
ARTICLE OPEN

Experimental evaluation of ecological principles to understand
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It is unclear if coexistence theory can be applied to gut microbiomes to understand their characteristics and modulate their
composition. Through experiments in gnotobiotic mice with complex microbiomes, we demonstrated that strains of Akkermansia
muciniphila and Bacteroides vulgatus could only be established if microbiomes were devoid of these species. Strains of A.
muciniphila showed strict competitive exclusion, while B. vulgatus strains coexisted but populations were still influenced by
competitive interactions. These differences in competitive behavior were reflective of genomic variation within the two species,
indicating considerable niche overlap for A. muciniphila strains and a broader niche space for B. vulgatus strains. Priority effects were
detected for both species as strains’ competitive fitness increased when colonizing first, which resulted in stable persistence of the
A. muciniphila strain colonizing first and competitive exclusion of the strain arriving second. Based on these observations, we
devised a subtractive strategy for A. muciniphila using antibiotics and showed that a strain from an assembled community can be
stably replaced by another strain. By demonstrating that competitive outcomes in gut ecosystems depend on niche differences and
are historically contingent, our study provides novel information to explain the ecological characteristics of gut microbiomes and a
basis for their modulation.
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INTRODUCTION
The gut microbiota is considered an important aspect of host
health, influencing digestion, immune system development, and
pathogen invasion [1–7]. Moreover, numerous studies have
documented differences in microbiome composition and function
between healthy and diseased humans and animals [8, 9].
Strategies aimed at modulating and restoring the ecological and
physiological features of the gut microbiome have therefore
gained much momentum [10, 11]. Considering the complexity of
the gut ecosystem, successful modulation of gut microbiomes is
likely to require the application of ecological theory [12–14].
The introduction of live microbes, either as single strains (e.g.,

probiotics, live biotherapeutics) or complex mixtures (e.g., fecal
microbiota transplants), into the gut ecosystem represents one
approach to modifying the microbiome. However, the ecological
requirements for sustained long-term colonization (i.e., engraft-
ment) of orally administered live microbial products are poorly
understood [15]. Recent evidence suggests that engraftment may
depend on the pre-treatment microbiome composition, especially
the absence of closely related species [16–19]. We [17, 18] and
others [16, 20–22] have shown that the resident microbiome

influences engraftment of incoming species, likely through
competitive exclusion where newly-arriving species cannot coexist
with established species if they occupy exactly the same niche
(and are competing for identical resources) [23]. In particular,
Maldonado and colleagues showed that persistence of the
probiotic Bifidobacterium longum AH1206 in select study partici-
pants was associated with low abundance of B. longum species
[17]. Lack of colonization in other participants may thus be
explained by competitive exclusion [23]. However, these findings
are based on associations, and it has not been established
if competitive exclusion is in fact the causative factor that
determines engraftment. Indeed, not all outcomes from
microbiome-based interventions are consistent with competitive
exclusion and instead indicate coexistence of related strains in
fecal transplants [20, 24]. These discrepancies illustrate that the
ecological factors governing engraftment are complex, insuffi-
ciently understood, and likely extend beyond the competitive
exclusion principle [13].
Modern coexistence theory suggests that competitive exclusion

and coexistence of species or strains are determined by equalizing
mechanisms that reduce fitness differences among members and
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stabilizing mechanisms that decrease competition through niche
differences (i.e., resource partitioning) [25, 26]. Competitive
interactions are further historically contingent, meaning that order
of arrival of a species into an ecosystem can result in priority
effects that alter the outcome of species interactions (e.g., by
benefiting early colonizers over late colonizers) [26]. For gut
ecosystems, competitive exclusion has been demonstrated for
isogenic bacterial strains orally administered to germ-free mice
[27, 28]. However, such an experiment represents an extreme
condition where the competing strains are essentially identical
and have maximum niche overlap. Strains in natural communities
possess genetic and trait variation, and strains used as live
microbial products are likely to differ from resident microbiota
members. To what degree contemporary niche and coexistence
theory applies to interactions among members of the gut
microbiota and the introduction of microbes into gut micro-
biomes has not been experimentally tested.
Here, we performed systematic experiments in gnotobiotic

mice to test the applicability of coexistence theory to the stable
establishment of gut microbes and to determine if such
information can be utilized to stably modulate the gut
microbiota at the strain level. We selected two species of gut
bacteria, Akkermansia muciniphila and Bacteroides vulgatus,
based on their importance in modulating host metabolism
[29, 30] and immunity [31–33]. To study niche occupancy and
intraspecific competition under close-to-natural but strictly
controlled conditions, we utilized gnotobiotic mice colonized
with complex microbiomes with and without A. muciniphila and
B. vulgatus. We specifically tested (i) to what degree the absence
of a species determines colonization, (ii) if colonization can be
prevented or altered by prior introduction of another strain of a
species, and (iii) the effect of colonization order on coexistence
between strains of the same species. Finally, we applied the
information gained from these experiments to design a
subtractive antibiotic strategy with the aim of removing an A.
muciniphila strain from an assembled community and replacing
it with a different strain.

MATERIALS AND METHODS
Bacteria
Bacterial strains used in this study were: Akkermansia muciniphila BAA-835
(American Tissue Culture Collection, Manassas, VA) isolated from human
feces, A. muciniphila YL44 (Leibniz Institute DSMZ, Braunschweig, Germany)
isolated from C57BL/6 J mouse feces, Bacteroides vulgatus ATCC 8482
(American Tissue Culture Collection), and B. vulgatus RJ2H1 [18]. A.
muciniphila strains were cultured in 10mL Brain Heart Infusion (BHI)
medium (BD, Sparks, MD) supplemented with 0.3% (w/v) mucin from
porcine stomach Type II (Sigma-Aldrich, St. Louis, MO) and 0.5% yeast
extract (BD, Sparks, MD); this medium is referred to as BHIm in this
manuscript. B. vulgatus strains were grown in 10mL BHI medium
supplemented with menadione (0.001 g/L, Sigma-Aldrich), hemin (0.005
g/L, Sigma-Aldrich), and an additional 0.5% yeast extract (BD, Sparks, MD);
this medium is referred to as BHIs throughout this manuscript.
Carbohydrate growth arrays for B. vulgatus 8482 and RJ2H1 were
performed as previously described [34, 35].
To inoculate mice, one vial of each bacterial strain was retrieved from

−80 °C storage and the entire contents were struck onto a plate containing
BHIm with agar (1% w/v). Plates were incubated at 37 °C under anaerobic
conditions for either three days for B. vulgatus strains or five days for
A. muciniphila strains. Colonies were then transferred into 30mL BHIm or
BHIs and incubated anaerobically at 37 °C. After 24 hr, 300 µL of each
culture was transferred into a fresh 30mL of BHIm or BHIs. After 18 h, these
cultures were centrifuged (3000 x g for 15min), resuspended in 1X PBS
(HyClone, Logan, UT) to achieve a concentration of 1.0 × 109 CFU/mL, and
administered to mice via oral gavage (100 µL/mouse). For some experi-
ments, A. muciniphila BAA-835 and B. vulgatus ATCC 8482 were prepared as
described above and then mixed together in a 1:1 ratio prior to
administering to mice (100 µL/mouse). A mixture containing both
A. muciniphila YL44 and B. vulgatus RJ2H1 was also prepared for mice in
this manner.

Gnotobiotic mice with complex microbiomes
Germ-free C57BL/6 mice were born and reared in flexible film isolators and
maintained under gnotobiotic conditions (temperature 20 °C, relative
humidity 60%, 14 h light/10 h dark cycle) at the University of Nebraska-
Lincoln. All mice were fed an autoclaved chow diet (LabDiet 5K67, Purina
Foods, St. Louis, MO) ad libitum. The Institutional Animal Care and Use
Committee at the University of Nebraska-Lincoln approved all procedures
involving animals (protocols 1215 and 1700).
Four mouse microbiomes MFPL [36], MC608-F-a1 [18, 36], Wild116

[18, 36, 37], and BALBc.m3 [36, 38] were investigated as potential inocula
for our experiments. MFPL refers to a C57BL/6 J mouse population of the
Max F. Perutz Laboratories in Austria [36]). MC608-F-a1 refers to mice
derived from a wild mouse population in the Massif Central region of
France previously maintained at the Max Planck Institute for Evolutionary
Biology (Plon, Germany; referred to as MC608-F-a1 in [36] and as A in [18]).
Wild116 refers to wild mice caught in the United Kingdom [18, 36, 37].
BALBc.m3 refers to a BALB/c mouse population from a laboratory facility in
the United Kingdom [36]. To produce standardized inocula of these
microbiomes in sufficient amount for all experiments, female germ-free
C57BL/6 mice were colonized with cecal contents from the donor mice and
maintained under gnotobiotic conditions at the University of Nebraska-
Lincoln for four weeks. Ceca were then collected, stored at −80 °C, and the
contents resuspended (1:10 wt/vol) in reduced PBS as previously described
[39] at the time of use.
DNA was extracted from the donor inoculum and recipient fecal

samples, and microbial composition assessed by paired-end sequencing of
the V5-V6 region of the 16 S rRNA gene using the MiSeq (Illumina) as
previously described [18]. For taxa with a relative abundance greater than
0.03%, Bray-Curtis dissimilarities were calculated using the vegdist function
in the R package vegan and then hierarchically clustered using the R
function hclust set to the average agglomeration method. Data were then
displayed in a heat map using packages ggplot and heatmap 2 (RStudio
Team, Boston, MA). Our analysis revealed that the microbiomes of recipient
mice clustered with their respective inocula (Fig. S1), suggesting overall
successful stable engraftment. The analysis also showed only one of the
four microbiomes (MFPL) contained sequences related to A. muciniphila
and that the two microbiomes derived from wild mice (MC608-F-a1 and
Wild116) lost the family Bacteroidaceae, which contains the genus
Bacteroides, upon transplantation into germ-free mice. Cecal contents
from the MFPL and MC608-F-a1 mice were pooled and selected as the
positive and negative inocula in our study, respectively. The presence and
absence of A. muciniphila and B. vulgatus in both microbiomes were
confirmed using species-specific qPCR [38].

Tests of persistence, coexistence, and the importance of
colonization order
To determine to what degree the colonization dynamics of A. muciniphila
and B. vulgatus strains were influenced by the presence or absence of the
respective species present in the gut microbiome, female germ-free
C57BL/6 mice were colonized with a microbiome identified as either
positive (MFPL) or negative (MC608-F-a1) for A. muciniphila and B. vulgatus
(week 0) as described above. Two weeks later (week 2), these mice were
administered either a mixture of A. muciniphila BAA-835 and B. vulgatus
8482 or a mixture of A. muciniphila YL44 and B. vulgatus RJ2H1 for a total of
two treatments. Each treatment consisted of five mice housed in one cage,
and fecal samples were collected weekly at weeks 1, 2, 3, 4, 5, 6, and 7.
To test if colonization could be blocked or influenced by introducing one

strain into the gut ecosystem before the other, female germ-free C57BL/6
mice were orally gavaged (week 0) with a negative microbiome (devoid of
A. muciniphila and B. vulgatus) and a mixture of A. muciniphila BAA-835 and
B. vulgatus 8482. Two weeks later (week 2), mice were orally gavaged with
strains YL44 and RJ2H1. In a separate experiment, the importance of
colonization order was tested by inverting the order of strain introduction.
Specifically, GF mice were orally gavaged (week 0) with a negative
microbiome and a mixture of either A. muciniphila YL44 and B. vulgatus
RJ2H1. Two weeks later (week 2), mice were orally gavaged with strains
BAA-835 and 8482. Studies were also performed to test the relative fitness
of A. muciniphila and B. vulgatus strains when introduced at the same time.
Female germ-free C57BL/6 mice were colonized with the negative
microbiome at week 0 and then administered a mixture of all four strains
at week 2. For all studies, each treatment consisted of five mice housed in
one cage, and fecal samples were collected weekly at weeks 1, 2, 3, 4, 5, 6,
and 7. See supplementary information for a description of methods used
for A. muciniphila subtractive studies in mice.
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Quantitative real-time PCR (qPCR)
Strain-specific primers were designed to target unique genes not shared
among the two test strains (identified using IMG-ER, Joint Genome
Institute) [40]. Once unique genes were identified, potential specific primer
pairs were generated using Prime3 software [41] and their quality assessed
with NetPrimer (Premier Biosoft, San Francisco, CA). Primer specificity was
verified bioinformatically by blasting primer sequences against a non-
redundant DNA database for bacteria (NCBI) [42] and experimentally by
qPCR using DNA isolated from the four strains (B. vulgatus RJ2H1, B.
vulgatus 8482, A. muciniphila YL44, and A. muciniphila BAA-835) and the
two microbiomes used in our experiments.
Strain-specific primers designed for this study were A. muciniphila BAA-

835 forward CGGGGACAGTATATCGGGGA, reverse GAGATTCGGATAGC
GCACCA; A. muciniphila YL44 forward GCCTTTCTTCAGCAAACGGG, reverse
TCACAGCAGTTCAACAGGCA; B. vulgatus 8482 forward TCATCGTGGTC
CATTGTCGG, reverse AACACCCCGTCAAAATTGCG; B. vulgatus RJ2H1
forward GCCGACGCTTTCTGACAAAA, reverse GAGGCGGCTTTCCATTGTTC.
Thermocycling conditions for all four strain-specific primer pairs were: (i)
initial denaturation step at 95 °C for 5 min; (ii) 35 cycles of 95 °C for 1 min,
64.2 °C for 30 sec, 72 °C for 30 sec; and (iii) one 20min interval to generate
a melting curve by progressively increasing the temperature from 60 °C
to 95 °C.
Species-specific primers for B. vulgatus were also designed using a

similar approach as for the strain-specific primers where primers targeted
unique genes that were present in this species but absent in all other
bacterial sequences reported in NCBI. The species-specific primers
targeting B. vulgatus were forward GGCAGCATGGTCTTAGCTTGC, reverse
GTGAACATGCGGACTCATGATG. Previously published species-specific pri-
mers were used to quantify A. muciniphila [43]. Thermocycling conditions
for both B. vulgatus and A. muciniphila species-specific primer pairs were: (i)
initial denaturation step at 95 °C for 5 min; (ii) 35 cycles of 95 °C for 1 min,
57 °C for 45 sec, and 72 °C for 45 sec; and (iii) one 20-min interval to
generate a melting curve by progressively increasing the temperature from
60 °C to 95 °C.
All qPCRs were performed using SYBR green (Thermo Scientific,

Lithuania) and a Mastercycler Realplex2 (Eppendorf AG, Hamburg,
Germany). Specificity was tested using DNA from the strain of interest
and the negative microbiomes utilized in this study. Optimal thermo-
cycling conditions for qPCR were determined via gradient PCR using
twelve temperatures between 53 °C and 63 °C (equal intervals) [44].
To make qPCR standard curves, aliquots of duplicate log-phase

A. muciniphila or B. vulgatus cultures were plated on either BHIs or BHIm
media for quantification of colony forming units per milliliter of culture
(CFU/mL). A phenol chloroform method [45] was used for DNA extraction.
Quantitative PCR including melt curve analysis, was performed on serially
diluted (ten-fold) extracted DNA. Bacterial abundance was calculated
based on the linear relationship between fluorescence of serially diluted
DNA and corresponding CFU/mL [44]. Minimum limit of detection was
established to be the lowest DNA dilution at which the relationship
between CFU and fluorescence was linear.

Whole metagenomic sequencing (WMS) and bioinformatic
analyses
Metagenomic analysis of complex microbiomes was performed two weeks
following transplant into germ-free mice but prior to the introduction of A.
muciniphila and B. vulgatus test strains. Fecal DNA was extracted as described
above [45] and sequenced at 10X depth on the MiSeq (Illumina) by Novogene
America (Sacramento, CA). Quality check was performed with FastQC tools
[46]. The script bbduk.sh (ktrim= r, k= 23, mink= 11, hdist= 1, Joint
Genome Institute) was used to remove universal adaptors from samples.
C57BL6/J (accession: GCA_000001635.9_GRCm39, NCBI) and Homo sapiens
(accession: GCA_000001405.27_GRCh38, NCBI) genomes were utilized to
remove mouse and human sequences, respectively, with bbsplit (BBmap
tools, Joint Genome Institute). Each cleaned data set was mapped to either B.
vulgatus 8482 (accession: GCA_000012825.1_ASM1282v1), B. vulgatus RJ2H1
(accession: GCA_002796815.1_ASM279681v1), A. muciniphila BAA-835 (acces-
sion: GCA_000020225.1) or A. muciniphila YL44 (accession: GCA_001688765.2)
genomes from NCBI using BWA software set to default parameters [47].
SAMtools [47] was utilized to convert files into bam format and extract the
mapped sequences. QualiMap [48] was used to determine the genome
representation of the four test strains (8482, RJ2H1, BAA-835, and YL44) in
each microbiome using the output “genome fraction coverage” of at least 1X.
Results were plotted in Prism 8 (GraphPad Software, San Diego, CA). To
determine genome representation of unique genomic sequences between B.

vulgatus test strains in the positive microbiome, unique core sequences
between the strains were extracted using RUCS [49] and verified using Mauve
[50]. Mapping to determine and genome representation of strain specific
genomic sequences within the positive microbiome was then performed with
BWA and QualiMap as described above.
Metagenome de novo sequence assembly was performed with

MEGAHIT and evaluated by mapping the original reads to the assembled
sequences using BWA software and SAMtools as described above. The
software MetaBAT 2 [51] set to default parameters for complex
communities was used to collect contigs predicted to the same species
into a single bin. Taxonomic identification of bins belonging to B. vulgatus
and A. muciniphila was performed by Blastn with 5.3 × 106 and 2.8 × 106

base pairs for B. vulgatus A. muciniphila related bins, respectively, which
was similar to the average genome sizes reported for these species (NCBI
database) [52, 53]. Genomic representation of test strains against resident
B. vulgatus and A. muciniphila contigs was performed with BWA, SAMtools,
and Qualimap as described above. Taxonomic profiles of the metagenomic
dataset were generated using MetaPhlAn3 (v3.0.2) [54] with default
settings. Taxa presenting in no less than three mice in at least one
treatment were retained for data visualization using GraPhlAn (v1.1.3) [55]
and the R package pheatmap.

Genomic comparisons between test strains
IMG/MER tools [40, 42] from the Joint Genome Institute were used to
calculate genome-wide average nucleotide identity (gANI) and alignment
fractions (AF) for A. muciniphila BAA-835 versus YL44 and B. vulgatus 8482
versus RJ2H1 as previously described [56]. Genome size information from
strains reported at NCBI was used to generate histogram distribution using
the ggplot2 package in RStudio (RStudio Team, Boston, MA). The IMG/MER
phylogenetic profiler tool was used to perform gene context analysis and
identify unique genes and protein families (Pfam) for each strain
[40, 42, 57]. Classifications of identified protein families were made based
on descriptions in the protein family database [58] and the Universal
Protein Resource [59]. Pie charts and stacked bar graphs were create using
Prism 8 (GraphPad Software, San Diego, CA).

Quantification and statistical analysis
All longitudinal data were analyzed using two-way ANOVA repeated
measures and Tukey test multiple pairwise comparisons using Prism 8
(GraphPad Software). A p-value of 0.05 was considered significant.

RESULTS
A. muciniphila and B. vulgatus strains only colonized
gnotobiotic mice harboring complex microbiomes devoid of
these species
To confirm published studies showing that bacterial colonization
in the mammalian gut depends on the absence of related bacteria
[17, 18, 27, 60], we tested the persistence of A. muciniphila and B.
vulgatus strains in mice harboring complex microbiomes with
(positive) and without (negative) these species. We established a
microbiome in germ-free mice that contained these species
(MFPL) as well as a microbiome that lacked the phylum
Verrucomicrobia and the family Bacteroidaceae (MC608-F-a1).
After two weeks of colonization, we confirmed the presence/
absence of A. muciniphila and B. vulgatus by species-specific qPCR.
WMS verified the presence of A. muciniphila and B. vulgatus in the
positive microbiome and the absence of these taxa (along with
their respective phyla and families) in the negative microbiome
(Fig. S2a–c). Approximately 85% of the genome sequences from
test strains A. muciniphila BAA-835 and YL44 and B. vulgatus 8482
and RJ2H1 were represented in the metagenomes of the positive
microbiome (Fig. S2d). In addition, ~70–80% of the genome
sequences from the experimental A. muciniphila and B. vulgatus
strains was shared with the resident B. vulgatus and A. muciniphila
populations present in the positive microbiome (Fig. S2e, f). In
contrast, the genomes of all test strains were poorly represented
in the negative microbiome (Fig. S2e, f).
We then orally administered experimental strains of A.

muciniphila and B. vulgatus to mice harboring either a positive
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or negative microbiome. Using strain-specific qPCR (Fig. 1A), we
found that neither the A. muciniphila nor the B. vulgatus test
strains colonized mice carrying a microbiome that contained these
species (Fig. 1C, D). In contrast, stable persistence of test strains
was achieved in mice harboring the negative microbiome that
was naturally devoid of A. muciniphila and B. vulgatus (Fig. 1D, F).
These results suggest that colonization of exogenous bacterial
strains can occur in the absence, but not presence, of the same
species (or species representing the genetic potential of the
incoming strains) in the resident microbiome, thus confirming
previous findings in both mice and humans [17, 18].

Colonization of A. muciniphila, but not B. vulgatus, was strictly
governed by competitive exclusion, while priority effects were
detectable for both species
Although the findings above suggest that concepts such as
competitive exclusion or limiting similarity pertain to gut
ecosystems [61], they do not provide direct evidence because
the differences between the positive and negative microbiomes
pertained not only to the target species but also to their
respective phyla and families. Our next experiments therefore
aimed to specifically evaluate the outcome of strain-to-strain
competition and test whether it resulted in competitive exclusion.
We first colonized germ-free mice with a “permissive” negative
microbiome devoid of A. muciniphila and B. vulgatus and a mixture
of both A. muciniphila BAA-835 and B. vulgatus 8482. Two weeks
later, mice were colonized with a mixture of both A. muciniphila
YL44 and B. vulgatus RJ2H1 (Fig. 2A). A second cohort of mice
harboring permissive microbiomes were colonized with both

A. muciniphila YL44 and B. vulgatus RJ2H1 first, followed by
A. muciniphila BAA-835 and B. vulgatus 8482 two weeks later
(Fig. 2B). Finally, a third cohort of mice colonized with the
permissive microbiome was used to test all four strains together to
determine fitness differences of the strains (Fig. 2C).
For A. muciniphila, we observed that the strain arriving first

stably colonized, while the second was only temporarily detected,
indicating competitive exclusion (Fig. 2D, E). Notably, competition
outcomes were strictly dependent on arrival order, with the first
colonizer excluding the later colonizer, thus demonstrating that
priority effects are of paramount importance. Priority effects were
strong enough to abrogate the fitness differences observed
between the two A. muciniphila strains. Strain BAA-835 out-
competed YL44 when it colonized first, although it was out-
competed by YL44 when both strains were inoculated together
(Fig. 2F).
In contrast to the findings obtained for A. muciniphila, both

strains of B. vulgatus were able to stably colonize independently of
strain arrival succession (Fig. 2G–I). Despite stable coexistence, the
two strains still influenced one another’s abundance, indicating
competitive interactions that were further influenced by priority
effects. Although the sum total abundance of the two B. vulgatus
strains was equivalent across all colonization scenarios (Fig. S3),
the maximum abundance levels for individual strains were
significantly higher (mean estimate of difference 0.5–1.0 log, p <
0.05) when they colonized first as compared to when colonizing
second (Fig. 2G vs. H). Second, the higher population level of strain
RJ2H1 (~108 cells/g feces) compared to 8482 (~106 cells/g feces)
observed when RJ2H1 colonized first or at the same time as 8482

Fig. 1 A. muciniphila and B. vulgatus strains only colonized gnotobiotic mice harboring complex microbiomes devoid of these species.
Experimental design to test colonization of strains in mice harboring a microbiome with (positive; A) and without (negative; B) A. muciniphila
and B. vulgatus. Brown triangles represent timepoints for fecal sample collections. Black arrows represent colonization events with
microbiomes or A. muciniphila and B. vulgatus strains. Week 2 fecal samples were collected prior to inoculating with test strains. Abundance of
A. muciniphila species (gray), strain BAA-835 (dark blue), and strain YL44 (light blue) in mice harboring either a positive (C) or a negative (D)
microbiome. Abundance of B. vulgatus species (gray), strain 8482 (dark green), and strain RJ2H1 (light green) in mice harboring either a
positive (E) or a negative (F) microbiome. Values are presented as mean ± the standard deviation. Time points with different letters are
significantly (p < 0.05) different from one another at indicated timepoints by two-way ANOVA repeated measures and Tukey test multiple
pairwise comparisons in each plot.
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was no longer detectable when strain 8482 was introduced first
(both strains at ~107 cells/g feces). These findings indicate that
although the two B. vulgatus strains coexisted and were not
subjected to strict competitive exclusion, the two strains still
affected each other’s population levels and priority effects clearly
influenced competition outcomes.

Strain-to-strain differences in traits enabling niche
differentiation may explain the distinct competition outcomes
between A. muciniphila and B. vulgatus strains
Similarities between bacteria increase competition for resources
and may result in competitive exclusion [62]. However, differences
in resource requirements can lead to resource partitioning and
niche differentiation and thus constitute a stabilizing mechanism
that increases the chance of coexistence [25]. We therefore sought
to investigate whether genetic relationships could explain the
differences in coexistence patterns observed between A. mucini-
phila (strict competitive exclusion) and B. vulgatus (coexistence
with competitive interactions) strains. An assessment of genetic
relatedness using genome-wide average nucleotide identity (gANI)
and alignment fraction (AF) metrics [56] revealed that the genomes
of the two A. muciniphila strains were more similar to one another
than those of the B. vulgatus strains (gANI values of 99.10 vs. 98.68
and AF values of 93.37 vs. 75.58 for A. muciniphila and B. vulgatus,
respectively; Table 1). We also observed that the genomes of
A. muciniphila strains were smaller than those of B. vulgatus strains
(Fig. 3A) and consistent in size with organisms exhibiting specialist
behaviors [63], such as the mucin degradation/utilization for which

A. muciniphila is highly specialized [64]. Each A. muciniphila strain
differed from one another in only a few unique encoded proteins
related to processes of gene regulation and nitrogen metabolism
(Fig. 3B, D). In contrast, the B. vulgatus strains differed by multiple
proteins related to processes of gene regulation, carbohydrate
binding and metabolism, phage infection, stress responses, and
protein degradation (Fig. 3C, E).
Consistent with these observations, B. vulgatus strains 8482 and

RJ2H1 differed in terms of the carbohydrate substrates they
utilized in vitro (Table S1). Specifically, strain 8482 exhibited
superior growth on N-acetyl glucosamine and chondroitin sulfate
as well as on simple sugars such as fructose and glucose, whereas
strain RJ2H1 grew well on several starches, including amylopectin,
glycogen, pullulan, and rhamnogalacturonan I, and xylan.
Altogether, these findings suggest that competitive exclusion

between A. muciniphila strains is likely related to high genetic
similarity. In contrast, the coexistence of B. vulgatus strains may
be determined by unique genes and patterns of carbohydrate
metabolism whereby strain 8482 specializes towards host-
derived carbohydrates and simple dietary sugars while strain
RJ2H1 specializes on complex dietary substrates to promote
niche differentiation. Importantly, ~70% of the genome
sequences found to be unique to either B. vulgatus 8482 or
RJ2H1 in direct genome comparisons between these strains,
which may encode the traits that enable niche partitioning, was
represented in the positive microbiome (Fig. 3f), thus providing
an explanation for why this microbiome excluded both
B. vulgatus strains (Fig. 1E).

Fig. 2 Colonization of A. muciniphila, but not B. vulgatus, was strictly governed by competitive exclusion, while priority effects were
detectable for both species. All mice were colonized at week 0 with a negative microbiome devoid of A. muciniphila and B. vulgatus.
Competition experiments with strains of A. muciniphila and B. vulgatus were performed as follows: (A, D, G) A. muciniphila BAA-835 and B.
vulgatus 8482 were introduced at week 0 prior to introduction of A. muciniphila YL44 and B. vulgatus RJ2H1 at week 2. B, E, H A. muciniphila
YL44 and B. vulgatus RJ2H1 were introduced at week 0 prior to introduction of A. muciniphila BAA-835 and B. vulgatus 8482 at week 2. C, F, I A.
muciniphila and B. vulgatus strains were all introduced into mice at the same time. D–F Abundance of A. muciniphila strain BAA-835 (dark blue)
and strain YL44 (light blue) in feces. G–I Abundance of B. vulgatus strain 8482 (dark green) and strain RJ2H1 (light green) in feces. Week 2 fecal
samples were collected prior to inoculating with test strains. Values are presented as mean ± the standard deviation. Time points with
different letters are significantly (p < 0.05) different from one another by two-way ANOVA repeated measures and Tukey test multiple pairwise
comparisons among treatments of A. muciniphila (D–F) or B. vulgatus (G–I).
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A subtractive antibiotic strategy enabled replacement of an
established A. muciniphila strain
Our observations for A. muciniphila suggest that the establishment
of a new strain of this species is prevented via competitive
exclusion by a resident strain of the same species whose fitness is
enhanced through priority effects. This finding provides a
mechanism underlying the difficulty in establishing new strains
within the gut microbiota and implies that successful colonization
of novel A. muciniphila strains depends upon the reduction or
removal of a pre-existing, related strain within the microbiome
using a subtractive approach [15]. One potential strategy for such
modulation is antibiotic treatment [65]. We therefore hypothe-
sized that an antibiotic regimen would allow us to replace an
established strain of A. muciniphila with a novel strain. We selected
candidate antibiotics based on Derrien et al., who reported that
A. muciniphila was susceptible to ampicillin (AMP) [64] and other
reports describing antibiotics with effects on A. muciniphila or
Verrucomicrobia [31, 66, 67]. Candidate antibiotics were first
screened in vitro for their ability to attenuate growth of
A. muciniphila BAA-835 and YL44 (Table S2). Macrolide tylosin
tartrate (MTT), clarithromycin (CLA), and AMP all limited the
growth of BAA and YL44 in vitro.
To systematically test the efficacy of an antibiotic-based

subtractive strategy, germ-free mice were first conventionalized
with a permissive microbiota devoid of A. muciniphila and then
colonized one week later with strain BAA-835. One week after the
addition of BAA-835, mice received either CLA, MTT, AMP, AMP+
MTT, AMP+MTT+ CLA, or no antibiotics in their drinking water
for five days. On the fifth day, mice receiving antibiotics were
returned to regular drinking water and began receiving daily
gavages of YL44 for five days (Fig. 4A). In agreement with findings
from our previous experiment (Fig. 2d), YL44 could not colonize
control mice and did not influence BAA-835 population levels
(Fig. 4B). Treatment with either MTT or CLA resulted in the same
outcomes as observed for control mice (Fig. 4C and D). In contrast,
administering AMP alone or in combination with MTT and/or CLA
depleted the existing BAA strain to undetectable levels and
enabled stable colonization of YL44 for the duration of the five-
week experiment (Fig. 4E–G). Together, these results demonstrate
that subtractive antibiotic treatment can be used as a strategy to
successfully remove a pre-existing A. muciniphila strain from an
assembled gut microbial community and replace it with a novel
strain that would otherwise be excluded by competitive exclusion.
These experiments also further confirm that the competitive
interactions between A. muciniphila strains detected in previous
experiments are not due to interactions with B. vulgatus.

DISCUSSION
Recent studies suggest that colonization of an incoming microbe
in a microbiome is determined by the presence of closely related
inhabitants [17, 18, 27, 60], thus suggesting that principles such as
competitive exclusion apply to gut ecosystems. However, the
applicability of these concepts has not been empirically estab-
lished, nor have there been attempts to apply them to exchange
strains in an assembled community. Using systematic experiments

in gnotobiotic mice, we found that A. muciniphila strains, which
have narrow and likely overlapping niches, excluded one another
from the microbiome whereas B. vulgatus strains could coexist,
likely through niche partitioning, but still showed ecological
interactions pointing to competition. We observed that compe-
titive interactions between both A. muciniphila and B. vulgatus
strains were influenced by time of arrival, thus establishing the
importance of priority effects as a determinant of coexistence.
Finally, we demonstrated that antibiotic treatments can be used to
replace A. muciniphila strains within an assembled microbiome.
Altogether, our results suggest that important aspects of
coexistence theory (e.g., the ability to partition niches and the
impact of priority effects on fitness differences) determine strain
competition outcomes in gut ecosystems and suggest that such
principles can be applied to design strategies that modulate
microbiomes.
According to modern coexistence theory, coexistence in an

ecosystem is determined by the degree to which members differ
in fitness (i.e., equalizing mechanisms), their niches (i.e., stabilizing
mechanisms), and their time of arrival [25, 26, 68, 69]. Our findings
agree with these principles, which can provide an explanation for
the profound differences between A. muciniphila and B. vulgatus
with respect to coexistence. A. muciniphila colonizes the mucus
layer [29], an anatomically-defined structure composed primarily
of mucin agglomerates [70], and preferentially metabolizes mucin
over other carbohydrates [64, 71], thus restricting the variability of
resources in its ecological niche. These behaviors are also
consistent with the small genomic differences between strains
BAA-835 and YL44, indicating that these strains are ecologically
very similar. Consequently, one would predict that stabilizing
mechanisms are reduced between competing A. muciniphila
strains because they are unable to partition niches, which should
result in strict competitive exclusion where the better competitor
excludes the other strain. These assumptions are supported by our
current observations for A. muciniphila. However, our findings
indicate that the ability of these strains to compete (i.e., fitness) is
influenced by arrival order. Specifically, the less fit A. muciniphila
strain won the competition when it arrived first. Our results
therefore confirm the importance of priority effects in gut
ecosystems [18, 26] and demonstrate that these effects can be
strong enough to overcome inherent fitness differences between
A. muciniphila strains.
We were surprised to not see a competitive advantage for the A.

muciniphila strain isolated from mice (YL44) over the strain of
human origin (BAA-835) given that host adaptation has been
shown for other bacteria closely associated with host epithelia
(e.g., Limosilactobacillus reuteri) [72, 73]. It therefore appears that
host origin plays no role in influencing the competitive abilities of
A. muciniphila. However, one should consider that the micro-
biomes of mice housed in modern research vivaria are often
highly artificial [74], and the microbiome derived from wild mice in
our study did not contain A. muciniphila. We therefore screened
the literature to determine if A. muciniphila is truly of murine
origin. Results from several studies confirmed our observation that
A. muciniphila has not been detected in the microbiomes of wild
mice [75, 76]. Overall, these findings suggest that A. muciniphila

Table 1. Genome-wide average nucleotide identities among the strains utilized in this study.

Genome1 Name Genome2 Name ANI1- > 2 ANI2- > 1 AF1- > 2 AF2- > 1

Bacteroides vulgatus ATCC 8482 Bacteroides vulgatus RJ2H1 98.7 98.7 75.6 75.6

Bacteroides vulgatus ATCC 8482 Akkermansia muciniphila YL44 65.5 65.7 1.0 1.9

Akkermansia muciniphila ATCC BAA-835 Akkermansia muciniphila YL44 99.1 99.1 93.4 90.7

Akkermansia muciniphila ATCC BAA-835 Bacteroides vulgatus RJ2H1 65.7 65.7 2.0 1.1

Average nucleotide identity (ANI) and Alignment Fraction (AF) are measuring genetic relatedness. ANI1 and AF1 are calculated with Genome 1 as the
reference. ANI2 and AF2 are calculated with Genome 2 as the reference.

R.R. Segura Munoz et al.

1599

The ISME Journal (2022) 16:1594 – 1604



YL44 shares no evolutionary relationship with mice, thus
explaining why it does not exhibit a stronger ecological
performance when compared with a human isolate.
Unlike A. muciniphila strains, B. vulgatus strains do not exclude

each other. This observation can be explained by the existence of
stabilizing mechanisms that lead to niche differentiation. In
contrast to A. muciniphila, whose niche is restricted to the mucus
layer, B. vulgatus colonizes food particles and scattered luminal
regions adjacent to the colonic mucosa [77, 78]. The B. vulgatus
niche is therefore likely much more complex and dynamic than
that of A. muciniphila and provides a larger range of substrates
that become accessible by different strains. Indeed, the larger
genomes for B. vulgatus compared to A. muciniphila suggest that
these strains are generalists [14]. Consistently, B. vulgatus strains
8482 and RJ2H1 also differed in diversity of carbohydrate and
protein degradation capabilities and substrate binding/utilization,
which suggests that they are able to partition niches and stably
coexist even if equalizing mechanisms are low due to fitness
differences [25]. Despite the stable coexistence of B. vulgatus
isolates, we still detected competitive interactions that were
influenced by priority effects. B. vulgatus strains achieved a higher
colonization level when they arrived first, and fitness differences
could be overcome through early arrival. Overall, our observations
for B. vulgatus strains are consistent with coexistence theory in
that strains capable of partitioning niches can coexist. However,
our experiments have not identified niche differentiation within
B. vulgatus on a mechanistic level, nor did they assess competitive
interactions among closely related species (as mice harboring the
negative microbiome lacked Bacteroidaceae) or how such interac-
tions affect the niche of B. vulgatus. Future studies to experimen-
tally determine the mechanisms of niche partitioning within
B. vulgatus in the context of complex communities are therefore
required. Regardless of the exact mechanisms, a novel and

important finding for our understanding of the gut ecosystem is
that even if strains stably coexist, their population levels are still
affected by competition and influenced by priority effects.
Taken together, our findings suggest that key aspects of

modern coexistence theory can be applied to understand
fundamental characteristics of gut microbial communities. In
accordance with that theory, species and strains with similar
fitness levels can coexist when niche differences are sufficiently
large to reduce overlap in resource usage [25]. In contrast, if niches
overlap too much, then fitness differences prevent coexistence
and result in competitive exclusion [25]. Our observations for
A. muciniphila provide experimental evidence to support previous
findings that point to competitive exclusion as a mechanism for
colonization resistance [17, 18, 27, 60]. Most importantly, our
findings agree with observations for strain coexistence in humans
[75, 79, 80]. In particular, Truong et al. showed that most
individuals harbor only one strain of A. muciniphila but tend to
carry multiple resident B. vulgatus strains [80], suggesting that the
ecological principles underpinning strain coexistence in mice may
also apply to humans.
Of particular significance is our demonstration that priority

effects can be strong enough to modify and even reverse fitness
differences between strains and consequently alter competition
outcomes, regardless of whether they result in strict competitive
exclusion or coexistence. By demonstrating that arrival order
alters fitness differences among strains and ultimately reverses
the outcome of their competition, our findings extend previous
research [18] describing that priority effects can influence the
persistence of individual colonizers and the historical contin-
gency of microbiome assembly. Priority effects, in the context of
modern coexistence theory, can therefore provide mechanistic
explanations for key characteristics of gut ecosystems. First,
competitive exclusion, in combination with priority effects,

Fig. 3 Genomic differences between A. muciniphila and B. vulgatus strains. A Distribution of bacterial genome sizes. Mbp =Millions of base
pairs of total DNA sequence length for each strain in the NCBI genome database. B Shared (gray) and unique genes for A. muciniphila BAA-835
(dark blue) and YL44 (light blue) in direct genome comparisons. C Shared (gray) and unique genes for B. vulgatus 8482 (dark green) and RJ2H1
(light green). Sizes of pie charts are scaled to represent proportional differences between A. muciniphila and B. vulgatus genomes. Biological
processes related to unique protein families are depicted for A. muciniphila (D) and B. vulgatus (E) strains. Each protein is grouped by colors
that represent an individual biological process. F Fraction of the genome sequences unique to B. vulgatus 8482 or RJ2H1 (in genomic
comparisons between the two strains) that is represented in the positive and negative (permissive) pretreatment microbiomes.
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provides a mechanism that enhances colonization resistance of
gut microbiomes as it endows the established organism with a
fitness advantage over later arrivals, thereby providing an
explanation for microbiome stability, resistance, and resilience
[81, 82]. Second, priority effects could explain why maternal-
derived bacteria, which are likely to arrive early, are more stable
colonizers compared to non-maternal strains [83, 84]. Third,
priority effects can influence the abundance of coexisting
community members, thus offering a mechanism by which
arrival order (which is likely to be largely stochastic) creates
differences in gut microbiota composition and explains, in part,
the substantial interindividual variation observed in gut micro-
biomes [18]. We acknowledge that we have not established the
mechanisms by which priority effects emerge. Such effects may
manifest through ecological (e.g., niche pre-emption) or evolu-
tionary mechanisms (e.g., by early colonizers adapting to the
host, thereby becoming more competitive), but could also be
influenced by the host immune system if early colonizing strains
induce immune responses that benefit their persistence. Future
studies should focus on elucidating these mechanisms.
Considering these ecological concepts, there are substantial

practical implications for successfully introducing a new strain into
the gut microbiota: (i) closely-related established strains must be
absent [17, 38]; (ii) the incoming strain, which is disadvantaged by
priority effects, must outcompete the resident strain; or (iii) the
resident strain currently occupying the niche must first be
removed through subtractive approaches. The third strategy has
been both proposed and applied in some fecal microbiota
transplant (FMT) studies [17, 85, 86], and a recent meta-analysis

of newly generated and available metagenomes from post-FMT
patient samples revealed that antibiotic pretreatment enhanced
donor strain engraftment [19]. Our findings provide a mechanistic
foundation for the effect of antibiotics on strain engraftment by
demonstrating that a subtractive approach based on antibiotic
treatment could indeed be used to replace an established
A. muciniphila strain with a new one. Specifically, administration
of antibiotics suppressed the abundance of the competing, early-
arriving A. muciniphila strain and opened a niche for the late-
arriving strain to colonize. Subtractive approaches such as
antibiotics may therefore enable microbiome modulation by both
suppressing competing strains and opening niches for new
colonizers. We acknowledge that the use of broad-spectrum
antibiotics such as ampicillin to replace strains has substantial
disadvantages for translation into humans. More targeted
subtractive methods, including the use of bacteriophages [87] or
CRISPR/cas systems [88], are likely more desirable, and, if applied
in agreement with ecological theory, could pave the way for
precision tools to modulate microbiomes. Importantly, our study
provides the proof-of-concept that such approaches can be
successful.
In conclusion, this study demonstrates the applicability of the

central aspects of modern coexistence theory to gut ecosystems
and that such theory can be used to understand engraftment of
incoming microbes. Our findings provide potential explanations
for many fundamental characteristics of the gut microbiome,
including stability, colonization resistance, enhanced stability of
maternally-acquired strains, and drivers of inter-subject variation.
Furthermore, this work informs future intervention studies aimed

Fig. 4 A subtractive antibiotic strategy enabled replacement of an established A. muciniphila strain. A Experimental design depicting
conventionalization of germ-free mice with a negative microbiota devoid of A. muciniphila and colonization with strain BAA-835 at day −7. On
day 0, mice were treated with antibiotics or regular drinking water for five days. On day 5, mice receiving antibiotics were returned to regular
drinking water and fecal samples were collected. Also on day 5, mice began receiving daily gavages of YL44 for five days. Brown triangles
represent timepoints for fecal sample collections. Abundance of A. muciniphila BAA-835 (dark blue) and A. muciniphila YL44 (light blue) in feces
of mice not treated with antibiotics (B) or treated with CLA alone (C), D MTT alone, E AMP alone, F AMP+MTT, G AMP+MTT+ CLA. Values
are presented as mean ± the standard deviation. In each plot, time points with different letters are significantly (p < 0.05) different from one
another by two-way ANOVA repeated measures and Tukey test multiple pairwise comparisons.
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at modulating gut ecosystems using live microbes, which will
likely need to be personalized based on an individual’s baseline
microbiome and attempt to remove competitors through
subtractive approaches. Admittedly, our study only tested two
strains each of two important bacterial species, and the ecological
principles governing other microbiota members and the context
in which they apply, might differ. Future research should extend
our work to include additional strains with known niche
characteristics, evaluate their competition in the context of the
wider microbial community, and focus efforts on the exact
mechanisms by which strains coexist or compete and priority
effects emerge. Additionally, gnotobiotic mouse models could be
designed to facilitate the investigation of interspecies interactions
at various taxonomic levels (e.g., including other Bacteroides
species with well-characterized niches [35]). Studies could also be
performed that combine gnotobiotic models of disease with
genetic mutants to determine the bacterial traits that contribute
to niche partitioning to further understand the exact mechanisms
by which microbes coexist in gut ecosystems and how their
relationships are influenced by pathologies that alter the gut
microbiota.
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