
Experimental Evaluation of a Wireless Ad Hoc Network

Saman Desilva
Division of Computer Science
The University of Texas at San Antonio
San Antonio, TX 78249-0667
U.S.A.
sdesilva@cs.utsa.edu

Samir R. Das
Department of Electrical & Computer Engineering and
Computer Science
University of Cincinnati
Cincinnati, OH 45221-0030
U.S.A.
sdas@ececs.uc.edu

Abstract

We experimentally evaluate the performance of a wireless
ad hoc network from the point of view of both the routing and
transport layers. The experiments are done on a testbed with
desktop PCs and laptops using wireless radio LAN interfaces.
For these experiments an on-demand routing protocol called
AODV has been implemented as a part of the operating systems
protocol stack. We describe our design choices and the
experimental setup. The performance evaluation reveals that the
performance is poor beyond two hops at moderate to high loads.

1. INTRODUCTION

Recent advances in wireless communication technology
and portable computing devices such as notebooks, palmtops
and PDAs have generated a lot of interest in infrastructure-
less or ad hoc networking. The idea here is to network a
collection of portable computing devices using low-cost,
short-range radios without any static infrastructure such as
base stations or access points. In an ad hoc network each
node act as a potential router, routing packets for two
communicating nodes that may not be radio contact with each
other. Thus communication may be via multiple wireless
hops. There are a couple of technical challenges that must be
addressed to make such networks usable in practice. First, as
the nodes can be mobile and thus the topology can be
changing, a dynamic routing protocol must be employed to
maintain routes between a pair of source-destination nodes.
Second, the access to the shared wireless medium by a
number of competing nodes must be efficient and fair. The
nature of the wireless medium makes the medium-access
control (MAC) problem nontrivial. For example, the received
power and hence the SNR (signal-to-noise ratio) falls rapidly
with the distance of a receiving node from the transmitting
node. Thus, it is not ordinarily possible for the transmitter to
sense the carrier or detect packet collision at the receiver.

Conceivably, the effectiveness of both the routing and
MAC protocol will affect the performance observed at the
higher layers (e.g., transport and application layers).
Recently, progress has been made in studying both routing
and MAC protocols in ad hoc networks. In particular, a new
class of routing protocols has been developed that maintain
routes in an “on-demand” or “as needed” fashion [3][7]. On-
demand protocols use a source-initiated route discovery
process to discover routes when the route is needed. When
links in a route being used break due to node mobility, for
example, part of that route becomes stale. The stale part of

the route is erased and a new route discovery is initiated.
Depending on the protocol and scenario, the broken route
may be locally repaired as well. On-demand protocols are
attractive compared to more traditional, proactive, shortest-
path based protocols (e.g., those based on distributed
Bellman-Ford [2] or distributed link-state protocols [19]), as
they usually have a lower routing overhead for common
traffic scenarios [20]. Currently, several on-demand protocols
are under consideration for standardization in the MANET
(mobile ad hoc networking) working group [15] in the IETF
(Internet Engineering Task Force).

Progress has also been made in designing random access
MAC protocols based on carrier sense multiple access
(CSMA). For example, the IEEE standard 802.11 [13]
specifies physical and MAC layer protocols for wireless
LANs. It uses a CSMA/CA (carrier-sense multiple access
with collision avoidance) protocol that persists on a busy
channel and employs a random backoff after the channel
switches to idle to avoid the possibility of collision at the
receiver. The 802.11 standard optionally uses RTS/CTS
(request-to-send and clear-to-send) packets to reserve the
channel between a pair of source and destination to avoid the
classical hidden-terminal problem [8]. A body of recent work
evaluates the performance of the 802.11 standard in an ad hoc
setting (see, for example, [12]).

Most of the performance study on routing and MAC-
layer protocols in ad hoc networks has been on simulation
models (see, for example,[14]). However, even the most
detailed simulation models available do not model various
limitations of a real wireless network. These include
limitations of the interface hardware such as limited buffer
space, limitations due to operating systems protocol stack
implementation and/or slow processor such as slow memory
buffer allocation, or various random sources of errors in the
wireless physical layer, such as multipath propagation, radio
noise, or occasional radio shadow owing to mobility,
asymmetric radio links etc. In spite of these limitations of
simulation studies, only very limited amount of work has
appeared in current literature evaluating the performance of
real multihop wireless networks [6].

In the following, we describe our experience in the
design and evaluation of a wireless ad hoc network using
Linux laptops and Lucent Technology’s WaveLan radio [1].
We have implemented an ad hoc network routing protocol
called AODV (Ad hoc On-demand Distance Vector) routing

[3][4] as a part of the Linux network protocol stack. The
protocol allows setting up and maintenance of routes from a
given source to any destination(s). The WaveLan radio uses a
CSMA/CA protocol for access to the radio medium. We have
used the first-generation WaveLan radios (circa 1997) that do
not have an implementation of the RTS/CTS based channel
reservation technique and also do not have any ACK
following a successful packet reception. Our intention is to
experimentally evaluate the performance of the AODV
routing protocol (e.g., route discovery latency) at the network
layer and UDP/IP and TCP/IP protocols at the transport layer
on this testbed.

The rest of the paper is organized as follows. Section 2
describes our testbed and presents results from a set of single
hop experiments that also demonstrates the hardware
characteristics. Section 3 describes the AODV protocol
implementation in the Linux kernel. Section 4 presents the
performance evaluation experiments, followed by
conclusions in section 5.

2. WIRELESS AD HOC NETWORK TESTBED

The wireless testbed consists of one 500 MHz, 128 MB
Pentium desktop PC and four 120 MHz, 24 MB Pentium
laptops (IBM ThinkPads), and one 400 MHz, 128 MB
Pentium laptop (Dell Inspiron). Each machine runs the Linux
Operating System Version 2.2.12. The wireless interfaces are
Lucent Technology’s WaveLan [1] ISA (for desktop) and
PCMCIA (for laptop) cards. Each card contains a LAN
controller, modem control unit and a radio transceiver and is
attached to a small external unit that houses the antenna. The
WaveLan system used operates in the 2.419–2.445 GHz
license-free ISM (industrial-scientific-military) band at a
nominal bit rate of 2 Mbits/sec. WaveLan employs a low-
power radio (transmit power about 500 milliwatts) and is
primarily targeted for in-building wireless extensions of an
existing Ethernet LAN. We, however, used WaveLan in an
ad hoc setting.

We performed extensive performance evaluation of a
single one-hop wireless link for both PCMCIA and ISA
cards. This is because previously reported evaluations with
WaveLan showed that the architectural differences in these
cards and their drivers as well as processor differences
between a desktop and a laptop may affect the network
performance significantly [11]. The key results from this
evaluation are summarized in Table 1. The performance
measurements on either type of laptop (400 MHz and 120
MHz) revealed similar results. We found that the PCMCIA
card has a maximum send bandwidth 1.2 Mb/s, which is
much less than the nominal. The ISA card, however, can go
up to 1.8 Mb/s. This limitation of the send data rate on
PCMCIA is due to a single buffer allocation and high buffer
transfer time from the device driver to the PCMCIA device.
See Table 1 for more details.

Metrics evaluated PCMCIA ISA
Maximum send bandwidth (for
UDP transfer)

1.2 Mb/s 1.8 Mb/s

Maximum received bandwidth
(for UDP transfer)

1.8 Mb/s 1.8 Mb/s

Number of MTU size buffers
allocated for data transfer from
device to kernel

5 31

Number of MTU size buffers
allocated for data transfer from
kernel to device

1 10

Time to move data from device
to kernel (MTU/RREQ)

2.057ms/
0.139ms

0.955ms
0.048ms

Time to move data from kernel
to device (MTU/RREQ)

3.46 ms /
1.13 ms

0.96ms/
0.067ms

Time to complete data transmit
by device (MTU/RREQ)

6.26 ms /
0.47 ms

6.33ms/
0.571ms

Table 1. Single hop performance of PCMCIA and ISA
WaveLan network cards. The Maximum Transmission Unit
(MTU) is 1500 bytes. An RREQ (to be described in the next
section) packet is 68 bytes.

3. AN IMPLEMENTATION OF THE AODV
ROUTING PROTOCOL

In this section we describe our implementation of the
AODV protocol as a part of the Linux protocol stack. We
start with a brief description of the protocol itself and then go
over to the implementation details.

3.1. AODV Routing Protocol

AODV [3][4] maintains a routing table (essentially,
<destination node, next hop, no. of hops to destination>
tuples) on each node in the ad hoc network. When a node
attempts to send a data packet to a destination for which it
does not already know the route (i.e., does not have a routing
table entry), it uses a “ route discovery” process to
dynamically determine such a route. Route discovery works
by flooding the network with route request (RREQ) packets.
Each node receiving a RREQ, rebroadcasts it, unless it is the
destination or it has a route to the destination in its routing
table. Such a node replies to the RREQ with a route reply
(RREP) packet that is routed back to the original source.
Routing table entries pointing back to the source is used to
route the RREP back to the source. These entries (called
reverse path entries) are created at the time RREQ is
forwarded. The reverse path entries are expired after a short
interval of time only sufficient to allow RREP to be
propagated.

If any link on a source route is broken, the source node is
notified using a route error (RERR) packet. The source and
any intermediate node on the way of the RERR packet
remove the indicated route from their routing tables. The
RERR propagation works in the following fashion. A set of

predecessor nodes is maintained for each routing table entry
on every node. They indicate the set of neighboring nodes
that use that entry to route data packets. These nodes are
notified with RERR packets when the next hop link breaks.
Each predecessor node, in turn, forwards the RERR to its
own set of predecessors, thus effectively erasing all routes
using the broken link.

An important feature of AODV is the maintenance of
timer-based states in each node, regarding utilization of
individual routing table entries. A routing table entry is
“expired” if not used recently. Only useful routes are
maintained to keep routing overheads low. AODV also uses
a sequence number-based technique to determine freshness of
routing table entries. The sequence numbers work like logical
clocks. They also help in guaranteeing loop freedom in the
protocol. More details of AODV protocol activities and
necessary data structures can be found in [4].

3.2. Design Choices

We implemented the AODV protocol as an extension to
the Address Resolution Protocol (ARP) [10][21]. ARP is
useful in a broadcast network like Ethernet to provide an IP-
to-MAC address mapping so that packets in a broadcast
domain can carry an identifying MAC address corresponding
to the intended destination. ARP maintains an ARP table that
contains all known mappings. If a mapping is absent in a
node S, node S does an ARP request using a MAC broadcast
packet carrying the IP address of the intended destination D.
Node D being in the same broadcast domain hears this
request, recognizes the address to be its own, and responds to
S with an ARP reply thus supplying its MAC address. S now
can insert the new mapping learnt in its ARP table. A
technique called Proxy ARP [10][21] can be used when S and
D are in different broadcast domains but there is no IP-layer
router to route IP packets from S to D. In proxy ARP, a
“gateway” node N connected to both the broadcast domains
responds to the ARP request for node D from node S. Node S
now maps the MAC address of node N for the IP address of
node D in its ARP table. Thus, all IP packets for node D are
now targeted for node N. Node N now can use the usual IP-
routing approach (assuming, of course, that the two broadcast
domains are appropriately “subnetted”) to forward the
packets to D.

This Proxy ARP approach can be extended with minor
modifications in the ARP layer to handle multi-hop
forwarding of IP packets. In our model of the ad hoc network,
all nodes belong to the same IP subnet and “appear” to the IP
layer to belong to the same broadcast domain as if they are on
the same Ethernet segment. An extension of the above proxy
ARP approach is used for multihop routing. The ARP table
essentially acts as the AODV routing table by providing a
next hop MAC address for each destination IP address. Each

node that is not the destination of an IP packet, forwards the
packet to this next hop MAC address by consulting the ARP
table. If the source node (as specified in the IP header) does
not have an entry corresponding to the destination address in
its ARP table, it starts a route discovery process by
broadcasting a modified ARP request packet, which now
serves as the AODV RREQ packet. Any node receiving this
modified ARP request packet for the first time rebroadcasts
it, unless it is the destination or has an entry for the
destination in its ARP table. In the latter cases, the node
generates a modified ARP reply (now AODV RREP) targeted
for the IP address of the source node and forwards it to the
MAC address of the immediate source of the ARP request.
Each ARP request received for the first time also updates the
ARP table thus providing a reverse multi-hop route back to
the original source.

The above mechanism using proxy ARP is very efficient
and requires only minimal modifications of the ARP packet
structure and ARP table to include AODV specific fields.

3.3. Local Connectivity Management

In the absence of any link-layer ACKs (recall that the
radios we have used do not have them) the AODV protocol
needs to keep track of the local neighborhood explicitly.
Otherwise, there will be no way of knowing when an existing
link is broken. Each time a neighbor moves out of the
neighborhood, the protocol will invalidate all routes through
that neighbor. To keep track of the neighborhood, each node
periodically (every second in our testbed) broadcasts a hello
message. Whenever a node receives a hello message form a
neighbor, it checks and possibly updates it local connectivity
information that is maintained as a set of neighboring nodes.
When a node does not hear from an existing neighbor for
predetermined period of time (2 seconds in our testbed), it
assumes that the link to the neighbor is lost. In this case, the
set of neighbors is updated and an error mechanism via
RERR is initiated.

3.4. Route Errors and Queuing

RERR packets are ARP reply packets with a special flag
to differentiate them from RREP packets. In the current
specification of AODV, an intermediate node does not start
any new route discovery. This is the responsibility of only the
source node. When an intermediate node has no route to a
destination (i.e., no ARP table entry corresponding to the
destination IP address of an incoming packet, whose source
IP address is different from its own), it will drop all incoming
packets for that destination. On the other hand, the source
node will start a new route discovery and will buffer the IP
packet until a route is found.

The Linux kernel maintains two queues that are useful in
this context. One queue buffers the IP packets waiting for an
ARP reply (called ARP queue) and another buffers packets
that received a MAC address from the ARP table, but are just
waiting to be transmitted by the device driver (called transmit
queue). See Figure 1 for a diagram. In Linux, the transmit
queue does not have any bound. But the ARP queue can hold
only 3 packets. Since this short queue is not sufficient for an
on-demand routing protocol, in our experiments the ARP
queue size was increased to 30.

4. EXPERIMENTAL EVALUATION

The keep the experiments manageable and repeatable
they were run in a static (non-mobile) configuration. In some
experiments route breaks are emulated by artificially purging
the routing table (ARP table) entries using an independent
daemon program to force new route discoveries. In others,
route loss was a part of the natural dynamics of the network
because of loss of hello messages.

4.1. AODV Route Discovery Latency

The route discovery latency is the time to discover
routes. It is a key performance metric for on-demand routing
protocols like AODV. Larger latency impacts end-to-end
delay of data packets, as packets are buffered while route
discovery is in progress. Also with very high route discovery
latency, packets can be dropped due to buffer overflows. To
determine the route discovery latencies an experiment was
run with five nodes set up in a linear chain. The distances
between the nodes are adjusted such that a node cannot hear
any other node except its neighbor(s) in the chain. The first

node in the chain is a desktop with ISA card. The rest all are
laptops with PCMCIA cards.

In the first experiment routes are broken artificially by
purging routing table entries. There is no traffic in the
network except routing packets. Table 2 shows the average
and confidence intervals for the latencies for 300 route
discoveries for various routes lengths. Single hop route
discovery latency is very short (less than 3ms), but each
additional hop takes roughly 4ms. The short one hop
discovery latency is an artifact of our experimental design.
Recall that the first node is a desktop with an ISA card. The
primary reason of low single hop route discovery latency is
because the ISA card has a much lower transfer time between
device and kernel compared to the PCMCIA card (see Table
1.) Note again that in our set up only the first (source) node
has an ISA card, the rest are all PCMCIA cards. An
independent set of measurements verifies that with a laptop
used as a source the single hop route discovery time is also
about 4 ms.

No. of hops
Average
Latency
(in ms)

95% confidence
interval as a

fraction of average
1 2.73 5.73 %
2 6.63 10.47 %
3 10.13 0.74 %
4 14.14 5.07 %

Table 2. Average route discovery latencies for various
numbers of hops (with no load)

No. of
hops

Average latency
(in ms)

95% confidence interval
as a fraction of average

1 2.94 49 %
2 15.4 38 %
3 476 31 %
4 700 36 %

Table 3. Average route discovery latencies for various
numbers of hops (with multihop UDP).

The above experiment was run without any traffic, but
with the first node sending UDP packets (MTU size, 1472
bytes plus IP header) to the destination node at the end of the
chain at 0.6 Mb/s, route losses became natural because of loss
of hello messages due to collisions etc. So routes no longer
needed to be broken artificially. Notice that with a loaded
network, the latencies are much higher and also have
significantly wider confidence intervals denoting a lot of
variability in the data (see Table 3). Notice also the sharp rise
in latency with hop counts. This is due to frequent timeouts
owing to the loss of RREQ or RREP packets.

Wavelan
Device

 Other
Device

Figure 1. Block diagram of AODV

Device
transmit queue

TCP

IP

AODV Route
Maintenance

ARP
Table

 ARP
queue

 Wait

Wavelan

Other

Neighbor
Table

Add/del/
Update
Neighbors

Add/del ARP

No

arp_recv()

arp_table_lookup()

Kernel
Modules

Yes

Device
transmit
Queue

UDP

ARP
dev_queue_xmit()

AODV
Modules

tcp_write_xmit()

arp_send()

udp_write_xmit()

arp_send_aodv()

arp_recv_aodv()

resolve_ouput()

ip_queue_xmit()

4.2. Multihop UDP

We now repeat similar experiments with UDP with
nodes in a linear chain, but focus instead on the UDP
performance. As before the first node (desktop with ISA
card) acts as the UDP source and loads the network with
UDP packets destined for the last node in the chain. On each
hop, number of packets received, number of packet
forwarded, and number of packets dropped/lost for various
reasons were recorded via extensive instrumentations.
Experiments were repeated for various offered load (i.e.,
sending rate) and different number of nodes in the chain. As
before the packet size is kept fixed at MTU. Each experiment
is run for 300 sec and the average of several runs were used.

Figure 2. Offered load vs. Received throughput for the
multi-hop UDP experiment

Results from above experiment are shown in Figures 2,
and Tables 4 and 5. Figure 2 shows offered load and
received throughput for 1, 2, 3 and 4 hop experiments. In 1
and 2 hop experiments the received throughput is almost
ideal, but the throughput drops considerably for the 3 and 4
hop experiments for higher offered loads. To analyze the
reason behind this dropped throughput, we show the packet
loss statistics for the 3 and 4 hop experiments in Tables 4 and
5, respectively. In these tables “node x % drops” are
percentage drops from the routing layer at node x with respect
to the total number of packets sent and “node x – x+1 %
drops” are the percentage drops from the link layer between
node x and node x+1. For all hop counts maximum error free
load appears to be 0.2 Mb/s. Although higher bandwidths are
achievable, loss rates are significant for these bandwidths.

In the 3 hop (i.e., 4 nodes) experiment (Table 4), most
losses are in nodes 1 and 2 and in between. Here, nodes and
1 and 3 suffer from hidden terminal problem [8]. Both send
UDP packets, but are not within hearing range from each
other. The packets thus collide at node 2, which loses both
UDP packets from node 1 (node 1-2 drops) and hello
messages from node 3. Similarly, node 3 loses UDP packets
from node 2 (node 2-3 drops) for collisions with the hello
messages from node 4. When the load is high, successive

losses of hello messages are frequent. Two or more
successive losses of hello messages will initiate a RERR
message. All UDP packets are then dropped (node 1 and node
2 drops) until a new RREQ is initiated. Even after a new
RREQ is started UDP packets could be dropped if the ARP
queue runs over. These are also counted in node 1 drops.
Notice that packet drops become noticeable beyond 0.2 Mb/s
offered load and becomes significant beyond 0.4 Mb/s
offered load. The maximum received bandwidth is only
about 0.6 Mb/s. Also notice that beyond node 3 packet drops
are small. This is because drops in the first two nodes and
links are so high, only a small fraction of the offered load
reaches node 3 and beyond.

Offered
load

(Mb/s)

Node
1
%

drops

Node
1-2
%

drops

Node
2
%

drops

Node
2-3
%

drops

Node
3
%

drops

Node
3-4
%

drops

Received
%

0.1 0.00 0.00 0.00 0.00 0.00 0.00 100.00
0.2 0.00 2.12 0.00 0.18 0.00 0.22 97.49
0.3 0.64 7.28 0.05 0.14 0.00 0.21 91.67
0.4 0.00 18.02 0.04 0.29 0.07 0.08 81.50
0.5 1.56 10.07 1.25 0.24 0.00 0.40 86.48
0.6 0.00 22.70 0.03 0.53 0.03 0.03 76.67
0.7 3.34 10.27 7.77 14.28 0.00 0.11 64.22
0.8 8.90 10.67 5.25 18.24 0.02 0.08 56.84
0.9 2.63 12.30 9.79 12.12 0.00 0.13 63.04

Table 4. Packets dropped as a percentage of the total number
of packets sent (in 3 hop UDP experiment).

Node n % dropOffered
load

(Mb/s)
 1 1-2 2 2-3 3 3-4 4 4-5

Received
%

0.1 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.00 100
0.2 0.43 0.3 0.0 0.2 0.0 0.5 0.0 0.27 98.23
0.3 1.6 2.0 0.0 2.7 0.0 1.5 0.0 0.24 91.70
0.4 5.3 5.6 0.7 3.8 0.0 3.2 0.0 0.04 81.16
0.5 14. 6.3 7.7 13 0.0 .19 0.0 0.02 58.49
0.6 25 3.2 13 19 0.0 .14 0.0 0.04 37.47
0.7 15 4.4 11 31 0.0 .14 0.0 0.03 36.17
0.8 18 0.4 7.0 42 0.0 .09 0.0 0.02 31.94
0.9 2.3 22 6.9 42 0.0 .03 0.0 0.05 26.28

Table 5. Packets dropped as a percentage of the total number
of packets sent (in 4 hop UDP experiment).

In the 4 hop experiment (Table 5) the situation is similar.
But here node 4 also transmits UDP packets, thus increasing
the possibility of collisions at node 3 with packets from node
2. Thus, node 2-3 drops are now more significant than before.
The maximum received bandwidth is now less, about 0.4
Mb/s. Also notice that received bandwidth is going down
with very high load. This is because of a larger number of

drops at node 1 due to ARP queue overflows. With larger
number of hops, the route discovery now takes more time
(seen in the previous section) thus opening up the possibility
of more losses.

Figure 3. FTP Progress with time for various number of hops.
The received bandwidth is 210, 70, 47, 18 KBytes/s (for hop 1,
2, 3 and 4, respectively)

4.3. TCP Performance

A linear chain of nodes was also set up to evaluate TCP
performance of multi hop wireless network. This is a set up
similar to that in the previous sections, except that the nodes
were carefully positioned in such as a way that nodes two
hops away can still sense each other’s carrier, i.e. the signal
strength at a node two hop away is strong enough that the
nodes will back off each other via the CSMA/CA MAC
protocol (and thus no longer are hidden from each other), but
weak enough that they will not form a link. This improves
performance somewhat by reducing collisions. Without this
“adjustment,” we have had difficulty in running FTP with
large number of nodes, as the transfer would hang after some
time due to a large number of lost packets.

 A single FTP file transfer (size = 14 Mbytes) was set up
from the desktop (node 1) to the last node in the chain for
various numbers of nodes in the chain giving us data for
various hop counts. For each experiment the tcpdump [21]
tool was run on the source node to trace all outgoing and
incoming TCP packets. Tcpdump is a user-level program that
captures link layer packets. For all experiments in this
section tcpdump was run in non-promiscuous mode minimize
load and to avoid capturing snooped packets destined for
other nodes. An independent experiment was run to verify
that the desktop is powerful enough that tcpdump does not
steal enough cycles to alter TCP performance in any
significant extent.

 Figure 3 indicates the progress of the FTP transfer at the
destination node for various hop counts. As the hop count
increases the transfer gets progressively slower. This is
expected from our experience with UDP in the previous

section. Even though the collisions and packet drops have
reduced somewhat with our new node placement, latency at
each node has increased with increased backoff delays.

To further evaluate the reason for slowdown from the
perspective of TCP dynamics, we zoom into a randomly
selected area of the plot (2 MB – 2.025 MB) and show each
individual TCP packets sent (data packets) and received
(ACK packets) at the source (see Figure 6). Linux uses TCP
Reno [9][18] with selected acknowledgement (SACK) option
[17]. Notice the smooth behavior for the data and ACK
packets for the 1-hop experiment. In TCP Reno normally
alternate packets are acknowledged when there is no packet
loss. This is clearly evident from this figure. However, as the
number of hops is increased things turn somewhat irregular.
For example, with 2 hops the data packets are not sent at as
regular an interval as before. There is a small delay after 2 or
4 packets due to TCP window overruns. This means that the
TCP sender is waiting for an ACK to move its window or
timer expiry for a retransmission. This delay progressively
increases with 3 and 4 hops. With 4 hops the situation is bad
enough that several retransmissions are observed in the plot.
Also notice that the ACKs are not coming back as regularly
for the 2, 3 and 4 hop cases, with things getting progressively
worse for larger number of hops. Often more than two
segments are acknowledged cumulatively by a single ACK.
At other times every successive segment is acknowledged. In
the 4 hop experiment, several duplicate ACKs are seen.
Duplicate ACKs and retransmitted data segments mean
dropped packets in the network.

Figure 4. FTP Progress (blowup of Figure 3)

5. CONCLUSIONS

Our work is one of very few that attempts to
experimentally evaluate the performance of a wireless ad hoc
network by building a dynamic routing protocol as a part of
the protocol stack. The multi-hop performance of a wireless
ad hoc network has not been very encouraging in our
evaluation. Beyond two hops only a small fraction of the
nominal bandwidth is actually achievable even for a sparse

network configuration like a linear chain. Packet loss rate is
very high unless the load is kept substantially low. We also
found that the multiple-access interference (e.g., collisions
due to hidden terminals) interacts with the routing protocol
(e.g., loss of hello messages or routing packets) significantly
at high loads. This gives rise to unnecessary route discoveries
even in the absence of mobility. At high load, route discovery
latency can also be quite large with high degree of variability,
which affects the performance of higher layer protocols such
as UDP and TCP due to long packet delays and lost packets
due to buffer overflows. But at low load both the routing
layer performance (small route discovery latency) and
transport layer performance (lower drops) are reasonable.

However, these experiments were done using the first
generation wireless LAN hardware. The new generation
hardware carries the 802.11 standard and implements link-
layer acknowledgements as well as channel reservation using
RTS/CTS control packets. This will reduce the impact of the
multiple-access interference somewhat. With link layer
acknowledgements AODV will also be able to do without the
hello messages. In our future work, we plan to use newer
wireless hardware with improved device driver as well as
optimized implementations of AODV and study performance
for realistic applications.

ACKNOWLEDGMENT

The work presented in this paper is partly supported by
DoD/AFOSR grant F49260-96-1-0472, and NSF grants ACI-
9733836 and ANI-9973147.

REFERENCES

[1] Bruce Tuch, “Development of WaveLAN, An ISM Band
Wireless LAN”, AT&T Technical Journal, Vol 72, Page
27-33, July/Aug 1993.

[2] C. Cheng, R. Riley and S.P.R Kumar, “A loop-free
extended bellman-ford routing protocol without
bouncing effect” , Proceeding of the 1989 ACM
SIGCOMM Conference, Pages 224-236, 1989.

[3] C. E. Perkins and E. M. Royer, “Ad-Hoc On-Demand
Distance Vector Routing” , Proceeding of the IEEE
workshop on Mobile Computing Systems and
Applications, page 90-100, February 1999.

[4] C. E. Perkins, E. Royer and S. R. Das, “Ad Hoc On-
Demand Distance Vector (AODV) Routing,” Internet
Draft (work in progress), http://www.ietf.org/internet-
drafts/draft-ietf-manet-aodv-05.txt, March 2000.

[5] C. L. Fullmer and J. J. Garcia-Luna-Aceves, “ Solutions
to hidden terminal problems in wireless networks” ,
Proceedings of the ACM SIGCOMM ’97 conference,
pages 39 – 49.

[6] D. A. Maltz, J. Broch and D. Johnson, “ Experiences
Designing and Building a Multi-hop Wireless Ad Hoc

Network Testbed” , CMU Technical Report CMU-CS-
99-116, March 1999.

[7] D. Johnson and D. Maltz, “Dynamic source routing in ad
hoc wireless networks” , in Mobile Computing, Kluwer
Academic, 1996.

[8] F. A. Tobagi and L. Kleinrock, “Packet switching in
radio channels: Part-II – the hidden terminal problem in
carrier sense multiple-access models and the busy tone
solution” , IEEE Transactions in Communications, pages
1417-1433, 1975.

[9] F. Anjum and L. Tassiulas, “On the Behavior of
Different TCP Algorithms over a wireless Channel” ,
Proceeding of the SIGMETRICS’99 Conference, Pages
155-165, May 1999.

[10] G. Wright and W. R. Stevens, “TCP/IP Illustrated. Vol
11” , Addison Wesley, 1995.

[11] G. Xylomenos and G. C. Polyzos, “TCP and UDP
Performance over a Wireless LAN”, Proceedings of the
IEEE INFOCOM 99 Conference, 1999.

[12] H. S. Chhaya and S. Gupta, “Performance Modeling of
Asynchronous Data Transfer Methods of IEEE 802.11
MAC Protocol” , Proceedings of IEEE Personal
Communications Conference, pages 8-15, October 1996.

[13] IEEE Standards Department, IEEE 802.11 standard for
wireless LAN, medium access control (MAC) and
physical layer (PHY) specifications, 1997.

[14] J. Broch , D. A. Maltz , D. B. Johnson, Y-C. Hu and J.
Jetcheva, “A Performance Comparison of Multi-Hop
Wireless Ad Hoc Network Routing Protocols” ,
Proceedings of the 4th International Conference on
Mobile Computing and Networking (ACM
MOBICOM’98), pages 85-97, Oct. 1998.

[15] J. Marker and S. Corson, “Mobile Ad hoc networks
(MANET),” http://www.ietf.org/ html.charters/manet-
charter.html, IETF MANET Working Group Charter,
1997.

[16] M. Gerla, R. Bagrodia, L., Zhang, K. Tang and L. Wang,
“TCP over Wireless Multi-hop Protocols: Simulation and
Experiments” , Proceedings of IEEE ICC’99, June 1999.

[17] M. Mathis, J Mahdavi, S. Floyd, A. Romanow, RFC
2018, “TCP Selective Acknowledgment Option” ,
available from http:/www.ietf.org/rfc, Oct 1996

[18] S. Floyd, T. Henderson, RFC 2582, “The New Reno
Modification to TCP’s Fast recovery Algorithm”,
available form http:/www.ietf.org/rfc, April 1999

[19] S. Keshav. “An Engineering Approach to Computer
Networkings: ATM Networks, the Internet, and the
Telephone Network,” Chapter 11, Addison-Wesley,
1997.

[20] S. R. Das, R. Castaneda, J. Yan and R. Sengupta,
“Comparative Performance Evaluation of Routing
Protocols for Mobile, Ad hoc Networks,” Proceedings of
the 7th Int. Conf. on Computer Communications and
Networks (IC3N), Lafayette, LA, pages 153-161,
October, 1998.

[21] W. R. Stevens, TCP/IP Illustrated. Vol I. Addison
Wesley, 1994.

