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Abstract. The programmability of Cartesian stiffness in Cartesian servo control algorithms that do not use
explicit force feedback is examined. A number of Cartesian algorithms are implemented and evaluated on
4 commercial seven degree-of-freedom robot arm, using the NASREM robot control system testbed. It is
found that Cartesian servo algorithms which use the transpose of the Jacobian and modcl-based gravity
compensalion, provide easy programmability and accurate reproduction of stiffnesses over a wide range.
When dynamic behavior is a consideration, dynamic damping control, augmented to include a par-
ameterization of the manipulator self-motion, provides superior performance and programmability.
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1. Introduction

A number of authors have described Cartesian-based servo algorithms for robot arm
control in the recent literature. Cartesian-based servo algorithms compute tracking
errors for the manipulator in a Cartesian coordinate system rather than in manipu-
lator joint-space. Torques which provide the control input to the actuators, are
obtained from the Cartesian errors by use of the manipulator Jacobian. There are two
principal reasons for wanting to use a control algorithm of this type. First, the servo
is in the coordinate frame in which the task geometry and dynamics are most easily
expressed. Secondly, the fact that the servo is directly in the task coordinates elimin-
ates the need to do explicit inverse kinematics, which can be expensive in the seven
degree-of-freedom case.

By performing the servo in task coordinates, the control parameters can often be
designed to provide the desired behavior of the manipulator end effector. For example,
if the task dynamics require that the end effector be made to have a certain impedance,
this can be achieved by a Cartesian servo algorithm having parameters sufficient to
specify the mass-spring-damper behavior of the manipulator at the end effector [9].
Many manipulations can be performed by adjusting the compliance or stjffhess of the
manipulator. This paper investigates a class of Cartesian servo algorithms in which the
gains of the Cartesian servo provide a convenient means for achieving end effector stiff-
ness in task coordinates. This class of algorithms is termed Cartesian stiffness control.
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Although the term stiffness control has been used frequently in the literature to refer
to a variety of manipulator control algorithms, for the purposes of this discussion a
stiffness control algorithm is one that contains modifiable parameters which directly
encode the effective stiffness of the manipulator end effector in Cartesian coordinates
without the use of force sensing at the end effector. Thus, stiffness control differs from
impedance control in that impedance control requires that contact forces be sensed at
the end effector and fed back as part of the control algorithm. In this paper, control
algorithms which involve feedback of sensed end effector forces are not considered.
Rather, contact forces arc accommadated open-loop by the widely adjustable stiffness
parameters in the control algorithm.

Programmable stiffness without force sensing requires a robot arm which is capable
of producing accurate joint torques such that the appropriate force is realized at the
tip. The control system testbed at the National Institute of Standards and Technology
(NIST) uses the Robotics Research Corporation (RRC) K-1607* seven degree-of-
freedom manipulator. This device has proven capable of providing programmable
open-loop stiffness, as described in Section 5, with dynamic performance, as discussed
in Section 6. The robot control systen testbed which operates the RRC manipulator
is being developed at NIST in support of the National Aeronautics and Space
Administration’s (NASA’s) Flight Telerobot Servicer project [16]. The testbed is
based on the NASA/NIST Standard Reference Model Telerobot Control System
Architecture (NASREM)[1]. The servo control level of the testbed allows for multiple
servo algorithms and can be reconfigured in real-time. Specifics of the servo imple-
mentation are discussed in Section 4. First, Section 2 begins the discussion of Cartesian
control by introducing notation and some computational aspects. Section 3 follows
with a discussion of Cartesian stiffness control, relating a number of well-known
algorithms.

2. Cartesian Control

Cartesian control algorithms generally require computing forward kinematics on the
sensed joint positions,

x = kin (),

where # is the joint position vector and x is the position of the manipulator tip with
respect to a Cartesian coordinate system fixed at the base of the robot, as depicted in
Figure 1. The six-dimensional quantity x includes orientation, which is represented by
a quaternion as described in [4]. Such Cartesian quantities will be referred to simply
as ‘position’ in this discussion. Lower-case symbals are used to represent vectors and
upper-case symbols to represent matrices, unless otherwise stated.

* Certain commercial equipment is identified in this paper to describe the work adequately. Such identifi-
cation does not imply recommendations or endorsement by the National Institute of Standards and
Technolegy, nor does it imply that the equipment used is necessarily the best available for the purpose.
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Fig. 1. Cartesian control coordinate systems.
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The basic kinematics can be extended by the addition of two offset transformations
[20]. Transformation T, relates a reference coordinate system to the base coordinate
system, as shown in the figure. Transformation T, relates the offset of a tool from the
end effector. The position of the tool with respect to the reference frame is

x = T, kin (T, (n

Cartesian vectors such as this expressed with respect to the reference coordinate
frame, are said to be in world coordinates. Vectors expressed with respect to the tool
coordinate frame would be in end effector coordinates.

Although Cartesian position must always be given in world coordinates it is
possible to express Cartesian velocity in either world or end effector coordinates.
Forward kinematics for velocity is given by

= JO)

where the Cartesian six-vector, ¥, gives the rate of change of the Cartesian directions
X, ., z, roll, pitch, vaw, in that order [20]}, and J{(8) is the appropriate Jacobian matrix
for world or end effector coordinates. Note that J(f) includes a differential transform
corresponding to T, in the casc of end effector coordinate velocity representation, and
a differential transform corresponding to T, for world representation [7]. In the
following, explicit representation of position-dependency will not be made (i.e., J(8)
will be written as J. for simplicity).

Cartesian control also involves computing Cartesian errors, which are represented
by {x, — x), the desired position minus the sensed position. The objective of stiffness
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control is to make end effector forces proportional to position errors for cach
Cartesian degree of freedom. Ideally, the stiffness of cach translational and rotational
degree of freedom would be independently specifiable and completely decoupled from
the others. For translational deflections of any size and for small rotations this ideal
may be approached. The translational components of (x, — x) are determined using
vector subtraction, and the rotational components are computed in two steps. First,
the quarternion which represents the error between the desired and actual orientations
is computed

Foo= "rgeinv (Ur)

o

where "r, is the error quaternion with respect to world coordinates, and “r, and “r are
the desired and actual orientations with respect to world coordinates. (The definition
of inverse and multiplication operations for quarternions may be found in [4].) Next,
the error quaternion is converted to a three-dimensional differential rotation vector
by multiplying the components of the axis of the quaternion by the magnitude of the
angle of the quaternion. The equivalence of these two representations for small
rotations is demonstrated in [20].

This technique may be applied for large rotational displacements as well. However,
large rotational displacements do not behave as vectors, and cannot be resolved into
independent components about each axis. Independent (different) stiffnesses may not
be truly realized for arbitrarily large displacements along rotational degrees of free-
dom. Yet, if uniform rotational stiffnesses are used with the above computation of
rotational error, the result is that the desired rotational stiffness will be applied about
the axis of the error rotation, which is as desired.

Cartesian control errors can also be computed with respect to end effector coor-
dinates instead of world coordinates. In this scheme, x, is still specified in world
coordinates, but the operation {x, — x)is modified to give the error relative to the end
effector frame.

end eff _ Wy LW
r. = inv ("r)-"r,

cndcffpc = inv (u‘r) . (WP(.' _ wp)

Here, the symbols involving r represent the rotational part of the Cartesian vectors
and the symbols involving p represent the positional part of the Cartesian vectors.

Thus, by substituting the appropriate (x, — x) and Jacobian computations, Cartesian
control algorithms can be made to allow the realization of stiffness frames which are
aligned with either world or end effector coordinates [8]. In addition, the use of offsets
T, and T, allow the control coordinates to be placed arbitrarily anywhere in the robot
workspace [7].

3. Cartesian Stiffness Control

The term stiffness controf originates from Salisbury’s ‘active stiffness control” algorithm.
Salisbury’s original algorithm is quite complicated and involves extensive use of force
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feedback [21]. However, after simplification to open-loop form, the algorithm can be
written

Lot = JerJ(Bd - 9) + KvM(B-u' - 9) + rgruwty + Ttriction (2)

where 7, is the control torque to the joint actuators, K, is the Cartesian stiffness
specification, K, is the damping gain, J' is the transpose of the Jacobian, and M is the
model inertia matrix. The vectors 7 ..., and Tyiqi0n Provide model-based compensation
for the effects of gravity and friction.

Salisbury’s algorithm has a number of interesting features. First, there is feed-
forward compensation for the effect of gravity, which is essential for the success of all
stiffness control algorithms. Without this compensation, the position gain K, must
always be large enough to hold the manipulator at the goal position against the pull
of gravity and, thus, the stiffness is not independently programmable. Another feature
of Salisbury’s algorithm is that the control damping is specified with respect to joint
coordinates and includes compensation for the variable inertia of the mechanism. The
amount of joint damping is adjusted according to the effective inertia at each joint,
but the damping ratio of the dynamic response at the end effector still varies with arm
configuration.

Algorithm (2) 1s a jeint stiffness control algorithm, since the servo error is computed
in joint space. The Cartesian stiffness is specified by K, which is transformed to a
joint-space stittness by

K, = J'K,J (3)

This produces a constant Cartesian stiffness K, about the end effector for any
manipulator position. However, the algorithm is based on the assumption that
the joint-space displacement (8, — #) is small so that as the distance between 0,
and @ increases, the effective Cartesian spring origin is shified away from that corre-
sponding to #,. This means that the specified stiffness will not be achieved for large
displacements.

To compare with Salisbury’s approach, onc can cxamine the form of other well-
known maniputator control algorithms with force feedback removed. For example,
removing force feedback from Whitney’s versions [24] of stiffness control and hybrid
position/force control results in

To = K;:J l(xa’ - x) - K{:G- (4)

Here, K, specifies a joint-space quantity since it acts on the joint vector J~ "xy, — X).
In addition, there is no explicit compensation for gravity. Thus, (4) cannot be
considered to be a stiffness control algorithm by the current definition.

Two modifications of (4) seem likely to produce a more reasonable algorithm. The
simplest modification is to interchange J ' and K,, which results in an algorithm
similar to resolved acceleration control [15].

T = J 'K,(x, — x) — K,0. (%)

acl




10 JOHN FIALA AND ALBERT J. WAVERING

Now, K, clearly acts in Cartesian coordinates, but J ' does not correctly relate the
desired Cartesian force K, (x, — x) to joint torque. Again, Cartesian stiffness control
is not realized.

SinceJ '(x, — x)in (4)is a joint-space quantity, perhaps an equivalent joint-space
stiffness, K, of (3), can be used for K, in (4). The algorithm resulting from this
substitution and the addition of friction and gravity compensation is called the
Jacobian-transpose algorithm

Ton ™ J!Kv,u(xa’ - x) - Kz() + Toravity + Triction - (6)

This algorithm is a Cartesian stiffness control, since the servo error is in Cartesian
coordinates and Cartesian stiffness K, is obtained over the entire workspace for
displacements of any magnitude.

The Jacobian-transpose control scheme given by (6) has a number of nice proper-
ties. [t has been proven [22] that, in noncontact situations, the algorithm produces
asymptotically stable behavior for positive-definite symmetric matrices K, and X,.
The algorithm is also probably passive [2] such that the manipulator will be stable in
contact with all passive environments. Another benefit of (6) is that the control
algorithm, since it uses only the transpose of the Jacobian, cannot ‘blow-up’ and
produce infinite joint rates as in many inverse control schemes. Other authors have
even found the algorithm to be robust with respect to errors in the Jacobian [17].

When the manipulator being controlled by (6) has seven degrees of freedom. it is
redundant with respect to the Cartesian position goal. This means that the manipu-
lator can execute self-motions while still satisfying the Cartesian stiffness task. Since
{(6) provides no control for this self-motion, except gravity compensation and damp-
ing, the self-motion may assume an arbitrary position. [t may be desirable to control
the position {and stiffness) of the self-motion. This can easily be done by adding a
self-motion parameter to the Cartesian goal and feedback vectors and augmenting the
Jacobian to relate changes in this parameter to joint space [8, 14, 19]. The augmented
Jacobian-transpose algorithm is

Tact = ‘L:Kp(xd - )C) - Kzro + Tgrn\'ily + Titiction » (7)

where J, is the transpose of the 7 x 7 augmented Jacobian matrix, and the x vectors
are now seven-dimensional quantities which include the position of the manipulator
tip and the self-motion parameter. One possibility for the self-motion parameter is to
usc the position of a joint such as the first joint. This will work fine except for those
configurations in which the first joint no longer lies in the nullspace of the Jacobian,
Kreutz et «l. [14] have devised a kinematic expression for the K-1607 efbow angle as
a self-motion parameter. This provides a good parameterization of the nullspace
when the manipulator is far from kinematic singularities, although it does introduce
some additional mathematical singularities. Most algorithms discussed in this section
can be augmented as just described.

One drawback of the Jacobian-transpose algorithm is that the Cartesian dynamic
response is not uniform throughout the workspace. Cartesian motions will be more
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heavily damped for some arm configurations than others. To get a uniform dynamic
response, sophisticated algorithms such as the operational space approach have been
proposed [5, 11].

Toa = J"M‘.[KP(X"- - _\') - Kz-i.] + Teem + rgru\'iu' + Thriction - (8)

Here, 7, is the model torque which compensates Coriolis, centrifugal, and other
velocity effects. M, is the model manipulator inertia in task coordinates. The model-
based nonlinear compensation effectively linearizes and decouples the system when
the manipulator is not in contact with the environment. Constant K, and K, in this
case provide constant bandwidth over the workspace. Unfortunately. the algorithm
does not provide uniform stiffness. The effective Cartesian stiffness is M K, which
varies with manipulator configuration [2}. Thus, (8) cannot function as a Cartesian
stiffness control algorithm.

By proper inclusion of force feedback, algorithms like (8) can provide impedance
control in which a uniform mass-spring-damper behavior can be specified for the end
effector [9, 18, 19]. This technique can have some disadvantages, however. One
problem is that it may be difficult to maintain the passivity of the control with the
complete model-based compensation and for arbitrary mass specification [2, 19]. This
means that the control may be unstable when the manipulator is in contact with
certain environments. Also, without accurate sensing of the external forces acting on
the manipulator, a Cartesian stifiness cannot be programmed in this approach.
Obtaining accurate feedback of all interaction forces may be difficult, as in the case
of external forces acting on the self-motion of a redundant manipulator.

When accurate models of the manipulator dynamics are not available, such that
M, = I and 1, = 0. algorithm (§) simplifies to

T = J'[K,,(_'C“n — x) - KZY] + Toruvity + Tiriction « (9)

Note the similarity of this algorithm to that of (6). The only difference is that the
damping term is in Cartesian space instead of joint space. Although it may sometimes
be useful to specify Cartesian damping, this approach does have a drawback. Assume
that K, is diagonal and uniform, such that K, = &_/. Then (%) can be rewritten

Taat = ']'Kzn(x(! - .‘C) - szfJO + rgruviay + Tiriction - (IO)

Clearly, the joint velocities get mapped through the Jacobian so that any velocities in
the nullspace of the Jacobian will not be damped by the control algorithm. The
redundant self-motion due to using only the tip Jacobian or encountering a singular
configuration is unstable for this algorithm [11, 13]. Experiments at NIST have shown
that this control law 1s not very robust near singular regions. Limit cycle behavior is
generated for a large region near the wrist singularity of the K-1607 manipulator at
lower sampling rates and higher K.

Even though K, specifies a Cartesian damping in (9), a constant damping ratio is
not achieved for the Cartesian dynamic response because the variable inertia of the
mechanism is uncompensated. It is possible to achieve a constant damping ratio with
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Cartesian stiffness control by use of the dynamic damping approach developed by
Anderson [2]. The form of this algorithm

Tact = J{Kp(xa’ - X) - BG + Tgravily + Tiriction (ll)

is similar to (6), but here Bis computed based on the specified K, and the manipulator
inertia to provide a constant damping ratio over the workspace. This algorithm has
the advantage of only requiring specification of K, and having the appropriate B
determined automatically. In the NIST implementation, the Jacobian is augmented
using the elbow angle parameterization as described for (7) to provide a dynamic
damping algorithm which allows control of the manipulator self-motton. The damp-
ing term is computed as in [2],

B = 2UKSCIYVEVU(KIFI,) (12)
where V and Z are obtained from the Singular Value Decomposition {SVD)
UZy = MY(KRJ)

and { is the desired damping ratio. This computation is expensive, but by using the
technique of saving SVD rotations from the previous cycle as described in [25], the
computation of B (after M and J have already been obtained), is performed in
50-60ms in the NIST testbed control system.

To conclude this section, Cartesian stiffness control without the use of force
feedback requires an algorithm which incorporates, at a minimum, gravity com-
pensation and the Jacobian transpose, such as in algorithms, (6), (9), and (11).
While (6) offers a good combination of computational efficiency and robustness,
determination of appropriate damping gains can be very difficult. One one hand,
it is not difficult to select gains which result in a system that is stable both in
free space and in contact, However, the dynamic performance is highly configuration-
dependent and nonuniform. This may not be a severe problem in applications
where the algorithm is used for quasistatic motions, such as part-mating during
assembly,

The procedure used at NIST to select damping gains for (6) is to determine the
maximum velocity gain which may be used for each joint by locating the high-gain
instability value, as in [12]. This instability, which is primarily affected by the sample
rate and joint mertia, 1s performed with the minimum-inertia configuration for the
joint. The velocity gain which results is then decreased by about 20% to give the
maximum allowable value. The maximum position gains are then limited by the
damping available when the maximum velocity gains are used. The manipulator
response is usually over-damped with this approach. This problem of joint velocity
gain selection may be avoided altogether with the use of an algorithm such as dynamic
damping control (11). For this reason, algorithm (11), augmented as in (7), is con-
sidered to be a more useful Cartesian stiffness control when dynamic performance is
a consideration.
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4. Implementation

The Intelligent Controls Group (ICG) within the Robot Systems Division at NIST is
developing a robot control testbed based on the NASREM Architecture [1, 16]. The
purpose of this facility is to test the usefulness of NASREM and various robot control
approaches for NASA’s Flight Telerobotic Servicer project. The robot control system
testbed consists of two major hardware components, the robot arm and the multi-
processor control system.

The robot arm, an RRC K-1607 dextrous manipulator, is a seven degree-of-
freedom manipulator which incorporates joint torque loops to minimize the effects of
drive train nonlinearities (especially motor friction and harmonic drive compliance),
and to reduce the apparent motor inertia seen at the actuator output. The manipu-
lator is supported by its commercial controller which provides an interface which
allows an external computer system 1o issue joint torque commands Lo the manipu-
lator every 2.5ms [6].

The testbed multiprocessor control system consists of seven Motorola 680x0
processor boards in a VME backplane. This hardware executes the Primitive and
Servo Level code and interfaces to the RRC controller using an IEEE-488 parallel
link. Code development is in Ada on a Sun-3 host, which cross-compiles the code and
downloads it, along with a run-time kernel, to the target system.

Although there are many software components of the testbed, this discussion will
focus primarily on the Servo Level of NASREM as described in [7]. The Servo Level
computes the servo contrel loops that provide the static and dynamic behavior in the
small. In autonomous mode, the Servo Level receives commands from the Primitive
Level [23]. These commands include set point trajectories which determine the large
dynamic motions of the manipulator. In addition, Primitive selects the coordinate
system in which the errors will be computed and the Servo algorithm which will be
used. The algorithm selection is made from a large number of resident algorithms.
Thus, the Servo algorithm can be changed in real-time to meet the needs of the current
task. The ability to support multiple algorithms greatly simplified the experimental
evaluation of the Cartesian control algorithms described in Section 3. All of these
algorithms are implemented in the current version of the Servo Level.

The implementation of the Servo Level as related to Cartesian stiffness control is
achieved by the software processes shown in Figure 2. The boxes in the figure
represent the software processes; the ovals represent the data which interfaces pro-
cesses. The processes are labeted according to their functional role in the NASREM
Architecture, Sensory Processing (SP), World Modeling (WM}, or Task Decompe-
sition (TD) [1, 7, 10}. These processes can be thought of as virtually concurrent
processes which are distributed to four of the processors in the multiprocessor system.
The processes implement the descriptions given in [7, 10] for the interfaces and
functions of the Servo Level. For the most part, the symbals used in the figure
correspond to those of the previous section, however, some new symbols will be
defined below.
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Fig. 2. Servo Level processes and interfaces.

The RRC Communicaticns process communicates with the RRC controller using
the TEEE-488 link. The joint position feedback is obtained from the RRC controller
every 2.5ms. Velocity feedback is derived from the position feedback by the Joint
Feedback process. The RRC Communications process also reads the command
torque from the Execution process interface every cycle and transmits the values to
the RRC controller. The RRC controller, running in torque mode, sends the torque
commands to the torque control loops active at the joints.

Joint feedback is used by the WM processes to compute elements of the control
algorithm. The Gravity process computes the model gravity compensation torque,
Taamiy- The Inertia process computes the model! inertia matrix, M. The manipulator
mass and inertia models were derived from data provided by the manufacturer. The
Jacobian process computes the Jacobian J which relates changes in world coordinates
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or end effector coordinates to joint space. The selection of which Jacobian is to be
computed is made based on the Primitive command [7], however this interface is not
shown for simplicity. The Elbow Jacobian process computes the Jacobian vector j,
which relates changes in elbow-angle self-motion parameter to joint space. These
Jacobians are used by the Forward Kinematics process in converting the joint
feedback into Cartesian feedback.

The Joint Space Compensation process generates the total feedforward compen-
sation torque t,. This includes gravity and friction compensation. A simple friction model
is used to compensate for viscous and dynamic Coulombic friction. The parameters for
this model were determined by experimentation similar to that described in [3]. Signifi-
cant static Coulombic [rictional (stictional) disturbances remain however. Breakaway
values of stiction range from about 2 Nm for joint seven to 22 Nm for joint one.

The Covector Compensation process computes the total covector field compen-
sation matrix A. In the case of algorithm (6), A would just be J'. For (8), A would be
MJ~', an equivalent form of J'M,. For some algorithms, such as (2) or (11}, two
model-based values are needed instead of a single covector operator. One value is
needed to multiply position error and a second, different value is needed for multiplying
the velocity feedback. These two values are essentially generalized position and velocity
gains 4 and B, and are obtained from the diagonal commanded gains by the Gain
process. For example, for algorithm (11), 4 is J'K,, while B is computed using (12).

The Execution process computes the servo algorithm, e.g. (6) or (11). The process
reads the clements of the equation from the interfaces written by the World Modeling
processes and the Planning process. The Planning process does any interpolation of
Primitive set point commands that may be required. The Job Assignment process
receives the Servo commands from the Primitive Level and 1s responsible for configur-
ing the Servo Level to run the algorithm commanded by Primitive. The interfaces
which provide reconfiguration are not shown to simplify the diagram.

The Servo Level processes are distributed to processors as follows. The RRC
Communication process runs on one 68030 processor. The Execution, Planning, and
Joint Feedback processes run on another 68030 processor. These processes repeat
their execution cycle every 2.5ms. The Job Assignment and Forward Kinematics
processes arc grouped on another 68030 processor and, again, run on a 2.5ms cycle.
The remaining WM processes are not time-critical and are lumped together on a
68020 processor. Depending on how many of these processes are active for a par-
ticular algorithm, the WM processes cycle every 5 to 100ms. The critical path for
Cartesian control is depicted in Figure 2 by the thick arrows. Based on the distribution
of processes and their resulting execution times, the loop rate achieved for Cartesian
control is about 133 Hz.

5. Static Performance Tests

In order to evaluate the effectiveness of the Cartesian stiffness algorithms which have
been implemented. a number of experiments have been performed to determine the
range of stiffnesses which may be achieved and the accuracy with which the desired
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Fig. 3. Experimental setup for stiffness measurement.

stiffness matrix is realized by the manipulator. This section describes these static
performance experiments,

5.1. SET-UP AND PROCEDURE

The experimental setup for measuring Cartesian stiffnesses is shown in Figure 3. A
rigid pedestal, which consists of aluminum plates welded to the top and bottom of a
hollow aluminum cylinder, was fixed to the floor about 1 m in front of the robot
pedestal. A JR3 6-axis force/moment sensor is attached to the robot tool plate, and
an aluminium bar is bolted to the opposite end of the force sensor.

The test procedure is as follows. First, the robot is commanded very low position
and velocity gains to allow the robot to be manually positioned with only gravity
compensation torques being applied. The robot is positioned as desired and the bar
is then bolted to the pedestal. After bolting, the position and damping gains are sct
to obtain the desired Cartesian stiffness. Next, the robot is commanded to move to
step offsets from the clamped position in cach of the six Cartesian directions of the
world coordinate system. A positive and a negative offset is used for each direction,
resulting in 12 data points for each set of data. The magnitude of the offset is chosen
to achieve a given force or moment, so that larger offscts will be used for low gains,
and smaller offsets for large gains. The resulting forces are recorded for ¢ach position
offset. Nominal forces and moments are read before each offset command and
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subtracted to obtain the net effect of the offset. The forces and moments are rotated
to be aligned with world coordinates using

o = ik

where JI,, is the transpose of the differential transform [20] corresponding to the
orientation of the world coordinate system with respect to the sensor coordinate
system, and £, is the six-dimensional vector of forces and moments in sensor coordi-
natcs. The stiffness matrix is determined row-by-row by performing a multiple linear
regression fit to each column of force data using the entire matrix of commanded
position offsets.

5.2. RESULTS

Two sets of static test results will be presented. In the first set, the desired stiffness
matrix is varied while other conditions are held constant. In the second set, the effect
of variations in arm configuration, joint velocity gain sclection, and the addition of
elbow angle position control arc examined for a particular desired stiffness matrix.
For all of the static performance tests, the position offscts were chosen Lo result in
forces of 75N and moments of 13 Nm/rad.

For the first set of tests, the Jacobian-transpose algorithm (6) is used with trans-
lational stiffnesses (k) of 500, 5000, and 15000 N/m and rotational stiffnesses (k,,} of
50, 500, and 1500 Nm/rad. Joint velocity gains of (600, 600, 400, 250, 70, 70, 50) Nm/
rad/s were used. The manipulator configuration for these tests was as shown in
Figure 3, with the elbow in a vertical position. The actual stiffness matrices which
result from the fit to experimental data for the different desired stiffnesses are given
in Table I. Ideally, stiffness matrices would be diagonal with the upper left three
elements equal to k,, and the lower right three elements equal to &,,. It is seen that the
translational stiffness was obtained to within 10% in most cases, and frequently to
within 5%. The rotational stiffness achieved is typically 60-80% of the desired value.
For this configuration, desired stiffnesses are realized quite well for a wide range of
stiffnesses. The lowest stiffness value, 500 N/m, is comparable to that of a soft sponge,
while 15000 N/m is about as stiff as the manipulator is when operated with its
commercial controller running individual joint servo loops.

Although many of the off-diagonal terms in the measured stiffness matrices are
reasonably small (compared with the diagonal terms), there are several which indicate
significant coupling between certain degrees of freedom. Several factors contribute to
inaccuracies in the diagonal terms, as well as the presence of ofi-diagonal terms (which
should ideally all be 0). Sources of error fall into two categories, torque generation
errors (which are responsible for the difference between the desired and the actual
endpoint forces) and force measurement errors (which are responsible for the differ-
ence between the actual and the measured endpeint forces).

Tdeally, the joint torques corresponding to the Cartesian deflection and the gravity
forces on the links would be produced exactly, resulting in the desired endpoint forces.
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Table . Experimentaily-delermined stiffness matrices for Jacobian-transpose algorithm

k,, (N/m) k,, (Nmjrad) K

it

500 50 [ 524 —15  —11 —92 —24 5]
0.11 554 s05  —45 70 —009
—8.0 13 483 24 13 —26
37 17 —14 41 1.7 —1I.1
9.6 22 1.4 22 320 28

L — L0 —005 —099 —053 —-15 40

5000 500 4950 —144 —1011 —105 —224 13 7]
— &3 5390 508 —19 70 9.6
—47 159 4770 96 - 117 —284
43 —157 —147 399 17 —12
73 28 [6 19 07 =30
I -079 —-12 =73 22 365 |

15000 1500 [ 13900 —469 356 —258 —589 48 7]
~08 15700 230 —135 196 9.2
—120 161 14200 610 353 —775
112 —460 405 1180 45 36
278 62 43 63 902 —111

7 =27 —12 —-15 =36 170 |

Constant conditions:
Jacobian-transpose algorithm of Equation (6),
arm configuration as shown in Figure 3,
joint velocity gains = (600, 600, 400, 250, 70, 70, 50) Nm/rad/s.

However, errors in joint torque loop offsets, joint torque conversion constants, and
gravity model errors contribute to deviations from the desired torques. The joint
torques which are produced interact in a complex, statically-indeterminate manner to
determine the static friction torques and the structural deformation of the manipu-
lator and the force sensor. For the most part, errors between expected and measured
forces mapped to joint space are within the range of static friction. Contributions
to force measurement errors include force sensor noise and coupling. Although a
decoupling calibration matrix is used to process the force sensor output, any discrep-
ancy between the calibration matrix and actual sensor coupling will show up directly
as off-diagonal terms in the stiffness matrix.

Now that the nominal stiffness characteristics have been established, we can look
at the effect of varying some of the conditions held constant in the previous set of tests.
First, it is important to know how much the stiffness matrix can change for a different
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Fig. 4. Allernative manipulater configuration.

elbow configuration. Since the K-1607 is a kinematically redundant manipulator, it
is possible for the arm to assume different configurations while maintaining a constant
end effector pose. Indeed, with the basic Jacobian-transpose algorithm of (6}, there is
no control exercised over the nullspace of the manipulator, and the elbow may be
pushed arcund with the end effector bolted to the pedestal. To examine the effect of
a different self-motion configuration, the 5000 N/m stiffness test was repeated with the
elbow rotated down 1o a horizontal position as shown in Figure 4. The resulting
stiffness matrix fit is given by the first entry in Table I1.

It is seen that some coupling terms have become more prominent in this configur-
ation. There is an especially strong coupling between deflections in the x-direction and
forces in the y-direction as evidenced by element K, (2, 1). The diagonal stiffness
terms are similar, for the most part, to those given previously, although the stiffness
in the x-direction suffers some additional error in this configuration. In this configur-
ation, the coupling may be more pronounced due to larger gravity model errors
(especially for joints 1. 2 and 3) and because of the lack of alignment between joint
axes and world coordinate directions.

The second entry in Table 11 gives the stiffness matrix obtained when augmented
Jacobian-transpose control is used with self-motion position and velocity gains of
2000 Nm/rad and 50 Nm/rad/s, again for the robot configuration of Figure 3. Com-
paring with the sccond entry of Table 1, it is clear that the addition of the nullspace
control term did not significantly affect the achieved Cartesian end point stiffness. For
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Table 1I.  Experimentul stiffness matrices for Cartesian stiffness variations

Variation Koy

all conditions same as in Table I [ 3690 —427 —43 207 —252 8.8

cxecpt arm configuration as 298
shown in Figure 4 — 1580 4840 153 —203 121

819 156 5060 171 —0.17 —551
308 —069 =39 334 3 -2
—137 —128 52 64 424 94

| 54 -94 -70 —19 —61 374

augmented Jacobian-transposc (4770 —151 —126 —88 —208 33 7]
algorithm equation (7) I’ 5420 514 —046 71 16
sell motion position gain = o - ’
2000 Nm/rad —53 129 4770 216 —127 —274
arm configuration as shown in
Figure 3 35 —152 —145 398 18 —12

i3 23 14 22 320 —38

52 —051 —1Lb —356 -—1I8 366 |
dynamic damping algorithm [ 5010 —149 —123 —97 —193 257

cquation (11)

arm cenfiguration as shown in —20 5430 415 - 15 732

Figure 3 —67 115 4780 233 —138 —310
40 —167 —137 402 16 —1I
133 22 16 a1 347 =23

45 069 023 —58 -68 366

Constant conditions:
k, = 5000N/m, k, = S00Nm/rad,
nominal forces = 75N translation, 15 Nm rotation

this test, the only point of contact was the end effector. If forces were exerted on the
elbow, Cartesian stiffness results would be affected.

Experimental stiffness results have also been obtained for other variations of the basic
Jacobian-transpose algorithm, The third entry in Table I gives the result when dynamic
damping (11) is used with the manipulator in the configuration of Figure 3. Again
comparing with the second entry in Table I, it is evident that the method of providing
system damping has little effect on the static performance, as expected. Dynamic
damping (11} and inertia-scaled damping as in (2), therefore give similar stiffness
results to the Jacobian-transpose algorithm with constant joint-space damping (6).

6. Dynamic Performance Tests

In addition to the static performance characteristics discussed above. it is also
important to be able to assess the dynamic capabilities of a manipulator under
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Cartesian stiffness control. Such measurements as frequency and step response pro-
vide insight into the tracking capabilities and suitability of the algorithms for different
tasks. In this section, the results of preliminary bandwidth and step response tests for
Cartesian stiffness algorithms are presented.

6.1. SET-UP AND PROCEDURE

For the dynamic tests, the pedestal is removed from the robot work volume and the
force/moment sensor is removed from the tool plate. The robot is moved to the
configuration shown in Figure 3. Frequency response is observed by commanding a
sinusoidal motion with a frequency that increases linearly with time. Magnitude and
phase response are determined by comparing corresponding peaks in the command
and feedback position data for the frequency sweep.

6.2. RESULTS

As an example of the dynamic performance which can be achieved by the system
under Cartesian stiffness control, the magnitude and phase response of the manipu-
lator in the world z-direction under dynamic damping control is shown in Figure 5.
The amplitude of the commanded sine wave was 1+ 0.04 m. The plots show curves
for two different sets of position gains. The translational stiffness in the z-direction
is 3000 N/m for one, and 12000 N/m for the other. For both scis of plots, the
translational stiffness in the x- and y-directions was 12000 N/m, the rotational
stiffnesses were all 1200 Nm/rad and the self motion stiffness was 2000 Nm/rad.
A damping ratio of { = 0.7071 is used to compute the dynamic damping matrix
of (12).

For k,. = 3000 N/m, the magnitude-limited bandwidth is just over 1 Hz, and for
k,. = 12000 N/m it is about 2 Hz. The magnitude plot thus indicates that when the
stiffness is increased by a factor of 4, the bandwidth is approximately doubled. For
this configuration the manipulator response in the z-direction approximates that of
a second-order system with a damping ratio of .7071, in which bandwidth is pro-
portional to \/k,.. Note also that increasing the stiffness does not result in a response
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Fig. 5. Magnitude and phase plots for dynamic damping algorithm (world z-direction).
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Fig. 6. Response to 0.025m step {world z-dircction).

peak, since the dynamic damping algorithm automatically adjusts the velocity gains
in response to the increased position gain.

To look more closely at the effectiveness of dynamic damping, the step response for
this algorithm may be compared with that obtained for Jacobian-transpose control
with constant joint-space damping. Figure 6 gives the response for both algorithms
for a step of 0.025m in the world z-direction. The joint velocity gains for Jacobian-
transpose control are again (600, 600, 400, 250, 70, 70, 50) Nm/rad/s. In the first graph
k,. = 3000 N/m, and it is seen that the response is more damped with Jacobian-
transpose than with dynamic damping. In fact, one or more of the joint velocity gains
used with Jacobian-transpose ts large enough to cause a significant steady-state error,
The second graph in Figurc 6 shows what happens when . is increased to 12000 N/m.
Now, the Cartesian response under Jacobian-transpose control is underdamped,
resulting in am 18% overshoot and oscillation. The time response under dynamic
damping control, however, remains as desired.

Of course, since the manipulator Cartesian inertia is not uniform, the dynamic
behavior in other directions may be different, even if the same stiffness is used. For
example, the Cartesian inertia in the x-direction is quite large for the configuration of
Figure 3, which results in a bandwidth of only about 0.3 Hz for a position gain of
12000 N/m. The dynamic performance will also vary for different end effector pos-
itions and for different self-motion configurations at the same end effector position.
Changes in paylead inertia will also affect the dynamic response.

7. Conclusions

Several algorithms for Cartesian stiffness control have been implemented in a labora-
tory manipulator control system and experimentally evaluated. The Jacobian-transpose
algorithms do a good job of achieving desired translational stiffnesses. Rotational
stiffness accuracy, while not quite as good, is probably sufficient for many appli-
cations. The algorithms have been found to be stable for a wide range of gain
combinations both in free space and in contact with a wide range of environmental
stiffneses. Fnd effector stiffnesses ranging from 500 to 14000 N/m for translation and
50 to 1500 Nm/rad have been achieved. Significant off-diagonal coupling terms were
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apparent in the measured stiffness matrices, particularly when joint axes were not
aligned with world coordinate directions. This is not surprising, considering that
we are trying to obtain Cartesian stiffnesses from a 7 degree-of-freedom revolute-
joint arm with substantial uncompensated joint friction. It should also be pointed
out that although very low stiffnesses may be achieved, as stifTness is decreased
frictional disturbances become quite significant. The residual friction not compen-
sated by the friction model i1s a primary contributor to stiffness and trajectory
following errors.

The combination of Cartesian stiffness control with elbow angle specification
of self-motion and dynamic damping velocity gain determination represents and
excellent package for manipulator control in contact situations. Although substantial
computational resources are required to implement all of these features. the result is
the ability to specify Cartesian stiffnesses with uniform time response throughout the
work volume and to make effective use of the kinematic redundancy of the manipu-
lator. On the other hand, the computational simplicity of Jacobian-transpose algor-
ithms which use constant joint velocity gains makes them a straightforward way to
achieve desired Cartesian stiffness characteristics with limited resources. However,
selecting appropriate constant velocity gains is not trivial. One approach to solving
this problem would be to use the dynamic damping computational off-line to deter-
mine constant velogity gains that would give acceptable response for a limited range
of stiffnesses in a particular region of the workspace.
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