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Abstract. A scalable approach to building large scale experimenta-
tion testbeds involves multiplexing the system resources for better uti-
lization. Virtualization provides a convenient means of sharing testbed
resources among experimenters. The degree of programmability and iso-
lation achieved with such a setup is largely dependent on the type of
technology used for virtualization. We consider OpenVZ and User Mode
Linux (UML) for virtualization of the ORBIT wireless testbed and eval-
uate their relative merit. Our results show that OpenVZ, an operating
system level virtualization mechanism significantly outperforms UML in
terms of system overheads and performance isolation. We discuss both
qualitative and quantitative performance features which could serve as
guidelines for selection of a virtualization scheme for similar testbeds.

1 Introduction

Experimental validation of research ideas in a realistic environment forms an
important step in identifying many practical problems. This is specially true
for wireless networks since wireless communication environment is hard to accu-
rately model through simulations. Public access testbeds like ORBIT [12,17,23],
provide the research community with platforms to conduct experiments. OR-
BIT [12], typically uses a time shared experimentation model where each exper-
imenter can reserve the grid nodes for a fixed duration (slot - approximately two
hours) and has complete control of these nodes during the reservation period.
An ever increasing demand for grid slots can only be met through sharing of the
testbed whenever possible. Since spatial expansion is not an economically viable
solution due to the limited space, prohibitive cost of setup and maintenance, we
propose virtualization of ORBIT to support simultaneous experiments. Wired
testbeds like VINI [9] and Planet lab already use node and network virtualiza-
tion for the same reason. In our study, we will cater specifically to requirements
for sharing a wireless testbed through virtualization.

Another important motivation for ORBIT testbed virtualization is the in-
tegration with the GENI [1] framework. This requires ORBIT to be virtual-
ized for allowing integration with other shared testbeds such as PlanetLab and
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Fig. 1. Options for sharing radio resources on ORBIT and potential capacity of the
ORBIT grid with 800 interfaces(2/node), 12 channels(802.11a), 2VMs/Node

VINI [19,7]. GENI also requires combining of control and management across
wired and wireless networks, providing researchers with a single programming
interface and experimental methodology. Since the ORBIT testbed currently
supports only a single experimenter mode of operation, virtualization is essen-
tial for integration.

While wired network virtualization may be achieved by pre-allocating mem-
ory, CPU cycles and network bandwidth, to achieve perfect virtualization of
the wireless network, we need to perfectly isolate both the physical devices and
the wireless spectrum while providing flexibility for experimentation. This ad-
ditional requirement makes the problem of wireless virtualization much harder
compared to the wired counterpart [21]. Figure 1(a) shows different options for
sharing the radio spectrum. The authors in [21] attempt to solve the spectrum
sharing problem by separating experiments in time. As observed, time sharing
of a single channel can result in a less repeatable performance due to context
switching overheads even though it could possibly reduce the wait time for ex-
periments. Due to the availability of a large number of radio interfaces (800
- 2/node), we share the spectrum by allocating orthogonal channels to slices.
ORBIT nodes are equipped with two wireless interfaces each and therefore two
virtual machines may be run on each node thereby doubling the capacity of the
grid. Figure 1(b) shows the potential capacity of the ORBIT grid with such a
frequency division (FDM) based virtualization. We observe that the number of
simultaneous experiments supported on the grid are limited either by the number
of orthogonal channels1 or the number of nodes allocated per experiment.

In order to provide meaningful experimentation in the virtualized wireless
testbed, the choice of the vitualization platform is critical. In this work, we start
by identifying the requirements and qualitative issues to consider when selecting
a virtualization platform in Section 2. After discussing the relative merits of
OpenVZ for our application, we present a comparative experimental evaluation
of UML and OpenVZ in Section 4. Related work is discussed in Section 5. Finally,
conclusions and future directions are presented in Section 6.

1 Experiments that use other wireless technologies like zigbee and GNU radio may
be run simultaneously provided they use non-interfering frequencies.
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2 Background and Platform Selection

Production scale virtualization systems can be broadly classified as full, para
and OS virtualization. Full virtualization [8,2](e.g.,VMWare, KVM) refers to a
technique that emulates the underlying hardware and uses a software layer called
hypervisor that runs directly on top of the host hardware to trap and execute
privileged instructions on the fly2. Full virtualization is the least intrusive3 form
of system virtualization. In para virtualization [16,6](e.g., Xen, UML) the hy-
pervisor layer exists within the host operating system to intercept and execute
privileged instructions. Unlike full virtualization, para virtualization requires
changes to the guest operating system. The most intrusive form of virtualization
is operating system based [4](e.g.,OpenVZ) where the virtualized systems run
as isolated processes in the host operating system. The host OS is modified to
provide secure isolation of the guest OS. For the purpose of this study we lay out
the main qualitative criteria and select candidates for performance evaluation
based on their suitability for the ORBIT testbed.

Qualitative features of a virtualization scheme which are important from a
wireless testbed administrator’s perspective are as follows:

1. Ease of administration: Clean API to schedule node resources such as CPU,
disk and memory on a per slice basis should be possible.

2. Shared or exclusive interface mapping: The setup should allow flexible map-
ping of virtual interfaces within the slice to physical interfaces or one or more
virtual interfaces (on the hardware like virtual access points).

3. Control over network connectivity: Mechanisms should be available to band-
width limit slices and control interaction between slices.

All types of virtualization schemes allow for such functions. However, in our ex-
perience the most flexible and easy approach for controlling the VMs is through
operating system level virtualization such as OpenVZ. Such a setup also allows
for the reuse and extension of regular system administration tools (such as IPT-
ABLES, DHCP, SSH, LDAP) for controlling VMs.

From the perspective of an ORBIT experimenter we consider the following:

1. Support for standard and custom Linux distributions: Orbit nodes supports
a wide variety of Linux distributions and users are free to use their own
customized version. The virtualization platform running on ORBIT must
support similar flexibility for the experimenter.

2. Root access within container: This feature is useful for an experimenter for
providing complete freedom within the container.

2 Native virtualization is a virtualization approach where the processor has support
for virtualization e.g.,IBM System/370 and allows multiple unmodified operating
systems to run together. Full virtualization does not include these systems.

3 Intrusiveness refers to the degree of changes that need to be made to the guest OS
to get it working with virtualization.
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Table 1. Comparison of schemes from an ORBIT user perspective

Feature/Experiments Full - Para - OS -
Virtualization Virtualization Virtualization

Security Experiments Yes Yes Yes
Network Coding In Kernel Overlay* Overlay*

Mobility and Routing Yes Yes Yes
Rate And Power Control In Driver Radiotap** Radiotap**

Wireless Applications Yes Yes Yes
Phy Measurements Yes Yes Yes

MAC Parameter Control Yes Yes Yes***
Transport layer Modification In Kernel Emulation∇ Emulation∇

* Transport layer experiments can be implemented as a part of overlays.

** Radiotap headers allow for per frame rate and power control.

*** For Atheros devices MAC parameters (txop, CW, AIFS)are supported per interface.

∇ Use a click like mechanism on top of IP for custom flow or error control

Multiple Linux distributions with root access in VMs are inherently supported
in all three forms of virtualization. A more detailed comparison is shown in the
Table 1. It is observed that all wireless experiments scenarios can be either di-
rectly supported or emulated (using open source radiotap libraries and overlays)
with all the virtualization setups. Traffic control elements such as Click [13] can
also be run on hosts to allow for bandwidth shaping and interface mapping.
Appropriate API can also be exposed from the driver to allow experimenters
to have a controlled interaction with the driver. The only experiments not sup-
ported in operating-system level virtualization is the option of customizing the
host kernel itself to cater to individual VMs. Despite needing emulation to sup-
port experiments that would conventionally be done by direct changes in the host
kernel, the possibility of obtaining very tight slice isolation [22] make OS-level
virtualization a strong candidate for evaluation.

Based on these inferences, the choice of a virtualization mechanism for ORBIT
is not limited to any one type. However, full virtualization such as KVM requires
specific CPU virtualization extensions (E.g. Intel VT or AMD-V) which are
currently not available with our ORBIT boxes, and hence is not considered for
evaluation. We consider OpenVZ (OS level) and User Mode Linux (Para - level)
virtualization for quantitative comparison with testbed deployment. Since UML
based virtualization has been performed in a previous study [20], this study
focusses on the performance analysis of OpenVZ. We ruled out Xen in this
performance study due to incompatibility with the Via C3 processors used in
the ORBIT testbed.

3 Experiment Setup

The Orbit testbed is a two-dimensional grid of 400 small form factor PCs with
1GHz Via C3 CPU, 512 MB RAM, 20 GB hard disk, three ethernet ports
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(control, data and chasis management) and two WiFi interfaces4. We used Atheros
5212 chipset cards with the MadWiFi(0.9.4) [3] drivers for our experiments.

Figure 2 shows our experiment setup. OpenVZ uses the concept of a container
also called virtual private server (VPS), an entity that performs like a stand alone
server. It also provides a virtual network device named as venetX per VPS that
acts as a point to point link between the container and the host system. We
configure the venet devices from each of the two VPSs (on every node) to map to
a corresponding WiFi card on the host. Effective virtualized and non-virtualized
links are as shown in the figure. The UML virtualization setup is described in
detail in [20] and is quite identical to the OpenVZ setup.

Fig. 2. Experiment setup for OpenVZ evaluation

We run each experiment for 3 minutes using UML and OpenVZ setups as well
as with no virtualization. The operating mode of the WiFi cards was 802.11a
with bit rate of 36Mbps set at channel 36. The debian linux distribution (Woody)
was used for both guest and host operating systems.

4 Performance Evaluation

We measure overheads in throughput and delay, followed by measurement of
slice isolation achievable between slices. Quantitative evaluation presented in
this section takes into account the importance of different measurement criterion.
For instance, the isolation achieved between slices is far more important than
sustainable peak throughput as it directly determines experiment repeatability.

4.1 Throughput Measurements

We use the iperf [5] tool to generate saturation UDP traffic and average the
througphut over 3 min intervals. We plot the observed UDP throughput with
4 It should be noted that though the results presented in the following section are hard-

ware specific, performance trends will hold and scale with hardware capacity and load
on the system.
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(a) Average UDP throughput
comparison.

10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

Offered Load (Mbps)

V
ar

ia
nc

e 
in

 p
er

 s
ec

 th
ro

ug
hp

ut
 (

M
bp

s) No Virtualization
OpenVZ
UML

(b) Variance in UDP band-
width.

Fig. 3. UDP throughput and variance in throughput as measured with different
schemes. Performance is measured as a function of offered load per flow with a fixed
packet size of 1024bytes. Variance in UDP bandwidth is measured over per second
observed throughput at the receiver.
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(a) Difference in UDP through-
put with varying packet sizes.
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Fig. 4. Measurement of UDP throughput with varying packet sizes and file transfer
time with FTP. For the UDP throughput measurement, channel rate is constant at
36Mbps and packet size is varied. For the FTP experiment, packet size is constant at
1024 and channel rate is varied.

varying offered loads and fixed frame size of 1024bytes in Figure 3(a) and its vari-
ance in Figure 3(b). Throughput obtained in the virtualized case are averaged
over the two links. We observed that both below and above channel saturation
there is no distinct difference in throughput with or without virtualization. This
trend indicates that both virtualization platforms perform efficiently under sat-
uration conditions. However, the variance in throughput with UML increases
with offered load specially near and above saturation. Typically, this suggests
that the OpenVZ platform benefits from tighter scheduling and lower overheads
compared to UML.

To determine the effect of varying packet sizes, we fix the offered load to
40Mbps and transmission rate to 36Mbps, and vary packet sizes from 128bytes
- 1470bytes. Figure 4(a) shows that for packet sizes less than and equal to
1024 bytes, UML has a significantly higher packet processing overhead which
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leads to a degraded performance. We attribute this degradation in performance
with UML to the lack of support for virtualization in the host kernel.

Finally, we measure throughput performance of TCP by setting up a FTP
transfer of a 1GB file with varying channel rates. Resulting file transfer times
are as shown in Figure 4(b). For all channel rates, performance of UML is on par
with OpenVZ and no virtualization due to the use of larger IP frames resulting
in less performance overheads.

Thus for all three cases, we observe that OpenVZ has satisfactory perfor-
mance, while UML’s throughput performance suffers for small frame sizes.

4.2 Transmission Delay

Delay and jitter are typically important for experiments that measure perfor-
mance of real time systems or data. We measure delay and jitter performance
in terms of distribution of delay across slices and distribution of delay overhead
with varying packet sizes.

To measure the distribution of delay across slices we generate ICMP traffic
(ping) across both slices and measure the round trip times (RTT). In Figure 5(a)
we present the average RTT over an interval of 300 secs for varying packet
arrival rates using OpenVZ. We plot delay measurements without virtualization,
average delay across both slices, and delay across individual slices. The results
show that in all cases, OpenVZ adds a very small average overhead (of the
order of 0.05msec) in terms of absolute delay. The RTT delays for slices increase
slightly with smaller sending rates due to slight decrease in CPU time spent
on network tasks. Despite the overhead being negligible, we notice that the
performance across both slices is always comparable. Efficient buffer copying
mechanisms enable OpenVZ to operate with little or no delay overheads, and it
is safe for making temporal measurements across slices. A separate study [20]
has shown performance degradation in UML under similar experiment settings.

In order to evaluate the processing delay using OpenVZ, we measure the ar-
rival time differences consecutive packets at the receiver with a constant sending

1 10 50 100 500
0

0.1

0.2

0.3

0.4

0.5

Interpacket Transmission Time (msecs)

A
ve

ra
ge

 R
T

T
 D

el
ay

 (
m

se
cs

)

No Virtualization
Virtualization − Average
Virtualization − Slice 1
Virtualization − Slice 2

(a) Average RTT delay.

128 256 512 1024 1470
0

2

4

6

8

10

12

Packet Size (Bytes)

In
te

rf
ra

m
e 

D
el

ay
 (

m
se

cs
)

OpenVZ
No Virtualization

(b) Interframe Space Vs
Packet Sizes.

Fig. 5. Delay in different experiment scenarios. Minimum and average round trip time
measurements are based on ping while interframe space measurements are based on
difference in arrival times of packets at the receiver.
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rate. This difference in arrival times is also directly proportional to the delay [10].
We present this result as an average over 10, 000 consecutive frames of UDP traf-
fic at 36Mbps in Figure 5(b). We repeat these experiments with various packet
sizes. We observe that the delay increases with packet sizes due to increasing
transmission times but there is little or no difference between the measurements
with and without virtualization. Therefore we conclude that OpenVZ adds little
overhead in packet processing and the overhead does not vary with packet size.

4.3 Slice Isolation

Isolation is an important requirement for a virtualized testbed since it directly
determines the degree of repeatability achievable in a virtualized setting. Since
OpenVZ has clearly outperformed UML in the previous experiments we will rule
out UML for further experiments. To measure isolation we coin two performance
measurement metrics: transient response and cross coupling between experiment.

We define transient response as the instantaneous change in throughput of an
experiment running on one slice caused due to time varying change in offered load
on another slice. To measure the transient response, we maintain the offered load
for the experiment running on slice 1 at a constant value of 20Mbps and vary the
offered load on slice 2 from 5 Mbps to 5 Gbps in steps. Results are presented in
Figure 6(a). We see that there is little or no correlation in the throughput of the
experiment running on slice 1 (over time) in response to the change in offered
load in slice 2. Therefore we may conclude that OpenVZ provides reasonable
isolation between slices.

We define cross coupling as the difference in throughput with virtualization as
a percentage of the throughput without virtualization. To measure cross coupling
we maintain the offered load of the experiment in slice 1 at constant values of
30Mbps and vary the offered load of the experiment on slice 2 from 5 Mbps to
10Gbps in steps. This experiment is then repeated with slice 1 fixed at 5Mbps.
The throughput of each experiment averaged over 180seconds are as shown in
Figure 6(b). We see that the results of the experiments in slice 1 are never
affected by the change in offered load on slice 2 and therefore we concur that

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

Experiment Duration (secs)

O
bs

er
ve

d 
T

hr
ou

gh
pu

t (
M

bp
s)

Experiment 1
Experiment 2

Exp2
5M

Exp2
50M

Exp2
500M

Exp2
5G

(a) UDP transient per-
formance.

5 10 100 100010000 5 10 100 100010000
0

5

10

15

20

25

30

Experiment 2 Offered Load (Mbps)

O
bs

er
ve

d 
T

hr
ou

gh
pu

t (
M

bp
s)

Experiment 1
Experiment 2

(b) Cross coupling between
experiments.

0 20 40 60 80 100
0

100

200

300

400

500

Experiment Duration (secs)

P
ro

ce
ss

es
 S

pa
w

ne
d

Container 1
Container 2

Stable

(c) Process isolation test
with Fork bombs.

Fig. 6. Experiments for measuring the cross coupling and interference between experi-
ments. First plot shows a performance with time, while the second plot displays results
averaged over 180secs.



Experimental Evaluation of OpenVZ 111

there is negligible cross coupling of experiments. It is important to note that
these results are achieved without tweaking features of OpenVZ that allow the
user to set custom cpu usage per slice.

Finally we present test results that measure process space isolation between
the VPSs. As a part of these tests, each of the containers are triggered with fork
bombs, and the number of processes spawned in each of the VPSs are as shown
in Figure 6(c). We observe that the system quickly settles to an equilibrium
where each of the containers share equal number of processes. Thus we observe
that OpenVZ allows for successful containment of processes within each VM.

5 Related Work

There are several prior works that provide comparative analysis of virtual-
ization platforms [18,15,11]. However, most of this work is in the context of
server/machine virtualization. Authors in [18] study the scalability of four vir-
tual platforms: Vserver [22], UML [6], Xen [16] and VMWare [8]. They perform
a quantitative evaluation by measuring virtualization overhead, and isolation
between VMs. They also measure startup time and memory occupancy of each
virtualization platform. A similar study [11] has presented a comparative anal-
ysis of Xen, OpenVZ and VMWare Server using industry standard benchmarks
for evaluating filesystem, network, multiprocessing and parallel processing per-
formances. While these performance measures are important in our context as
well, we concentrate more on the networking aspect of virtualization and plat-
form suitability from a wireless testbed perspective.

The study in [20] discusses virtualization performance using UML by running
two instances on a single Orbit node and isolating slices based on orthogonal
channels. In our work, we extend this study by comparing the performance
of OpenVZ based virtualization with the UML based scheme. Other previous
wireless testbed [14] studies have more focus on the system architecture rather
than features exported by the technology itself.

6 Conclusion and Future Work

This study presents a comparison of qualitative features and performance which
are useful from the perspective of a virtualized wireless testbed deployment.
Our qualitative comparison shows that all forms of system virtualization could
be used for virtualization of a wireless testbed. Measurements presented in the
paper show that OpenVZ consistently outperforms UML in terms of system
overheads, slice isolation and its performance is closest to that of the native non-
virtualized system. This performance can be attributed to a tight virtualization
mechanism and efficient approach to packet handling. Having selected Open VZ
as the platform for Orbit virtualization, integration with the orbit framework and
measurement library are the most important next steps. From a measurement
standpoint comparison with Xen and Vservers on newer Intel chipset based
machines are important future research items.
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