
Experimental Evaluation of Memory Management
in Content-Centric Networking

Giovanna Carofiglio, Vinicius Gehlen, and Diego Perino
Bell Labs, Alcatel-Lucent, France, first.last@alcatel-lucent.com

Abstract—Content-Centric Networking is a new communi-
cation architecture that rethinks the Internet communication
model, designed for point-to-point connections between hosts, and
centers it around content dissemination and retrieval.
Most of the issues faced by the current IP infrastructure in terms
of mobility management, security, scalability, which are accrued
by today’s Internet trends, find a natural solution in CCN shift
from IP addresses to named data.

In this paper we explore the impact of storage management
on the performance of multiple applications sharing the same
CCN infrastructure and we quantify the effectiveness of static
storage partitioning and dynamic management techniques in
providing service differentiation. To this purpose, we implement
a set of storage management techniques in the open source
CCNx prototype and perform extensive experiments in a real test-
bed under fairly realistic network conditions. Our experimental
results allow to clarify the relation between CCN chunk-level
caching and Quality of Experience (QoE) perceived by end users.

I. INTRODUCTION

The current usage of the Internet is increasingly focused
around content dissemination and retrieval, while its commu-
nication paradigm, introduced in the 1960s, is still based on
the host-to-host conversational model. The consequent mis-
match in terms of communication semantics between “where”
(location of the content) and “what” (the content to retrieve) is
at the origin of a number of significant deficiencies of today’s
Internet. Such rising issues, like security, location-dependency,
or efficient content search and dissemination, currently require
ad-hoc application layer solutions (e.g. CDNs, P2P systems).

Content-Centric Networking is a new paradigm recently
proposed by PARC [1] aiming at rethinking the network
architecture with a fundamental shift from an end-to-end
to a content-centric communication model. This approach is
designed to deal with today’s trends and proposes a unified,
direct way to solve the aforementioned issues. In fact, CCN
brings significant advantages, ranging from enhanced security
to simplified network management. In addition, the enable-
ment of generalized in-network caching is a key factor for
realizing real economies by avoiding repeated transmissions
of identical data over the same paths at the expense of cheap
memory.

The CCNx open source project developed a software pro-
totype of the CCN architecture, and some simple experiments
are presented in [1] and [2] to validate CCN principles. In the
CCN architecture the management of nodes’ storage capacity
plays a fundamental role on system performance, and therefore
it deserves a separate study, which is the object of this paper.

Related work

The impact of storage management has been already ana-
lyzed in the context of Web caching. Previous work mainly
focus on content-level replacement policies based on different
criteria as recency, frequency, size, QoS, etc. [3]. The role
played by Web caching architectures has been addressed by
Rodriguez et al. in [4], while service differentiation via cache
partitioning has been introduced by Lu et al. in [5], and eval-
uated using the Squid Web caching proxy. Benefits of caching
in the context of Content Distribution Networks (CDNs)
has recently been analyzed by experimental evaluations of
CoBlitz [6] and Coral [7] CDNs deployed on PlanetLab.

However, previous work do not readily apply to the CCN
architecture where every content is split into a sequence
of uniquely named chunks, and multiple applications share
a common distribution infrastructure. CCN is based on a
receiver-driven transport protocol where data is only transmit-
ted in response to chunk requests expressed by users. These
requests are independently forwarded, and chunk-level caching
is performed by every node in the network. The complex
interplay of these factors affects chunks’ location, hence the
QoE perceived by the users and the cost for the network
operator.

Contribution

In this paper, we clarify the role of storage management on
the performance of multiple applications running on the top
of the CCN infrastructure. We extend the CCNx prototype to
support a generic function-based chunk replacement strategy,
and to provide per-application storage management. We ana-
lyze the relation between transport, caching and users’ QoE,
and the impact of static storage partitioning and dynamic man-
agement techniques. Our evaluation is performed by means of
experiments in a real test-bed under fairly realistic network
conditions.

The rest of the paper is organized as follows. Section II
describes CCN architecture and the CCNx software prototype.
Section III presents the storage management techniques under
study and their implementation in the CCNx prototype. Sec. IV
details the experimental evaluation, while Sec. V concludes the
paper.

II. CCN

According to the novel communication paradigm introduced
by Jacobson et al.[1], the focus is on the dissemination and
retrieval of information rather than on the interconnection

2

of endpoints. Content can be of various nature, including
data generated ‘on the fly’ for conversational and interactive
services or the dissemination of live events.

As already observed, every content is split into chunks
whose unique names follow a hierarchical structure inspired by
that of web’s URIs. The hierarchical naming structure enables
aggregation as in IP routing tables and more generally allows
system scalability.

During a first phase of content publication, nodes with
content that may be interesting to others announce content
names, or the prefixes of the names, as with IP routing
announcements. Once a content is published, nodes that are
interested in a particular content send out Interest packets
containing names of the requested chunks. At transport level, a
receiver-based content delivery is realized by a sliding window
update as in TCP: a given number of Interests packets can be
outstanding and the reception of the requested data packets
enables the sending of following Interest packets.

At network level, routers are responsible for processing
incoming Interests and send the corresponding chunk to the
interface from which it was requested. CCN routers are
composed of three main blocks: a content store (CS), a
pending interest table (PIT) and a forwarding information base
(FIB). For every incoming interest, the router first checks CS
and, if the requested chunk is present, it returns the chunk
directly. Otherwise, it must forward the Interest to a next hop
determined via the FIB and create an entry in the PIT, so that
when the chunk is received, the router will know where to
send it.

Depending on forwarding, strategies defined by a ‘strategy
layer’ [1], Interest packets may propagate along multiple
paths towards potential locations of the data, and pull the
data down to the requesting nodes over paths followed by
Interest packets, with no need for explicit routing. Unlike IP
forwarding, intermediate nodes may transparently cache data
packets in the CS for later transmission, e.g. in response to an
Interest for the same chunk.

If several users request the same chunk, only one interest
is forwarded upstream and a single PIT entry records all
the interfaces over which the chunk must be returned. This
naturally realizes multicast. The CS stores received chunks
and plays the role of a cache, avoiding the need to repeatedly
fetch popular contents. Within a cache, content chunks are
stored and replaced according to a specific policy, like LRU
(Least Recent Used) or LFU (Least Frequently Used).

A. CCNx prototype

A software prototype implementing the basic functionalities
of the CCN architecture is developed by the CCNx project [8].
In this paper we focus on CCNx version 0.2.0, released in
December 2009, which is composed of the following main
modules (Fig. 1):

• the core networking daemon, ccnd, providing caching,
forwarding, and packet authentication functionalities. It
is currently developed in C.

• a repository, responsible to permanently store applica-
tions’ data. It is currently developed in Java.

• a number of proof of concept applications developed in
C or Java, e.g. ccncatchunks a tool for file download.

Concerning cache management, chunks are stored in a hash-
table and an array of pointers is used to keep track of data
order. A skip list of pointers sorted by chunk name is used for
fast content search, instead.

Chunks are also removed from the cache when they become
obsolete. A FreshnessSeconds attribute is associated to every
chunk by the content source, and indicates how long data can
be stored in cache after being received.

III. STORAGE MANAGEMENT POLICIES

The present section describes static and dynamic storage
management policies with the common objective of providing
service differentiation to multiple applications sharing the
same CCN infrastructure. These techniques can be used to
manage the CCN Content Store (called cache in the rest of
the paper) together with some chunk replacement policies. In
this paper we consider LRU and In-cache LFU (or simply
LFU) replacement techniques which are described in [3].

A. Static cache partitioning

With static cache partitioning we refer to differentiated
per-application storage allocation, where each application is
statically assigned a fraction of the shared memory.

In the literature, cache partitioning has been analyzed in
the context of web caching and content distribution by Lu et
al. [5]. The authors propose an adaptive control scheme
based on approximate linear differential equations, to self-tune
the size of different partitions. Such mechanism guarantees
convergence towards a proportional hit rate differentiation
among applications, but differs from our work as it is not able
to guarantee a minimum hit probability to each of them, and
additionally requires an on-line monitoring of applications’
performance for adaptive partition re-sizing.

B. Dynamic storage management

Caching systems in the Internet often allow to store a given
content for a limited period of time, called Time To Live
(TTL). The reason behind is twofold: content obsolescence,
that is contents become obsolete after a period of time
which is specific to the generating application (e.g. chunks
of conversational applications become obsolete in hundreds of
milliseconds, or live streaming in few seconds), and cache
scalability, which can be obtained exploiting TTL for op-
portunistic caching without cache coordination. The choice
of TTL is therefore strongly related to such two factors and
particularly to the application/service the chunk belongs to.
The impact of TTL on overall caching performance is for
instance considered in [9]. In the following, we assume that
chunk TTL is a property of the application and that it is
directly signaled in the chunk header.

The amount of valid data stored in cache for a given applica-
tion is approximately given by its arrival rate times its TTL. As

3

a consequence, some applications may not completely fill their
partitions all the time, and part of memory may be wasted. We
consider two dynamic storage management schemes, proposed
in [10]: priority and weighted fair management. These two
schemes dynamically share the memory between different
applications so that all capacity left available in a cache may
be reused.

C. Priority storage management

This algorithm aims at prioritizing some applications or
services w.r.t. others. Such choice may be driven by QoE
requirements and/or pricing motivations. We assume N appli-
cations {Ai}Ni=1 with different sorted priorities such that Ai

has priority over Ai+1, sending queries to a cache with finite
memory size. In case of hit, the relevant chunk is sent to the
querying application, otherwise the data is retrieved from an
upstream cache and priority storage management algorithm,
detailed in Algorithm 1, is applied. If the cache is not full,
the chunk is stored without removing any other chunk. If the
cache is full, a chunk of an application with lower or equal
priority should be removed to accommodate the new one.

Algorithm 1 Priority storage management
At chunk arrival of class A[i]
for (j=N; j>=i;j--)

if(IsNotEmpty(A[j]))
remove_from(A[j]);
insert(chunk, A[i]);
return;

endif

D. Weighted fair storage management

The weighted fair policy has the objective to share the
storage among different applications proportionally to some
predefined weights, while guarantying full resource utilization.

In this case we assume N applications {Ai}Ni=1 with as-
sociated weights {wi}Ni=1, and we denote as xi the amount
of memory used by application Ai. The weighted storage
management technique, detailed in Algorithm 2, can guar-
antee a minimum amount of memory xi = xwi∑

i=1,...,N wi
,

∀i = 1, ..., N . To this goal, when a chunk should be removed
to make room for a new one because the cache is full, the
algorithm tries to equalize xi/wi, ∀i = 1, ..., N . If the cache
is not full, the new chunk can be stored without removing any
other data.

E. Implementation in CCNx

We extend the CCNx prototype to support a generic cache
replacement policy and the management techniques described
above. For portability to future CCNx releases, we do not
modify the original cache organization but we introduce an
additional data structure. In details, we implement a doubly-
linked list where pointers to data are sorted according to a
given parameter. This parameter is computed by the replace-
ment policy according to a specified function, and chunks are

Algorithm 2 Weighted fair storage management
At chunk arrival of class A[i]
max = 0; j_max = 0;
for (j=1; j<=N;j++)

if(x[j]/w[j] > max)
max = x[j]/w[j];
j_max =j;

endif
remove_from(A[j_max]);
insert(chunk, A[i]);

Fig. 1. Topology used for the evaluation. Links have a capacity of 10 Gbps.

removed from the tail of the list. For instance, under LRU the
parameter is the timestamp of the last request for the chunk,
while under LFU it is a counter of chunk requests.

We use a separate list per each application in order to reduce
the overhead of replacement operations. These lists are stored
in a multi-list structure and each of them is identified by a
unique ID. We assume the application a chunk belongs to is
explicitly specified in the chunk name.

If the cache is statically partitioned, once a partition is full, a
chunk is removed according to the corresponding replacement
policy in order to insert a new one. With dynamic storage
allocation, chunks are removed only when the whole cache
is full, and a management algorithm is required to select the
target application. The corresponding replacement policy is
then applied on the selected application list.

We also develop a customized version of the repository by
extending the CCNFileProxy utility. Our tool allows us to scale
experiments to a larger number of users and content items.

IV. EXPERIMENTAL EVALUATION

The experimental evaluation is performed running our modi-
fied version of CCNx prototype on the Grid5000 platform [11].
We use a set of machines with dual 2.83 GHz Intel Xeon
E5440 Quad-core and 8 GB of RAM. Each machine runs
Linux Debian 2.6.18-6-amd64 and it is connected to a switch
through a 10 Gbps line card. The chosen virtual topology
is set-up configuring nodes’ forwarding table with the ccndc
control program, and the duration of every experiment is 6
hours.

A. Reference scenario

We consider the aggregation network topology reported in
Fig. 1 where all links have a capacity of 10 Gbps and the
propagation delay is negligible. Content items are stored in

4

our customized version of the repository connected to the root
node, and they are split into chunks of 4 KB each: this is the
default data packet size in the current CCNx implementation.
We further suppose the cache can store x=10000 chunks and,
unless otherwise specified, it implements LRU replacement
policy.

Content items belong to two applications, A1 and A2,
both counting 400 content items grouped in K=200 classes
of decreasing popularity. Class popularity distribution is Zipf
with parameter α1 = 0.7 and α2 = 2.4 for A1 and A2
respectively, i.e. the probability to request a content of class
k, k = 1, 2, ...,K, is q(k) = c/kα, where c is the nor-

malization constant, c =
(∑K

k=1 1/k
α
)−1

. Clearly, k = 1

represents the most popular class. Content size distribution
of A1 is mix Lognormal (body) - Pareto (tail), the average
size being σ1 = 80 KB, while content size distribution of
A2 is Uniform between 800 KB and 2.45 MB, the average
size being σ2 = 1.6 MB. A1 represents a typical HTTP Web
workload [12], [14], while A2 considers an application with
more skewed popularity distribution and larger content items.

Users are connected to leaf nodes in Fig. 1 and generate
content requests according to a Poisson process of intensity
λ = 5 req/s. The motivation behind the Poisson assumption
comes from the observation that Internet traffic is well mod-
eled at session level by a Poisson process [15].

Unless otherwise specified, we assume a request breakdown
of 80% A1 - 20% A2 content requests. Content download is
performed by means of the ccncatchunks2 tool, and we limit
the transmission window to a constant W=1 for all users, as in
the current CCNx implementation. This implies that requests
for the first chunk of a content arrive according to a Poisson
process and then the reception of the first data packet triggers
the request for the second chunk and so on.

B. Performance metrics

For each application we evaluate the average per-class
chunk hit probability at every node. It estimates the average
probability to find a chunk of a given popularity class at a
given level of the network. This metric provides an indication
of the resources required to transfer chunks to users, i.e.
network cost, but, as we will see in the following section,
it also allows to predict and control the end-user performance.
In addition, we evaluate the average per-class chunk download
time, that estimates the time elapsing between the expression
of an interest for a chunk of a given popularity class and the
reception of that chunk. This metric can be used to quantify
the QoE perceived by users.

C. User QoE and chunk-level caching

Let us now consider a scenario where the cache is not
partitioned. Fig. 2 (black lines) reports the average chunk
download time for the 10 most popular classes of content (we
omit the other classes as they represent a small amount of
traffic). One can easily observe that A1 users download chunks
faster than A2 ones, and users downloading most popular
contents experience better QoE for both applications.

2 4 6 8 10
0

5

10

15

20

25

Class ID (k)

C
hu

nk
 d

ow
nl

oa
d

tim
e

[m
s]

A1

A2

A1−Part

A2−Part

Fig. 2. Average chunk download time as a function of class popularity under
request breakdown 80% A1 - 20% A2 and LRU replacement policy.

Indeed, user QoE is strictly related to the hit probability at
different levels of our network topology as shown in Fig. 3
(black lines). At leaf nodes, the chunk hit probability decreases
as popularity decreases for both applications, and A1 chunks
are found with higher probability. At higher levels of the
network we observe a “filtering effect” [16], where chunk
popularity is modified by requests already served by lower
level caches.

Global content popularity. In this scenario, application
A1 is advantaged because more active in terms of content
requests than A2. In fact, if the cache does not distinguish
among applications the hit probability depends on the global
popularity which is strongly related to request breakdown. As
a consequence, even if A2 content items have a more skewed
popularity and are larger in size, A1 is perceived as more
popular because of its higher request rate.

In Fig. 4 we analyze the impact of the cache size. As
expected, the hit probability of both applications decreases
as the cache size decreases. The more active application A1
is advantaged for all cache sizes except for class k=1. In
fact, even if A2 has a lower request rate, its most popular
class is globally the most requested as a consequence of
content popularity distribution. Therefore, if the cache does not
distinguish among applications, cache dimensioning should
take into account the global content popularity distribution and
not only per-application characteristics.

LFU replacement policy. We observe trends similar to
the LRU case as reported in Fig. 5 (black lines). In this
scenario, A2 chunk download time follows a step function
while all chunks of A1 can be downloaded in a constant time
regardless of their popularity. This behavior is related to LFU
replacement policy which does not take into account temporal
locality and is effective in localizing chunks at different levels
of the network according to the global content popularity in a
static workload.

D. Static cache partitioning

Let us next consider a scenario where the cache is parti-
tioned among the two applications: 20% is statically assigned
to A1 while the remaining 80% is devoted to A2. The LRU
replacement policy is independently applied on every partition.
From Fig. 2 one can infer that the chunk download time of
application A2 is reduced w.r.t the non-partitioned case, while

5

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Class ID (k)

H
it

pr
ob

ab
ili

ty

A1

A2

A1−Part

A2−Part

(a) leaf nodes

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Class ID (k)

H
it

pr
ob

ab
ili

ty

A1

A2

A1−Part

A2−Part

(b) intermediate nodes

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Class ID (k)

H
it

pr
ob

ab
ili

ty

A1

A2

A1−Part

A2−Part

(c) root node

Fig. 3. Hit probability as a function of class popularity under request breakdown 80% A1 - 20% A2 and LRU replacement policy.

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Class ID (k)

H
it

pr
ob

ab
ili

ty

x=2.5k

x=5k

x=10k

A1

A2

Fig. 4. Hit probability at leaf nodes under
request breakdown 80% A1 - 20% A2 for
different value of cache size.

2 4 6 8 10
0

5

10

15

20

25

Class ID (k)

C
hu

nk
 d

ow
nl

oa
d

tim
e

[m
s]

A1

A2

A1−Part

A2−Part

Fig. 5. Hit probability at leaf nodes under LFU
replacement policy.

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Class ID (k)

H
it

pr
ob

ab
ili

ty

A1−50%

A2−50%

A1−20%

A2−80%

A1−80%

A2−20%

Fig. 6. Hit probability at leaf nodes for several
traffic breakdown with cache partitioning.

the one of A1 increases. This is due to the hit probability value
at different levels of the network (Fig. 3), and in particular at
lower level caches, where we notice an increase of A2 hit
probability w.r.t the non-partitioned case.
With cache partitioning, every application independently man-
ages its memory space, thus A2 hit probability is not affected
by A1 traffic. The amount of memory devoted to A2 is
larger than the amount it can exploit if the cache does not
discriminate among applications, hence it improves its hit
probability. On the contrary, the amount assigned to A1 is
lower than what this application obtains if the cache is not
partitioned, therefore its hit probability is reduced.

Insensitivity to traffic breakdown. In Fig. 6 we let request
breakdown vary among the two applications. As a result,
we observe that the hit probability of both applications is
insensitive to traffic breakdown variation thanks to the inde-
pendence among applications in terms of hit/miss rate obtained
through static cache partitioning: as a consequence the QoE
experienced by A1 users is not affected by the traffic generated
by A2 users and viceversa.

Fig. 7 shows the impact of different partition sizes. As
expected, the resulting hit probability of each application under
different partition sizes is a function of the considered appli-
cation and it is not affected by the global content popularity.
Therefore, we can conclude that partition dimensioning based
only on application characteristics allows to control and predict
the QoE perceived by users related to a specific application.

E. Dynamic storage management

In this section we explore the potential benefits deriving
from the deployment of the two dynamic storage management
techniques presented in Sec.III-C,III-D, priority-based and
weighted fair respectively, through a comparison with the
static cache partitioning analyzed in the previous section.
We assume a cache size of x=6000 chunks equally split
among the two applications under static partitioning. Under
weighted-fair storage management, we assume weights of
both applications are equal, whereas under priority storage
management, application A1 is supposed to be prioritized with
respect to A2.

An over-provisioned partition. We first consider a scenario
where TTL1 = 6 s and TTL2 = 600 s. In this scenario, under
static storage management application A1 is not able to fully
exploit its memory space. Indeed, the average number of valid

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Class ID (k)

H
it

pr
ob

ab
ili

ty

A1 x=2k

A2 x=8k

A1 x=4k

A2 x=6k

A1 x=5k

A2 x=5k

Fig. 7. Hit probability at leaf nodes for several partition size with cache
partitioning.

6

data, given by the product of the content request rate and the
application-specific TTL, is lower than the amount of storage
statically assigned to A1. Fig. 8 highlights that under dynamic
storage management, application A2 is able to use the memory
not exploited by application A1, that is wasted in case of static
partitioning, without affecting A1 hit probability.

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Class ID (k)

H
it

pr
ob

ab
ili

ty

A1−W

A2−W

A1−P

A2−P

A1−S

A2−S

Fig. 8. Hit probability at leaf nodes for static (S), priority (P) and weighted
fair management (W). A1 TTL=6 s, A2 TTL=600 s.

Fully exploited partitions. We further consider a second
scenario where TTL1 = 180 s and TTL2 = 600 s (Fig.9):
in this setting both applications are able to fully exploit their
assigned storage under static cache partitioning. Instead, under
priority management policy we notice a performance decay
for application A2, due to the fact that A1 is allowed to
exploit the memory at the expense of A2 chunks. On the
contrary, weighted storage management guarantees a minimum
amount of memory to both applications and, as in this case
applications’ weights are equal, hit probabilities are the same
as those observed in the static partitioning case where the
storage is equally shared.

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Class ID (k)

H
it

pr
ob

ab
ili

ty

A1−W

A2−W

A1−P

A2−P

A1−S

A2−S

Fig. 9. Hit probability at leaf nodes for static (S), priority (P) and weighted
fair management (W). A1 TTL=180 s, A2 TTL=600 s.

V. CONCLUSIONS

The paper focuses on the impact of content caching on over-
all system performance within the CCN architecture proposed
in [1]. In a nutshell, the CCN proposal by Jacobson et al.
solves the existing mismatch between a host-to-host communi-
cation paradigm and the current Internet usage centered around
content publication and retrieval. In the CCN design, in-
network chunk-level caching and receiver-based transport have
a fundamental role in determining the efficiency of content
delivery and the consequent QoE perceived by end-users under
limited storage resources.

To the best of our knowledge, this is the first attempt to the
evaluation of the impact of storage management techniques
in presence of multiple applications sharing the same CCN
infrastructure. Specifically, we implemented a set of storage
allocation techniques in the CCNx prototype, and performed
extensive experiments in a real test-bed under fairly realistic
network conditions. Experimental results point out the benefits
deriving from a static per-application cache partitioning and
provide indications on how to perform an optimal sizing of
cache partitions based on parameters like content popularity
or obsolescence. Dynamic storage allocation enhances service
differentiation by adding flexibility in storage resources
sharing. In particular, the weighted fair storage allocation
algorithm appears to be a promising mechanism to yield high
system efficiency while avoiding memory under-utilization.
We plan to further investigate its properties as future work.

ACKNOWLEDGEMENTS

This work is funded by the French national research agency
(ANR), CONNECT project, under contract number ANR-10-
VERS-001.

REFERENCES

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proc. of ACM
CoNEXT ’09.

[2] V. Jacobson, D. K. Smetters, N. H. Briggs, M. F. Plass, P. Stewart,
J. D. Thornton, and R. L. Braynard, “Voccn: voice-over content-centric
networks,” in ReArch ’09: Proceedings of the 2009 workshop on Re-
architecting the internet. New York, NY, USA: ACM, 2009, pp. 1–6.

[3] S. Podlipnig and L. Böszörmenyi, “A survey of web cache replacement
strategies,” ACM Comput. Surv., vol. 35, no. 4, pp. 374–398, 2003.

[4] P. Rodriguez, C. Spanner, and E. Biersack, “Analysis of web
caching architectures: hierarchical and distributed caching,” Networking,
IEEE/ACM Transactions on, vol. 9, no. 4, pp. 404 –418, aug. 2001.

[5] Y. Lu, T. F. Abdelzaher, and A. Saxena, “Design, implementation,
and evaluation of differentiated caching services,” IEEE Trans. Parallel
Distrib. Syst., vol. 15, no. 5, pp. 440–452, 2004.

[6] K. Park and V. S. Pai, “Scale and performance in the coblitz large-file
distribution service,” in Proc. of ACM NSDI’06.

[7] M. J. Freedman, “Experiences with coralcdn: A five-year operational
view,” in Proc. of NSDI, 2010.

[8] “CCNx project,” http://www.ccnx.org.
[9] E. Cohen and H. Kaplan, “Aging through cascaded caches: performance

issues in the distribution of web content,” in Proc.of SIGCOMM. New
York, NY, USA: ACM, 2001, pp. 41–53.

[10] G. Carofiglio, M. Gallo, L. Muscariello, and D. Perino, “Memory
allocation schemes for chunk-based content oriented networks,”
http://perso.rd.francetelecom.fr/muscariello/papers/techrep diff caching.pdf.

[11] “Grid5000 platform,” http://www.grid5000.fr.
[12] L. Breslau, P. Cue, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web

caching and zipf-like distributions: Evidence and implications,” in In
INFOCOM, 1999, pp. 126–134.

[13] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon, “I tube,
you tube, everybody tubes: analyzing the world’s largest user generated
content video system,” in Proc. of ACM IMC ’07.

[14] P. Barford and M. Crovella, “Generating representative web workloads
for network and server performance evaluation,” in Proc. of ACM
SIGMETRICS ’98.

[15] E. Chlebus and J. Brazier, “Nonstationary poisson modeling of web
browsing session arrivals,” Information Processing Letters, vol. 102,
no. 5, pp. 187 – 190, 2007.

[16] C. Williamson, “On filter effects in web caching hierarchies,” ACM
Trans. Internet Technol., vol. 2, no. 1, pp. 47–77, 2002.

