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Abstract 
We report learning measurements from a system composed of a cascadable 
learning chip, data generators and analyzers for training pattern presentation, 
and an X-windows based software interface. The 32 neuron learning chip has 
496 adaptive synapses and can perform Boltzmann and mean-field learning 
using separate noise and gain controls. We have used this system to do learning 
experiments on the parity and replication problem. The system settling time 
limits the learning speed to about 100,000 patterns per second roughly 
independent of system size. 

1. INTRODUCTION 

We have implemented a model of learning in neural networks using feedback 
connections and a local 1earning rule. Even though back-propagation[l) 
(Rwnelhart,1986) networks are feedforward in processing, they have separate. implicit 
feedback paths during learning for error pro~gation. Networks with explicit, full-time 
feedback paths can perform pattern completion!21 (Hopfield,1982), can learn many-lO-One 
mappings. can learn probability disuibutions. and can have interesting temporal and 
dynamical properties in contrast to the single forward pass processing of multilayer 
perceptrons trained with back-propagation or other means. Because of the potential for 
complex dynamics. feedback networks require a reliable method of relaxation for 
learning and reuieval of static patterns. The Boltzmann machine!3] (Ackley,1985) uses 
stochastic settling while the mean-field theory version[4] (peterson.1987) uses a more 
computationally efficient deterministic technique. 

We have previously shown that Boltzmann learning can be implemented in VLSI(S] 
(Alspector,1989). We have also shown, by simulation,[6] (Alspector, 1991a) that 
Boltzmann and mean-field networks can have powerful learning and representation 
properties just like the more thoroughly studied back-propagation methods. In this paper, 
we demonstrate these properties using new, expandable parallel hardware for on-chip 
learning. 

t Pennanenl address: University of California, Bericeley; EECS Dep't, Cory Hall; Berlceley, CA 94720 
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1. VLSI IMPLEMENTATION 

1.1 Electronic Model 

We have implemented these feedback networks in VLSI which speeds up learning by 

many orders of magnitude due to the parallel nature of weight adjustment and neuron 

state update. Our choice of learning technique for implementation is due mainly to the 

local learning rule which makes it much easier to cast these networks into electronics 

than back-propagation. 

Individual neurons in the Boltzmann machine have a probabilistic decision rule such that 

neuron i is in state Sj = 1 with probability 

1 
Pr(Sj = 1)= -~=­

l+e-.rr 
(1) 

where Wj = ~WjjSj is the net input to each neuron calculated by current summing and T 
j 

is a parameter that acts like temperature in a physical system and is represented by the 

noise and gain terms in Eq. (2), which follows. In the electronic mooel we use, each 

neuron performs the activation computation 

Sj = f (~* (Uj+Vj» (2) 

where f is a monotonic non-linear function such as tanh. The noise, v, is chosen from a 

zero mean gaussian distribution whose width is proportional to the temperature. This 

closely approximates the distribution in Eq. (1) and comes from our hardware 

implementation, which supplies uncorrelated noise in the form of a binomial 

distribution[7] (Alspector,I991b) to each neuron. The noise is slowly reduced as 

annealing proceeds. For mean-field learning, the noise is zero but the gain, ~, has a finite 

value proponional to liT taken from the annealing schedule. Thus the non-linearity 

sharpens as 'annealing' proceeds. 

The network is annealed in two phases, + and -, corresponding to clamping the outputs 

in the desired state (teacher phase) and allowing them to run free (student phase) at each 

pattern presentation. The learning rule which adjusts the weights Wjj from neuron j to 

neuron i is 

(3) 

Note that this measures the instantaneous correlations after annealing. For both phases 

each synapse memorizes the correlations measured at the end of the annealing cycle and 

weight adjustment is then made, (Le., online). The sgn matches our hardware 

implementation which changes weights by one each time. 

1.1 Learning Microchip 

Fig. 1 shows the learning microchip which has been fabricated. It contains 32 neurons 

and 992 connections (496 bidirectional synapses). On the extreme right is a noise 

generator which supplies 32 un correlated pseudo-random noise sources[7] 

(Alspector,I991b) to the neurons to their left. These noise sources are summed in the 
form of current along with the weighted post-synaptic signals from other neurons at the 

input to each neuron in order to implement the simulated annealing process of the 

stochastic Boltzmann machine. The neuron amplifiers implement a non-linear activation 
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Figure 1. Photo of 32-Neuron Cascadable Learning Chip 

function which has variable gain to provide for the gain sharpening function of the 

mean-field technique. The range of neuron gain can also be adjusted to allow for scaling 

in summing currents due to adjustable network size. 

Most of the area is occupied by the synapse array. Each synapse digitally stores a weight 

ranging from -15 to +15 as 4 bits plus a sign. It multiples the voltage input from the 

presynaptic neuron by this weight to output a current. One conductance direction can be 

disconnected so that we can experiment with asymmetric networks[8) (Allen, 1990). 

Although the synapses can have their weights set externally, they are designed to be 

adaptive. They store correlations. in parallel, using the local learning rule of Eq. (3) and 

adjust their weights accordingly. A neuron state range of -Ito 1 is assumed by the digital 

learning processor in each synapse on the chip. 

Fig. 2a shows a family of transfer functions of a neuron. showing how the gain is 

continually adjustable by varying a control voltage. Fig. 2b shows the transfer function 

of a synapse as different weights are loaded. The input linear range is about 2 volts. 

Fig. 3 shows waveforms during exclusive-OR learning using the noise annealing of the 

Boltzmann machine. The top three traces are hidden neurons while the bottom trace is 

the output neuron which is clamped during the + phase. There are two input patterns 

presented during the time interval displayed, (-1,+1) and (+1,-1), both of which should 

output a +1 (note the state clamped to high voltage on the output neuron). Note the 

sequence of steps involved in each pattern presentation. 1) Outputs from the previous 

pattern are unclamped. 2) The new pattern is presented to the input neurons. 3) Noise is 

presented to the network and annealed. 4) The student phase latch captures the 
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Figure 2. Transfer Functions of Electronic Neuron (2a) and Synapse (2b) 

correlations. 5) Data from the neuron states is read into the data analyzer. 6) The output 

neurons are clamped (no annealing is necessary for a three layer network). 7) The 

teacher phase latch captures the correlations. 8) Weights are adjusted (go to step 1). 
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Figure 3. Neuron Signals during Learning (see text for steps involved) 

Fig. 4a shows an expanded view of 4 neuron waveforms during the noise annealing 

portion of the chip operation during Boltzmann learning. Fig. 4b shows a similar portion 

during gain annealing. Note that, at low gain. the neuron states start at 2.5 volts and 

settle to an analog value between 0 and 5 volts. For the purposes of classification for the 
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Figure 4. Neuron Signals during Annealing with Noise (4a) and Gain (4b) 

digital problems we investigated, neurons are either + lor·} depending on whether their 

voltage is above or below 2.5 volts. This isn't clear until after settling. There are several 

instances in Figs. 3 and 4 where the neuron state changes after noise or gain annealing. 

The speed of pattern presentations is limited by the length of the annealing signal for 

system settling (100 ~ in Fig. 3). The rest of the operations can be made negligibly 

short in comparison. The annealing time could be reduced to 10 ~ or so, leading to a 

rate of about 100,000 patterns/sec. In comparison, a 10-10-10 replication problem, 

which fits on a single chip, takes about a second per panern on a SPARCstation 2. This 

time scales roughly with the number of weights on a sequential machine, but is almost 

constant on the learning chip due to its parallel nature. 

We can do even larger problems in a multiple chip system because the chip is designed to 

be cascaded with other similar chips in a board-level system which can be accessed by a 

computer. The nodes which sum current from synapses for net input into a neuron are 

available externally for connection to other chips and for external clamping of neurons or 

other external input We are currently building such a system with a VME bus interface 

for tighter coupling to our software than is allowed by the GPIB instrument bus we are 

using at the time of this writing. 

2.3 Learning Experiments 

To study learning as a function of problem size, we chose the parity and replication 

(identity) problems. This facilitates comparisons with our previous simulations[6) 
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(Alspector.I991 a). The parity problem is the genenilization of exclusive-OR for 

arbitrary input size. It is difficult because the classification regions are disjoint with 

every change of input bit. but it has only one output The goal of the replication problem 

is for the output to duplicate the bit pattern found on the input after being encoded by the 

hidden layer. Note that the output bits can be shifted or scrambled in any order without 

affecting the difficulty of the problem. There are as many output neurons as input. For 

the replication problem. we chose the hidden layer to have the same number of neurons 

as the input layer. while for parity we chose the hidden layer to have twice the number as 

the input layer. 
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Figure 5. X-window Display for Learning on Chip (5a) and in Software (5b) 

Fig. 5 shows the X-window display for 5 mean-field runs for learning the 4 input. 4 

hidden, 4 output (4-4-4) replication on the chip (Sa) and in the simulator (5b). The user 

specification is the same for both. Only the learning calculation module is different. 

Both have di~plays of the network topology, the neuron states (color and pie-shaped arc 

of circles) and the network weights (color and size of squares). There are also graphs of 

percent correct and error (Hamming distance for replication) and one of volatility of 

neuron stateS(9j (Alspector,I992) as a measure of the system temperature. The learning 

curves look quite similar. In both cases, one of the 5 runs failed to learn to 100 %. The 

boxes representing weights are signed currents (about 4 ~ per unit weight) in 5a and 

integers from -15 to + 15 in 5b. Volatility is plotted as a function of time (j..lsec) in 5a and 

shows that. in hardware (see Fig. 4), time is needed for a gain decrease at the start of the 

annealing as well as for the gain increase of the annealing proper. The volatility in 5b is 



ICII 

10 

60 

PERCENT 
CORRECT 

40 

o 

Experimental Evaluation of Learning in a Neural Microsystem 877 

plotted as a function of gain (BETA) which increases logarithmically in the simulator at 

each anneal step. 
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Figure 6. On-chip Learning for 6 Input Replication (6a) and Parity (6b) 

Fig. 6a displays data from the average of 10 runs of 6-6-6 replication for both Boltzmann 

(BZ) and mean-field (MFI) learning. While the percent correct saturates at 90 % (70 % 

for Boltzmann), the output error as measured by the Hamming distance between input 

and output is less than 1 bit out of 6. Boltzmann learning is somewhat poorer in this 

experiment probably because circuit parameters have not yet been optimized. We expect 

that a combination of noise and gain annealing will yield the best results but have not 

tested this possibility at this writing. Fig.6b is a similar plot for 6-12-1 parity. 

We have done on-chip learning experiments using noise and gain annealing for parity 

and replication up to 8 input bits, nearly utilizing all the neurons on a single chip. To 

judge scaling behavior in these early experiments, we note the number of patterns 

required until no further improvement in percent correct is visible by eye. Fig. 7a plots, 

for an average of 10 runs of the parity problem, the number of patterns required to learn 

up to the saturation value for percent correct for both Boltzmann and mean-field learning. 

This scales roughly as an exponential in number of inputs for learning on chip just as it 

did in simulation[6] (Alspector,199Ia) since the training set size is exponential. The final 

percent correct is indicated on the plot Fig. 7b plots the equivalent data for the 

replication problem. Outliers are due to low saturation values. Overall, the training time 

per pattern on-chip is quite similar to our simulations. However, in real-time, it can be 

about 100,000 times as fast for a single chip and will be even faster for multiple chip 

systems. The speed for either learning or evaluation is roughly 108 connections per 

second per chip. 
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Figme 7. Scaling of Parity (7a) and Replicalion (7b) Problem with Input Size 

3. CONCLUSION 

We have shown that Boltzmann and mean-field learning networks can be implemented in 

a parallel, analog VLSI system. While we report early experiments on a single-chip 

digital system, a mUltiple-chip VME-based electronic system with analog I/O is being 

constructed for use on larger problems. 
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