Cylindricity error can be reduced by reducing axial stagger 
by changing the roller entry angle along with the increase 
in the in-feed level.

Con�rmation tests have been conducted to validate the 
regression model, and also optimization values. The results 
of the con�rmation tests have been tabulated in Table 5. 
Con�rmation tests show a good match with predicted 
results. Hence, it can be inferred from the present analysis 
that the response equation (Eq. 10) for estimation of cylin-
dricity in terms of three input parameters (FS, AS, IF) can 
be e�ectively used to predict the cylindricity error of the 
�ow formed tubes within the parametric range used here.

4  Conclusions

The correlation between the input variables (i.e., feed-
speed ratio, axial stagger, and in-feed) and cylindricity of 
�ow formed H30 aluminum tubes has been experimen-
tally determined and modeled using regression analysis. 
The adequacy of the proposed model has further been 
analyzed and validated through the con�rmation tests. 
It has been established that the cylindricity error of �ow 
formed tubes increases sharply with an increase in axial 
stagger (AS). It alone contributes 39% to the cylindricity 
error, whereas the percentage contributions of in-feed 
and feed-speed ratio are found to be less than 1%. The 
regression model developed to establish the relationship 
between cylindricity error, and the input variable shows a 
good �t with respect to the experimental data. The model 
has further been validated with forming trials employing 
intermediate levels of processing parameters. The interac-

tion terms of FS, AS and IF contribute around another 45%.
Further, 2 meta-heuristic optimization algorithms have 

been employed to optimize the multivariate processing 
parameters so as to obtain a global minimum of the cylin-
dricity value. It has been found that the results of the opti-
mization study using both TLBO and GA concepts yield 
similar results. The optimized levels of processing parame-
ters have been validated by con�rmation tests. The results 
show a close match of about 8%.

The present study establishes that a combination of 
higher feed rate and lower value of axial stagger and in-
feed parameters is essential to achieve the lowest cylin-
dricity error in H30 Al alloy tube by �ow forming.

However, the present study is concerned with the opti-
mization and validation of the input processing param-
eters within a selected range for producing defect-free 
�ow form tube with the minimum cylindricity error. In the 

future, the model may be validated for a more wide range 
of processing parameters and various materials, especially 
those having deformation characteristics di�erent than 
the present alloy.
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