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Abstract 

Traditionally, allocation of data in distributed database management sys- 

tems has been determined by off-line analysis and optimization. This tech- 
nique works well for static database access patterns, but is often inadequate 

for frequently changing workloads. In this paper we address how to dynam- 
ically reallocate data for partionable distributed databases with changing 

access patterns. Rather than complicated and expensive optimization algo- 

rithms, a simple heuristic is presented and shown, via an implementation 

study, to improve system throughput by 30% in a local area network based 

system. Based on artificial wide area network delays, we show that dynamic 

reallocation can improve system throughput by a factor of two and a half for 

wide area networks. We also show that individual site load must be taken 

into consideration when reallocating data, and provide a simple policy that 

incorporates load in the reallocation decision. 

'This research was partially supported by the National Aeronautics and Space Administration under NASA 
contract NASl-19480 while the second author was in residence at the Institute for Computer Applications in Science 
and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001. 



1     Introduction 

To achieve good performance in a distributed database it is often recommended that portions of the 

database be located at the sites from which they are most frequently accessed. Prior research in the 

area of data allocation has typically assumed different site access frequencies are known, in order 

to formulate a discrete optimization problem and solve it off-line to find near-optimal locations for 

parts of the database [1, 5, 7, 10, 15, 21, 23, 24] - see [11, 29] for a survey. Our work is motivated 

by a key observation not applicable to much of past research in this area: site access patterns and 

their consequent workloads in a database are often not static. 

In this paper, we address the problem of how to reallocate portions of the database in a dis- 

tributed system with a changing workload, that is, when the access frequencies to various portions 

of the database from a particular site vary with time. In particular, we are interested in the fol- 

lowing two questions: how can changes in workload (or access frequencies) be detected, and can 

dynamically re-allocating portions of a database result in improved throughput? While some the- 

oretical answers have been provided to the above questions, our approach is driven by stringent 

practical considerations. We seek to to study re-allocation in a working distributed database, in 

particular, a benchmark-standard database with concurrency control and recovery overheads, and 

in which re-allocations take place simultaneous with the regular operation of the database. To this 

extent, we have implemented and tested two simple strategies in a distributed relational database 

(that utilizes an object server as the database engine) running a standard benchmark on a cluster 

of workstations. We show that our algorithms result in a significant improvement in transaction 

throughput over static allocations. Additional improvement is seen when communication times are 

of the order found in wide-area networks. 

Changing workloads are found in many applications in which workloads and access patterns 

to different portions of the database from the sites change for a variety of reasons. These reasons 

range from short-term system load fluctuations to long term global changes due to gradual growth 

in data and changes in daily patterns of human users. 

Consider the following example, a distributed global stock trading database. Typically, at any 

given time, intensive trading (and hence database access) occurs from places which find themselves 

during business hours at the time. As the day progresses, places in the East start closing, resulting 

in diminished access, while active trading appears farther West. Rather than subject users to 

continually large communication costs during trading (by permanently assigning the data to fixed 

locations), it makes eminent sense to move the relevant parts of the database to where accesses are  

most active. In this way, most accesses are likely to be local, thereby improving response times and  ?OP 

throughput.  In such an environment of access patterns, no static assignment of the data across   C OH 

the different sites can simultaneously be optimal throughout the twenty-four hour cycle. Note that   ( |~j 

temporal variations in access patterns are also found in databases located entirely within a local 

area network, for example, when users switch among different tasks. 

We have implemented data re-allocation in a distributed relational database built upon the 

Exodus storage manager [3, 4]. By using Exodus we are able to include realistic overheads not found    J
h^i 

a 

in simulations - such as concurrency control, logging and robust communication protocols. While    .tI__?J§fL 
as?4/d.:r 



our system is not a highly tuned relational system comparable to large commercial databases, using 

the Exodus storage manager as our database engine enables us to easily include realistic overheads, 
thus adding credibility to the application of our results to real database management systems. 
However, the sizes of relations used in our experiments would generally classify the database as 

small; owing to resource limitations, larger sizes could not be tested. Nonetheless, our goal is to 
show proof of concept and thus we are interested in the relative performance of our system with 

and without dynamic re-allocation. 

Our workload model assumes that the database is partitionable [28], i.e. relations can be 

decomposed into groups of tuples each of which can be placed on different sites in the system. 

Many workloads, including the TPC benchmarks [16], have this property. The partitionability of 

the workload allows for a logical unit of re-allocation and load balancing. 

The rest of the paper is organized as follows. In the next section we describe how our work is 

related to past work. In Section 3 we describe our system and the algorithms used for detecting 

changes to the access pattern and moving data in response to the change. In Section 4 we describe 

the workload we considered. Section 5 contains our results. Our conclusions and plans for future 

work are presented in Section 6. 

2     Related Work 

The problem of where to locate relations or portions thereof among the sites in a distributed 

database, when given a static access pattern, is often treated under the File Allocation Problem 

[1, 5, 7, 10, 9, 11, 15, 23, 24, 29]. The general problem, which has been shown NP-complete [14], is 
usually formulated as an integer-programming problem with separate query and update frequencies 

specified for each site. In other cases, a database is assumed to be arbitrarily fragmentable and 

queueing-theoretic considerations are used for a static optimum [21]. In this paper we are interested 

in dynamically changing access frequencies and in which re-solving combinatorial problems in a 

centralized manner for each system change is prohibitively expensive. Instead, we focus on non- 

optimal but small and fast heuristic re-adjustments to data allocations in response to changing 

conditions. 

Theoretically, if future changes in workload could be accurately predicted, a Markov-decision 

problem [31] could be formulated and solved in advance to optimize average response times. How- 
ever, in practice such prediction may not be possible, even statistically. In addition, several other 
system variables such as the communication time using transport protocols over an Ethernet are 

likely to be difficult to characterize. While data migration policies have been discussed in the 
context of dynamically changing environments [12, 26], to the best of our knowledge, practical im- 
plementations of these ideas have not been demonstrated in the literature. Some experimentation 

with load balancing of tasks (to balance CPU demands) has been reported in [22, 30], but the results 

do not apply to database partitions. (Theoretical work on load balancing can be found in [25, 6, 13]) 
We note that the problem of scheduling data redistributions so as to minimize re-allocation time 
has been examined in earlier work [27].   We do not address how to minimize transfer cost since 



we surmise this is secondary to the importance of identifying and transferring the partitions to be 

re-allocated. 

File replication has also been used for providing fast local access (and availability) to data 

shared throughout a distributed database. Issues that have been addressed include mechanisms for 

keeping replications consistent, tradeoffs between the availability acquired from numerous copies 
versus update cost, and the effect different concurrency control algorithms have on these tradeoffs 

[8, 17, 18, 19, 20]. In this study we do not consider replication, instead we assume only a single 
copy of the data exists. We make this choice to allow us to understand the issues in this simpler 

case first before investigating more complicated systems. We believe our results can be extended 

to re-allocation of copies of the data if replication is used. Further differences between our work 
and prior research will be more apparent foUowing a description of our system and the algorithms 

used, a matter to which we next turn. 

3     System and Algorithm Description 

This section contains a description of the distributed database used for our experiments. The first 

subsection explains how our relational database is built on top of the Exodus storage manager. Our 

distributed process system structure is introduced next, and finally the last subsection describes 

the heuristic algorithms used for data re-allocation. 

3.1     Relational System Structure 

Our relational database system is built on top of Exodus [3, 4], a multi-threaded distributed object- 
oriented database system. All interaction with Exodus servers is provided through Exodus client 

library calls. We essentially use Exodus as an object server and to provide features such as concur- 
rency control, indexing and recovery. Building our system on top of the Exodus client library has 

allowed us to expedite the process of system development while at the same time incorporating the 

overhead imposed by concurrency control and recovery. Although our usage of the object-oriented 

system for transaction processing is inefficient and results in low throughput, the system is ap- 

propriate for the purpose of studying the tradeoff between static and dynamic data partitioning 

in a distributed database system. We are interested in the relative performance of the system 

under various data allocation schemes; the actual measured response times and throughputs are 

not themselves significant. 

The implementation of our relational database consists of approximately 3,000 lines of C++ 

code. Each tuple in our relational database is associated with an object in the underlying Exodus 

database. Each relation then corresponds to a file of objects. Functions for inserting, deleting 
and updating a tuple are built on top of Exodus' object manipulation functions. Our relational 

model supports primary B+
 tree indexing built on top of the B+

 tree indexing provided by Exodus. 
Functions for indexed as well as full scans are implemented. For an indexed relation the object 

id of the tuples (objects) in the relation are stored in an index provided by Exodus.  Tuples are 



retrieved by first obtaining the object id from the Exodus index and then using the object id for 

direct retrieval of the desired tuple. 

3.2    Distributed System Process Structure 

The database at each site consists of a copy of the Exodus server and several client processes built 

on top of our relational database. All client processes are also implemented in C++ (about 2,500 

lines of code). The data is non-replicated and partitioned among the sites. The data for a site is 

stored in a local data volume and is maintained by the Exodus server local to the site. A brief 

description of the processes at each site and their function is given below: 

Exodus server: This process maintains the data stored on the local data volume. It services 

requests from local and remote clients. 

Generator process: The generator process generates and executes transaction in a serial fashion. 

Transactions may need to access both local and remote data. Thus the generator process 

interacts with both its local and remote Exodus servers. Several generator processes and 

a move process (defined below) may interact with a server concurrently. Transactions are 

generated consistent with the workload described in the next section. Information about each 

transaction is sent to the stats process responsible for the tuples accessed by the transaction. 

Stats process: The stats process gathers the statistics for our experiments with the database. 

It accumulates statistics such as throughput, average response time for a transaction, and 

the fraction of transactions requiring access to remotely stored data. The stats process at a 
particular site is responsible for the statistics of transactions which access tuples with that 

site as their "home-site". The accessed tuples may or may not be physically stored at their 
home site. When the database uses a dynamic data allocation scheme the stats process is also 

responsible for monitoring the access pattern for the tuples of its home-site and for deciding 
when the tuples need to be relocated. The re-allocation algorithms are described in detail in 

the next subsection. 

Move process: The move process is active only when the database uses a dynamic data allocation 
algorithm. It receives requests for moving a partition of some relation from one site in the 
system to another. Similar to the stats process, the move process at a site is responsible for 
moving tuples with the site as their "home site". The move process interacts with its local 

server and a remote server to move the tuples. The tuples are first copied over to the new 
site, after which other processes in the system are notified about the change in location, and 

then finally the tuples are deleted from the old site. The data may occasionally be left in 

an inconsistent state if a transaction accesses a tuple after it has been copied to its new site 

but before the new location is broadcast. This problem is ignored; we do not believe it will 

significantly impact our results. Only one move may be in progress at any given time. 

In addition to the processes described above, which exist at each site of the database, we use 
one driver process to control our experiments.  The driver process is responsible for broadcasting 
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Figure 1: System Structure. 

workload changes and broadcasts a quit request at the end of an experiment. The structure of 

our system is illustrated in Figure 1. In the figure solid lines indicate communication provided 
by Exodus whereas dashed lines indicate communication external to Exodus. All communication 

external to Exodus is done through datagrams. 

In our initial experiments we assume our database is distributed over two sites. Our algorithms 

generalize to multiple sites but we started with two sites to retain focus on the central issues. 

3.3    Re-Allocation Algorithms 

This subsection gives a description of the algorithms used for dynamic re-allocation of the data. As 
mentioned earlier, we are interested in simple heuristic algorithms which can be easily implemented 

and which will allow us to show that dynamic re-allocation is worthwhile in a distributed database 

with a changing workload. We assume relations can be partitioned in some natural manner into 

several fixed-size blocks or groups of tuples. In our case, the Account relation in the TPC-B 
benchmark [16] (see the next section for more details) is horizontally partitioned into fixed size 

partitions, where partition % consists of the Account tuples belonging to Branch i. This is a natural 

partition since accesses probabilities for the tuples within a Branch are uniformly distributed in 

our workload. 



To determine when a re-allocation is needed our algorithms maintain weighted counters of the 

number of accesses from each site to each block. The counters for a block are updated on each 

arrival of a transaction accessing a tuple within the block. As is typical in estimating a moving 

average, we want to discount prior samples to allow the most recent samples to properly influence 

the current estimates. We use a simple exponential aging scheme: the counters for a block are 

updated by multiplying the current values by an aging factor and then adding one (the latest 

sample) to the counter of the site where the access originated. For effective estimation, the aging 

factor must be small enough to allow the counters to adjust to the dynamic workload but large 

enough to prohibit moves due to an "unlucky" streak of requests. For our system and workload we 

have found an aging factor of 0.9 to work well. 

Note that if access patterns never changed or if the averages stayed constant, then the counters, 

without aging, would eventually provide an accurate estimate of the probability of a particular 

block being accessed by a particular site. In fact, the central limit theorem can be used to create 

sharp confidence intervals around these estimates, following which, a discrete optimization problem 

similar to the file allocation problem discussed earlier could be solved. 

We now describe two simple algorithms for dynamically re-allocating the blocks of data using 

the counters described above. The first simply ranks the sites according to counter values and 

picks the best site. The second takes into account load conditions; after aU, if too many blocks 

were placed on a single machine then potential parallelism could be lost and overall throughput 

might decrease. 

Simple Counter Algorithm: 

1. The stats process examines the counters for each block at regular intervals. 

2. The tuples for a block are moved if the site with the highest counter value is 

a site other than the current storage site. 

3. After checking the counters for a block the stats process will wait for t-check 

number of transactions to be completed for the block before checking the coun- 

ters again. 

Note that the value of t^check should be small enough to allow the system to respond quickly to 

workload changes but large enough to prevent premature signaling of a change in access frequencies 

and having the data bounce back from a move soon after. The influence of the value of t.check on 

performance is evaluated in the section on experimental results. 

The simple counter algorithm works well as long as the load in the system remains low or 

relatively balanced. However, when the simple counter algorithm is used the tuples for all blocks 

can end up at the same site if most of the requests for all blocks originate at the same site. Although, 

this gives an optimal fraction of local access to the data this may give poor performance due to 

overloading the site. The load sensitive counter algorithm addresses this problem: 



Load Sensitive Counter Algorithm: 

1. Monitor the load in the system as well as the access frequencies. 

2. The need for a move is evaluated as in the simple counter algorithm. How- 

ever, the moves are only carried out as long as they do not cause the load 

at a site to exceed a specified threshold value. The maximum percentage of 

the data which is allowed storage at a site, the load threshold value, is a 

parameter of the algorithm. 

Note that when a threshold value of 100% is used the algorithm reduces to the simple counter 

algorithm. 

4      Workload Description 

The workload in our system is based on the TPC-B benchmark [16]. The TPC-B benchmark 

provides an effective workload for our experiments since it is well understood in the database 

community and has been used extensively for performance evaluation of commercial as well as 

experimental systems. The TPC-B benchmark emphasizes update-intensive database services in 
the context of a hypothetical bank. The database contains four relations: a Branch relation, a 

Teller relation, an Account relation and a History relation. A single transaction which models a 
deposit or withdrawal from the bank is repeatedly performed. The transaction updates a tuple in 

the Branch, Teller and Account relation to reflect the new balance for the respective entity and 

inserts a tuple in the History relation recording the transaction. The Branch and Teller accessed 

by a transaction are local to the site at which the transaction originated whereas the account may 

be either local or remote. The probability of accessing an account belonging to the branch being 

accessed is 85% for the TPC-B benchmark. Our actual workload differs in that we assume a slightly 

larger percentage of calls to remote branches; 80% of account tuples are located on the local site 
and 20% are located on the remote site. In addition, we assume each branch tuple has 10 teller 
tuples but only 2,500 account tuples associated with it. Due to resource limitations, the number of 

account tuples associated with a branch is smaller in our workload relative to the number specified 

in the TPC-B benchmark. 

While the TPC-B benchmark is static in terms of workload statistics, our changing workload 

is derived from the benchmark by changing the access probabilities for the account tuples. The 
access probabilities are given by an access matrix which specifies the probability of accessing an 
account tuple from a given branch when the transaction originates at a given site. The probability 

of accessing a given tuple within a branch is uniformly distributed. A changing workload is created 
by periodically changing the access matrix. Thus the workload is completely described by the 

sequence of matrices used and the times at which they change. In our system the driver process 

is controlling what matrix is used for generating transactions.   A sample access matrix for our 



Sites 
Branches 

bO bl b2 b3 b4 b5 b6 b7 
si 0.2 0.2 0.2 0.2 0.05 0.05 0.05 0.05 
s2 0.05 0.05 0.05 0.05 0.2 0.2 0.2 0.2 

Figure 2: Sample access matrix 

system, which contains 8 branches distributed over two sites, is displayed in Figure 2. Static usage 

of the matrix in figure 2 with branches 0 through 3 allocated to site one and branches 4 through 

7 allocated to site 2 would create a workload very similar to the TPC-B benchmark. Rather than 
using the matrix statically, in our workload the matrix is used as the initial matrix in a sequence 
of different matrices. 

5      Results 

In this section we present our experimental results. The performance of the system under our 

dynamic re-allocation schemes is compared to the performance of the system under a static data 

partitioning. As mentioned earlier, our database system is admittedly somewhat slow and therefore 

the actual numbers presented in this section should not be seen as representative of a highly tuned 

relational database running on dedicated machines. Rather we ask the reader to focus on the 
relative performance of the dynamic and static systems and on the performance trends exhibited 
by our dynamic algorithms as various parameters are varied. The machines used for our experimets 

were all Sun4 Workstations running SunOS 4.1.3 and connected through a local Ethernet. 

5.1     The Simple Counter Algorithm 

The first set of experiments evaluates the influence of various parameters on our simple counter 

algorithm and compares its performance to the static system. The results are intended to answer 
the question: when is it useful to use dynamic re-allocation? We find that dynamic re-allocation is 

desirable over a broad range of parameters; however, it is not effective when the rate of checking (the 

counters) is too fast or when the system workload is changing rapidly. In addition, we provide results 

that appear to show dynamic re-allocation to be even more advantageous when communication 

times between machines are high, as in a Wide-Area Network (WAN). 

The changing workload used for the experiments is defined by a sequence of matrices, each 

of which is used in one interval in the sequence of intervals that comprise the progress of time. 

By successively numbering these intervals and identifying a matrix with each one, we will have 
specified the changing workload. The matrix shown in Figure 2 was used for interval zero. The 
matrix used for interval i + 1 was constructed by swapping the access frequencies for site one and 
two for branches i mod 8 and (i + 4) mod 8. Thus the workload is periodic with 8 matrices in 
a period.  The access matrix used was changed every t-.change seconds. Except for in the second 



experiment t^change was set at a constant value of 800 seconds. Averaged over all matrices in a 

period the probability of an access coming from a particular site is 0.5 for every Branch. Thus 

any static allocation which positions half of the Branches at each site is optimal (among static 

allocations). The static data partitioning we used placed Branches 0 through 3 at site one and 

branches 4 through 7 at the second site. These were also the initial branch allocations used for 

the dynamic system. Thus the system was started in the same initial state irrespective of which 

allocation mechanism - dynamic or static - was used. Furthermore, the system was started up 

with the data in an optimal static partition. 

The first experiment assesses the influence of the value of t-check on our simple counter algo- 

rithm. Recall that t-check is the number of accesses needed for a data block before relocation of 

the block is considered. The throughput for various values of t.check as well as the throughput for 

the static system is displayed in figure 3. We can see that the dynamic re-allocation scheme clearly 

outperforms the static allocations for our workload. The influence of t-check on the performance 

is what we would intuitively expect. When the value of t.check is too small, performance degrades 

since the partitions may bounce back and forth between the two sites during workload changes. 

Since our threshold on the fraction of requests coming from a site for re-allocation to occur is 50% 

an unfortunate streak of requests will cause a bouncing effect. On the other hand, when the value 

of tjcheck is too large the algorithm responds too slowly to workload changes and performance 

plummets. We can see in Figure 3 that a value of t-check = 6 works well for our system. This 

was the value used in the remainder of the experiments. It should be noted that the responsiveness 

of our algorithm to workload changes depends on the value of the aging factor as well as the value 

of t-check. Based on results from initial test runs, not reported in the paper, the aging factor was 

fixed at 0.9. 

Our next experiment was designed to evaluate how the effectiveness of our dynamic re-allocation 

scheme is influenced by the rate at which the workload changes. The total run time of the ex- 

periment was held fixed but the rate at which the workload changed was doubled between each 

successive run, resulting in the overall time spent using a certain access matrix being constant for 

all runs and thus the performance of the static system was unaffected. The performance of the 

counter algorithm as a function of t-.change, the time between workload changes, is displayed in 

Figure 4. The performance of the static system is also displayed in the figure. 

As we might expect, the dynamic re-allocation scheme performs best when the rate of change is 

low. In this situation, our dynamic re-allocation scheme can maintain optimal allocations most of 

the time. As the rate of change increases the dynamic re-allocation algorithm cannot keep up with 

the changing workload and performance drops. Performance is at its worst when the algorithm is 

attempting to keep up with the workload but is unable to do so. At this point lots of re-allocation 

is performed but by the time a partition is re-allocated, the workload is about to change or has 

already changed again. Hence, the data ends up being in the wrong place most of the time and 

the system performs worse than when static allocations are used. When the workload changes very 

fast the dynamic re-allocation algorithm no longer has time to detect the changes in workload and 

thus will not even try to re-allocate the data. Performance improves over the previous case and 

becomes similar to the performance of the static algorithm. 
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Figure 3: Influence of t-check Figure 4: Influence of t„change 

We can see from figures 3 and 4 that as long as the workload doesn't change too fast and we 

use appropriate parameter settings our dynamic re-allocation algorithm offers an approximate 30% 

performance gain over static allocations. These results are for a Local Area Network. When the 

database is distributed over a WAN we would expect a dynamic re-allocation algorithm to offer 

even greater performance gains. Over a WAN, remote access to the data will be more costly and 

thus the allocation of the data even more crucial. 

To investigate the performance of our algorithm in a WAN environment we inserted an artificial 

WAN delay for all remote accesses in our system. Thus we simulated a situation where our database 
would run over a WAN rather than over a Local Area Network. The performance of the dynamic 

and static systems as a function of the added cost for remote data access is shown in Figure 5. 

The ratio between the performance of the static and dynamic systems is shown in Figure 6. We 
can see from Figure 6 that as the cost of going across the network increases, the performance of 
the system under dynamic re-allocations improves relative to the performance of the system under 

static allocations. When the cost of going across the network is forty seconds or approximately 

twenty-seven times the cost of a local transaction the throughput for the system is more than 2.5 
times higher when our dynamic re-allocation algorithm is used. (The average cost or time taken to 

complete a local transaction in our system is around one and a half seconds.) 

5.2     Load Balancing Considerations 

For the workload used in the experiments described in the previous subsection the load in the 
system remains fairly balanced. However, as mentioned earlier, if the majority of the account 

requests come from the same site for all blocks, then all the data will end up at the same site under 

our simple counter algorithm. Although this produces an optimal fraction of local requests the load 

10 
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in the system is highly imbalanced and performance may not improve. Our load sensitive counter 

algorithm and our final experiment was designed to evaluate the tradeoff between maximizing the 

fraction of local requests and maintaining a balanced load in the system. 

It is not hard to envision a situation where all requests for a relation temporarily originate at 

the same site. Consider a database distributed over a cluster of workstations. Only a subset of 

the workstations may be able to physically store portions of the database (In our system only two 

machines run a database server). If only one of the machines running a server has users logged in at 

the moment, then all requests relevant to the allocation of the data originate at one site. Additional 

users may be using the database from sites which do not have a database server, and thus cannot 

be considered when relocating the data, thereby creating a high system load at sites which have 

servers. Focusing strictly on maximizing the fraction of local requests in this situation may then 

cause poor performance. Note that requests from users at sites which cannot store portions of the 

database will always have to be serviced remotely. For these requests load balancing has shown to 

strongly influence performance. 

The workload for our final experiment was modified to represent a situation similar to the one 

described above. Only one of our two sites containing the database generated TPC-B transactions. 

To increase the load in the system additional transactions were generated at three new sites in 

our network of workstations. The transactions generated at the new sites only modified a tuple in 

the account relation. Since there was no local database at these sites, "true" TPC-B transactions 

which modify the local Branch, Teller and History relation could not be used. Requests were 

uniformly distributed within entire relations for both the TPC-B transactions and the "Account- 

only" transactions. The workload should be seen as representative of one configuration of a changing 

workload where load balancing might have to be considered. As before, the branches were initially 

11 
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divided evenly between the two sites of the database. Performance of the system under our load 

sensitive counter algorithm was measured while varying the load threshold value for the algorithm. 

Figure 7 displays the system throughput (TPC-B and Account-only transactions) as a function 

of the load threshold used to restrict data movement. The tradeoff between load balancing and 

maximizing the fraction of local transactions is clearly displayed by the graph. For our system 

and the workload used, a load threshold value of 75% gives optimal performance. When the load 

threshold is set at 50% the system is fully load balanced but the system is static and the fraction of 

local transactions is far from maximized. As the load threshold is increased, performance initially 
improves since the fraction of local transactions increases. When the load threshold goes past 
75%;, performance starts to drop due to contention at the site handüng all the data. Even though 

the fraction of local transactions increases, performance declines when the site handling the data 
gets overloaded. For a load threshold of 100%, contention causes performance to drop below the 

value obtained for the static system. Thus we can see that for an extreme workload, like the one 

considered in this experiment, our simple counter algorithm would not perform well. (Recall that 

when a threshold of 100% is used the load sensitive counter algorithm reduces to the simple counter 

algorithm.) The balance of load in the system is therefore also an important consideration. 

6     Conclusions 

Performance in distributed database systems is heavily dependent on the allocation of data among 
the sites of the database. The allocation of data is traditionally static and determined off-line, using 
estimates of access frequencies. However, in many situations the access frequencies from varies sites 

in the database are not known a priori or fluctuate with time thereby creating a changing workload. 
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This paper showed that for a database with a changing workload dynamic re-allocation of the data 

can significantly improve performance. 

A simple counter algorithm was presented which monitors the access frequencies in the system 

and moves the data so as to maximize the fraction of local accesses in the system. For our workload 

the algorithm offered up to 30% performance gain over static allocations in a Local Area Network 

and showed potential for even higher performance gains in a Wide Area Network. Our experiments 

also showed that for certain workloads load balance must be considered when re-allocating the 

data. We presented a load sensitive counter algorithm which was shown to outperform the simple 

counter algorithm and static allocations for a class of workloads. 

While our experiments with a small-scale database make a practical case for dynamically re- 

allocating data in a changing environment, more work is needed to study various possible algorithms 

for dynamic data allocation and to test these algorithms on large-scale distributed databases. 

Several structural issues seem worthy of investigation such as appropriate block sizes for partitioning 

and the granularity at which statistics should be gathered for blocks in different relations. Our 

future plans also include lending theoretical support to our experimental results through analytical 

models. 
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