
Experimental evaluation of linear model based control strategies for

PEMFCs

R.N. Methekar , S.C. Patwardhan, R. Rengaswamy , R.D. Gudi and V. Prasad

Abstract— In this work, we investigate linear model based
multivariable control schemes for proton exchange membrane
fuel cells (PEMFCs). Much of the literature relies on a mecha-
nistic model to design model predictive controllers; however,
this can be a difficult and time-consuming exercise for a
PEMFC. An effective approach for developing models for
control purposes is to use time series analysis and develop
control oriented state space models directly from input-output
data. In the present work, we develop an innovation form of
state space model from input-output perturbation data obtained
from a PEMFC. We then demonstrate the development of infi-
nite horizon unconstrained linear model predictive controllers
(LMPC) using these models, and compare their performance
to IMC based PI control. We conduct servo and regulatory
control studies on an experimental single cell PEMFC system,
and demonstrate that the proposed control schemes regulate
the power obtained from the fuel cell as desired even in the
presence of disturbances.

I. INTRODUCTION

Among fuel cells, proton exchange membrane fuel cells

(PEMFCs) have evinced considerable interest because of

the potential for faster start-up, higher power density, com-

pactness, light weight and low operating temperature, and

they are being considered for use in mobile and stationary

applications. In terms of understanding PEMFC behavior, the

development of steady state and unsteady state mechanistic

models has been the focus of much of the research effort

([1],[2],[3],[4]). However, not as much attention has been

paid to the control challenges arising from the complex

dynamics of the PEMFC.

While fuel cells are highly nonlinear systems, most ap-

proaches described in the literature on PEMFC control are

linear strategies. The two major classes of linear PEMFC

controllers are those based on mechanistic models (usually

linearized around a nominal operating point), and those based

on black box/empirical models. Lauzze and Chmielewski

[5], Choe et al. [6], Grujicic et al. [7], Pukrushpan et al.

[8], Paradkar et al. [9], Bao et al. [10] and Zenith et al.

[11] describe control strategies based on mechanistic models,

and most of these are simulation studies. Control strategies

based on empirical models are described by Methekar et al.

[12], [14] (who use transfer functions and other empirical

models, and LQG and IMC based controllers), Williams et

al. [13] (who use models developed injecting half cosine

R.N. Methekar, S.C Patwardhan and R.D. Gudi are with the Department
of Chemical Engineering, Indian Insitute of Technology Bombay, India.

R. Rengaswamy is with the Department of Chemical Engineering, Texas
Tech University, USA.

V. Prasad is with the Department of Chemical and Materials Engineering,
University of Alberta, Canada. e-mail: vprasad@ualberta.ca

wave signals with PI control) and Wang et al. [15] (who use

subspace identification and robust multivariable control).

What is missing from most previous investigations is a

rigorous method to develop multivariable state space models

that demonstrate fidelity to experimentally observed behav-

ior, and to develop multivariable controllers for the PEMFC.

In this work, we propose that using the innovation form

of state space models from input-output perturbation data

obtained from a PEMFC is an efficient, cost-effective ap-

proach to developing linear state space models for fuel cells.

We demonstrate that these models can be used for devel-

oping infinite horizon unconstrained linear model predictive

controllers (LMPC), and focus primarily on the control of

power density (temperature is also controlled). Experimental

verification is carried out on a single cell PEMFC set-up.

The remainder of this paper is structured as follows: model

development is presented in Section II, LMPC design in

Section III, and experimental results in Section IV. Finally,

conclusions based on experimental results are presented in

Section V.

II. IDENTIFICATION OF CONTROL-ORIENTED STATE

SPACE MODELS

The mechanistic models for PEMFCs form a set of non-

linear differential algebraic equations (DAEs), represented as

dz(1)

dt
= F1

[
z(1), z(2),UT (t),D(t),p

]
(1)

0 = F2

[
z(1), z(2),UT (t),D(t),p

]

Y(t) = G
[
z(1), z(2)

]
+ υy(t) (2)

where
[

z(1)T

z(2)T
]T

∈ Rn is the process state vector,

UT ∈ Rm the true manipulated input value, D ∈ Rd the

unmeasured disturbances, y ∈ Rr the vector of measured

outputs corrupted with measurement noise υy(t) and p ∈ Rν

the parameter vector. U ∈ Rm is the known (or computed)

value of the manipulated inputs, and

UT (t) = U(t) + υu(t) (3)

where υu∈Rm is an unknown input disturbance (assumed to

be zero mean stationary), and UT (t) is the true input.

In practice, the operators F1[.],F2[.] and G [.] are seldom

known exactly, and/or are too complex for controller devel-

opment. Thus, the information available from the plant is

the sampled sequence of input and output vectors ΣN =
{(Y(k),U(k)) : k = 1, 2, .....N}. Given ΣN , and defining

perturbation variables y(k) and u(k) in the neighborhood of
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a steady state, identifying a linear time series model equates

to finding a linear operator ϕ [.]

y(k) = ϕ [u(k − 1), ....,u(1),y(k − 1), ....,y(1), θ] + e(k)
(4)

such that a suitable norm of model residuals

{e(k) : k = 1, ....N} is minimized with respect to the

parameter vector θ, with the effect of unmeasured

disturbances being captured in the measured output

sequence.

We develop an innovation form of state space model

x(k + 1) = Φx(k) + Γu(k) + Le(k) (5)

y(k) = Cx(k) + e(k) (6)

where {e(k)} represents a zero mean white noise se-

quence (covariance V). We can directly identify matrices

(Φ,Γ,L,C) from data using the prediction error method

(PEM) or a subspace identification method, or by canonical

parameterization through transfer functions([16]): using this

approach, transfer function matrices of the form

y(k) = G(q, θ)u(k) + H(q, θ)e(k) (7)

are identified and a state realization of the form (5-6) is

constructed such that

G(q) = C [qI − Φ]−1
Γ; H(q) = C [qI − Φ]

−1
L + I (8)

Here, q represents the shift operator.

For model identification, the state space model (5-6) can

be cast in predictor form:

e(k) = y(k) − Cx̂(k|k − 1)

= y(k) − ŷ(k|k − 1) (9)

x̂(k + 1|k) = Φx̂(k|k − 1) + Γu(k) + Le(k) (10)

Similarly, Eq. (7) is cast into the predictor form as

ŷ(k|k − 1) = H(q, θ)−1G(q, θ)u(k) + (I − H(q, θ)−1)y(k) (11)

The parameters (Φ,Γ,L) or θ are identified by minimizing

a weighted 2-norm of the prediction errors:

J =

N∑

k=1

‖y(k) − ŷ(k|k − 1)‖W,2 (12)

Further details of the prediction error method are found in

Ljung [16] and Sodderstrom and Stoica [17]. The parameter

identification procedure generates the optimal set of model

parameters and an estimate of the covariance (V) of the

innovation sequence {e(k)}.

There are various model forms available for such canonical

parameterization. The conventional approach is to develop an

ARMAX model ([16] & [17])

y(k) =
B(q)

A(q)
u(k) +

C(q)

A(q)
e(k) (13)

where the coefficients of polynomials A(q), B(q) and

C(q) are identified from data by minimizing the sum of

squares of the prediction error. Alternatively, the predictor

can be parameterized using orthonormal basis filters (OBF)

[18]; identification of OBF poles and the corresponding

coefficients can be found in [19].

In this method, an r × m multiple input multiple output

(MIMO) model is typically represented as r multiple input

single output (MISO) models; these models are combined

to form a realization similar to (5-6). Such models can

be developed quickly by conducting experiments to excite

the plant in the neighborhood of the operating point. These

models capture the effects of manipulated or known inputs

and unmeasured disturbances on the outputs; also, they are

linear, leading to easy controller development; we choose the

linear model predictive control (LMPC) approach.

III. LINEAR MODEL PREDICTIVE CONTROL (LMPC)

To develop the LMPC scheme, defining x(k)=E [x(k)],
where E [.] represents the expectation operator, we use the

deterministic part of the identified state space model

x(k + 1) = Φx(k) + Γu(k) (14)

y(k) = Cx(k) (15)

under the assumption that E [e(k)] = 0. We assume that

the model is open loop stable, and all eigenvalues of Φ are

strictly inside the unit circle. This model is used to generate

a state estimate using an open loop observer

x̂(k) = Φx̂(k − 1) + Γu(k − 1) (16)

In the LMPC formulation, given a guess of the future

manipulated inputs {u(k + j|k) : j = 0, 1, 2, ...p− 1} , the

model (14-15) is used to generate predictions over the future

time window {k + 1, k + 2, .., k + p} as follows

x̂(k + j + 1|k) = Φx̂(k + j|k) + Γu(k + j|k) (17)

ŷ(k + j) = Cx̂(k + j|k) (18)

for j = 0, 1, ...p− 1 and x̂(k|k) = x̂(k)

where p is the prediction horizon. Model-plant mismatch is

corrected for using

ŷc(k + j) = ŷ(k + j) + d(k) (19)

d(k) = y(k) − Cx̂(k) (20)

for j = 0, 1, ...p−1. The degrees of freedom for shaping the

future trajectory are restricted by imposing input blocking

constraints

u(k + j|k) = u(k|k) for j = 0, 1....c1 − 1 (21)

u(k + j|k) = u(k + c1|k) for j = c1...c2 − 1

............

u(k + j|k) = u(k + cq−1|k) for j = cq−1...p − 1

0 < c1 < c2 < ...cq−1

where q is the control horizon. Given this prediction model,

input constraints and the desired setpoint r(k), the uncon-

strained infinite horizon MPC problem at sampling instant k
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is an optimization problem as follows

min
Uf (k)

ǫ(k + p|k)Tw∞ǫ(k + p|k)

+

p−1∑

j=1

ef (k + j|k)TwEef (k + j|k)

+

cq−1∑

j=1

△u(k + j|k)Tw△Uu(k + j|k) (22)

where

Uf (k) =
[

u(k|k)T u(k + c1|k)T ...u(k + cq−1|k)T
]T

ef (k + j|k) = r(k) − ŷ(k + j|k) (23)

ǫ(k + p|k) = x̂(k + p|k) − xs(k)

△u(k + j|k) = u(k + j|k) − u(k + j − 1|k)

xs(k) =
[
C(Φ − I)−1

Γ
]−1

[r(k) − d(k)]

wE is a symmetric positive semidefinite error weighting

matrix, and w△U is a symmetric positive definite input

weighting matrix. The terminal state weighting matrix w∞

is found by solving the discrete Lyapunov equation [20]

w∞ = CTwEC + ΦTw∞Φ (24)

The predicted output vector Ŷ(k) is

Ŷ(k) =
[

ŷ(k + 1|k)T ŷ(k + 2|k)T ..... ŷ(k + p|k)T
]

(25)

We can express the prediction model as

Ŷ(k) = Sxx̂(k) + SuUf (k) + SId(k) (26)

Sx =





CΦ

CΦ2

......
CΦp



 ; SI =





I

I

......
I



 (27)

Su =





CΓ [0] [0] .... [0]
CΦΓ CΓ [0] .... [0]

CΦ2Γ CΦΓ CΓ ... [0]
..... ...... .... .... ....

CΦp−1Γ CΦp−2Γ ... ... CΓ




Ξ (28)

where Ξ is a (p × q) block matrix defined as

Ξ =





Im [0] [0] .. .. [0]
... ... .. .. .. ..
Im [0] [0] .. .. [0]
[0] Im [0] .. .. [0]
... ... .. .. .. ..
[0] Im [0] .. .. [0]
... ... .. .. .. ..
[0] ... .. .. [0] Im

... ... .. .. .. ..
[0] ... .. .. [0] Im





(29)

Im is an identity matrix of dimension m and [0] an (m×m)
null matrix. Su is the system’s dynamic matrix. The future

prediction error vector E(k) is

E(k) = SIr(k) − Ŷ(k) (30)

The unconstrained version of LPMC can be re-cast as

min
Uf (k)

1

2
Uf (k)THUf (k) + Uf (k)T

̥(k) (31)

where

H = 2(S
T

uWESu + ΛTWUΛ + ΩTW∞Ω)

̥(k) = −2





(SIr(k) − Sxx̂(k|k − 1) − Sdd(k|k))
T

WESu

+ (Λ0uk−1)
T

WUΛ

+(Φp
x̂(k|k − 1) − x̂s(k))W∞Ω





Ω =
[

Φp−1Γ Φp−2Γ ... ... Γ
]

WE = block diag
[

we we .... we

]
(32)

WU = block diag
[

wu wu .... wu

]

∆Uf (k) = ΛUf (k) − Λ0u(k − 1) (33)

Λ =





I [0] [0] [0]
−I I [0] [0]
... ... ... ...
[0] .... −I I



 ; Λ0 =





I

[0]
...
[0]



 (34)

This unconstrained problem can be solved analytically to

compute a closed form control law

u(k) = ΛT
0 H−1

̥(k) (35)

IV. EXPERIMENTAL EVALUATION

The efficacy of the proposed model based control schemes

was evaluated using a single cell PEMFC set-up at the

Department of Chemical Engineering, Clarkson University,

USA. The performance of the LMPC is compared with

IMC based PI controllers (designed as in [21]). The SISO

case with power output controlled by manipulating hydrogen

flowrate is considered. Nominal operating conditions are

listed in Table I. The closed loop performance is assessed

using the following performance indices:

• Integral Square Error (ISE): For the ith output, this

index is defined as

(ISE)i =

Ns∑

k=1

[ri(k) − yi(k)]
2

• Integral Control Effort (ICE): For the ith input, this

index is defined as

(ICE)i =

Ns∑

k=1

[ui(k) − ui(k − 1)]
2

• Settling time: Defined as the time the output requires

to reach ±5% of the final value after a step change in

setpoint.
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TABLE I

NOMINAL OPERATING CONDITIONS FOR EXPERIMENTAL STUDY

Parameter Expt. Value Sim. Value

Inlet flow rate of hydrogen 70 (sccm) 1.75 × 10−5 (mol/sec)

Inlet flow rate of oxygen 100 (sccm) 7.6× 10−4 (mol/sec)

Cell Temperature (0C) 70 80
Anode Inlet Temperature (0C) 70 80
Cathode Inlet Temperature(0C) 70 80
Back pressure at anode (psi) 0 NA

Back pressure at cathode (psi) 0 NA

Cell voltage (V) 0.6 0.53

A. Single Cell PEMFC Set-up

The single cell PEMFC used is a commercially available

fuel cell from Fuel Cell Technologies, Inc. The experimental

set-up consists of a humidifier, fuel cell and an electronic

load. The membrane electrode assembly (MEA) is a high per-

formance membrane from PEAMEAS (E-TEK), Inc., with an

active area of 10 cm2. The whole assembly (MEA, gaskets,

flow channels) is supported by stainless steel plates on both

sides. The electron collector plates are placed between the

gas flow channel and supporting plates. The hydrogen and

oxygen flows are passed through external humidifiers (make:

ElectroChem, Inc.) before being injected into the fuel cell.

Separate mass flow controllers (make: ElectroChem Inc.,

range: 0−200 sccm, back-pressure adjustment: 0−60 psi) are

used for manipulating hydrogen and oxygen flow rate to the

PEMFC. The fuel cell is connected to a variable electronic

load (Agilent N 3300A DC electronic load) operated under

constant voltage mode. The fuel cell temperature is kept

constant using a separate electronic controller. The system

is connected to a PC using a data acquisition system (make:

Measurement Computing Corp.) through the USB port. A

schematic diagram of the entire set-up is shown in Figure

[1].
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Fig. 1. Schematic diagram of experimental set-up

B. Model Identification

Figure [2] shows the nominal steady state relationship

between the power output and inlet hydrogen flow rate

generated through a series of steady state experiments. The

sensitivity of power output with respect to the H2 flow-rate

is almost constant until 90 sccm, and it practically reduces

to zero above 100 sccm. On the other hand, at very low

hydrogen flow rate in the channels, starvation of the reactant

is a real possibility. Hence, we select set points in the range

4.5 − 6 W. A control relevant state space model is identified
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Fig. 2. Steady state input-output relationship (hydrogen flow rate - power)

by perturbing the inlet hydrogen flow rate using multilevel

random signals with standard deviations of σu1E = 7.38
sccm with switching time 10 sec. After collecting the input-

output data, the data set is divided into an identification

data set and a validation data set. The identification data set

contained 1500 data samples, whereas the validation data

set contained 500 data samples. We first obtain an ARMAX

model of the form

y(k) =
b1q

−1 + b2q
−2

1 + a1q−1 + a2q−2
u(k) +

1 + c1q
−1 + c2q

−2

1 + a1q−1 + a2q−2
e(k)

and then convert it into a state space model as follows

Φ =

[
−a1 1
−a2 0

]
; Γ =

[
b1

b2

]
;

L =

[
c1 − a1

c2 − a2

]
C =

[
1 0

]

The identified model parameters are a1 = 1.7559, a2 =
0.7659 ; b1 = 8.5033 × 10−6 ; b2 = 8.1133× 10−4 ; c1 =
1 ; c2 = 0 and the covariance of the innovation sequence

{e(k)} is 0.0424. To validate the identified model, we have
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Fig. 3. Validation of identified model

compared the simulated transient behavior of the identified

model (given by equations 14-15 with x̂(0) = 0) with the

experimental data(Figure [3]). The identified model predicts

the transient behavior reasonably well. While the model is

identified and tested in a relatively small region of operation,
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Fig. 4. Step response validation of identified model

re-identification (if required) in other regions of the operating

space should only take a few seconds of experimentation.

We have also validated the model by comparing step

responses of the process with the model. Step changes were

introduced in both directions, i.e., positive and negative

steps; these are shown in Figure [4] along with the model

predictions. The process has mildly nonlinear behavior in

this range, and the steady state sensitivity in positive and

negative directions are different. The linear model identified

from data generated using perturbations on either side of the

steady state, however, generates a symmetric response using

an average steady state gain.

C. Controller Performance

The LPMC and IMC based PI controllers are evaluated

for servo and regulatory problems. The weighting matrices

used in LPMC are wE = 1 ; w∆U = 0 ;w∞ = 0.

The prediction horizon and control horizon for LPMC are

p = 70 and q = 1, respectively. The IMC tuning parameters

for the PI controller are kc = 8.71/λ, τi = 5 sec. λ(= τ/3)
is the desired close loop time constant. τ is the open loop

time constant of the system (5 sec). To make our conclusions

independent of any specific experimental runs, we carried

out seven experiments with each control strategy, and the

performance comparison is based on average values over

these experiments.

In the servo control problem, the controllers are expected

to track a sequence of two setpoint changes (6 watt and

4.5 watt), and the typical performance is shown in Figures

(5) and (6). Performance indices averaged over 7 runs are

presented in Table II. LPMC performs better than IMC based

PI in terms of ISE, but requires a slightly higher settling time.

The control effort for LMPC is slightly smaller than that of

IMC based PI, which might be beneficial in terms of fuel

efficiency.

The response of control strategies for positive and neg-

ative changes in set point is slightly different, because the

model fits better in the negative direction. In the positive

direction, all controllers take slightly more time to track

the set point. This can easily be corrected using a gain-

scheduled approach. In the positive direction, we observe

a large number of sudden jumps; this is probably due to
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Fig. 5. IMC based PI controller performance on experimental set-up
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Fig. 6. LMPC controller perfromance on experimental set-up

flooding at the cathode. As a large amount of current is

withdrawn from the PEMFC, the reaction rate is high, which

produces more water and may cause flooding.

Figures [7 & 8] present the regulatory performance of the

control schemes in response to a 0.05V step disturbance in

the cell voltage. An increase in voltage should decrease the

current, which should cause the inlet flow rate of hydrogen to

increase to maintain the same power requirement. However,

we observed a decrease in the inlet flow rate of hydrogen.

This is probably due to an increase in the utilization factor,

because there is more current produced. This, in turn, results

in a decrease in effluent coming out of the fuel cell channel,

which decreases the amount of water coming out from fuel

cell, which increases membrane humidity, and results in

an overall increase in current. Hence, there is a decrease

in the hydrogen flow rate requirement. The performance

indices for regulatory control are presented in Table III.

TABLE II

CONTROLLER PERFOMANCE INDICES FOR SET POINT TRACKING

ISE ICE Settling time

(sec)

Mean

(Std.dev.)
Mean

(Std.dev.)
Mean

(Std.dev.)

IMC based PI
32.06
(1.34)

9.02× 106

(4.16 × 104)
39.0

(6.54)

LMPC
27.88
(4.47)

8.97× 106

(7.54 × 104)
40.0

(10.37)
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TABLE III

CONTROLLER PERFOMANCE INDICES FOR REGULATORY CONTROL

(DISTURBANCE REJECTION)

Power ISE ICE Settling time (sec)

IMC based PI 4.37 1.53× 106 40
LMPC 4.36 1.55× 106 40

Both controllers have practically identical performance for

disturbance rejection.
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Fig. 7. Controller performance in regulatory control (disturbance rejection)
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Fig. 8. Manipulated variable action in regulatory control (disturbance
rejection)

V. CONCLUSIONS

Model based multivariable control schemes such as MPC

can be used to control a PEMPC system effectively. A cost

effective approach is to develop models using time series

analysis directly from input-output data. Identification of the

models requires minimal experimentation, with excitation

provided using multilevel random signals. We develop the

innovation form of state space models directly from input-

output data obtained by conducting perturbation studies on

PEMFCs and show how these models can be used to develop

an infinite horizon unconstrained linear model predictive

controller (LMPC). Experimental verification was conducted

on a single cell PEMFC set-up. While the LMPC provides

satisfactory performance for servo and regulatory control of

fuel cell power, IMC based PI control provides comparable

performance. The real utility of the LMPC is in multivariable

control (controlling power and temperature, for example) and

the inclusion of constraints (related to flooding, for example),

and in operating at the optimum efficiency conditions; our

current and future research focuses on these aspects.
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