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ABSTRACT

Two experiments for evaluating psychophysical distortion metrics for JPEG-encoded
images are described. The first is a threshold experiment, in which subjects determined the
bit rate or level of distortion at which distortion was just noticeable. The second is a
suprathreshold experiment in which subjects ranked image blocks according to perceived
distortion. The results of these experiments were used to determine the predictive value of a
number of computed image distortion metrics. It was found that mean-square-error is not a
good predictor of distortion thresholds or suprathreshold perceived distortion. Some simple
pointwise measures were in good agreement with psychophysical data; other more compu-
tationally intensive metrics involving spatial properties of the human visual system gave
mixed results. It was determined that mean intensity, which is not accounted for in the
JPEG algorithm, plays a significant role in perceived distortion.
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1. Introduction

This paper describes a set of experiments designed to improve our understanding of the
ways in which the human observer perceives distortion in lossy image coding schemes. The spe-
cific goal is the determination of a computable distortion metric for assessing the visual quality of
images coded using the Joint Photographic Experts Group (JPEG) algorithm based on the Dis-
crete Cosine Transform (DCT) [1], and for determining quality parameters and/or bit rates in

image communication systems.

The need for such a distortion metric has long been recognized in the image processing
community. While the mean-square-error (MSE) criterion is normally used for mathematical
simplicity in information-theoretic treatments of image compression, such an error measure does
not really predict human response. More realistic measures of perceived distortion, even those
determined empirically, could play a useful role in rate-distortion studies. Our own motivation in
studying such metrics comes from their possible use in variable bit-rate coding schemes for image
communication. A reliable metric could be used in a feedback loop to monitor transmitted image
quality, and to set image quality parameters (such as the "Q-factor" in the JPEG algorithm) adap-
tively to achieve a consistent level of image quality. Another motivation might be the incorpora-
tion of such criteria into the coding scheme itself; however this is beyond the scope of the present
paper.

Let I denote a digital image defined on some discrete set of pixels, and let [ denote a dis-
torted version of that same image. An image distortion metric is a positive real-valued function
d(1, 1) that is a measure of how distorted the image [ appears relative to I, as perceived by a
human observer. This type of metric will be referred to as a Type I metric (in order to distinguish

it from Type II metrics, as discussed below). There are two properties such a metric should have

in order for it to be a useful predictor of human response. First, it should predict the threshold of
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distortion detectability, that is, there should be some threshold d; such that when d(I, ) < dp, the
average viewer cannot distinguish between [ and f. Second, for distortion levels above threshold,
d(I, ) should increase monotonically with the perceived amount of distortion. That is, if the
observer is presented with image pairs (/,, f ) and (I, f»), and image Iy is perceived fo be more

distorted than /5, then we should have d(f,, 1) > d(I,, [3).

If the nature of the distortion is well-defined (e.g., it is known that that the image has been
compressed using the JPEG algorithm) it is entirely possible that the response of the observer can
be predicted from [ alone. That is, for certain lossy processing, one might be able to predict
which images / would be subject to more or less perceived distortion based on their intrinsic
qualities, which could be quantified by a real-valued function of the form d(J). Although this is
not a true metric in the mathematical sense, this type of function will be referred to as a Type If
metric. Such a predictor, if reliable, would have the distinct advantage of allowing one to adjust
image quality parameters without having to compute d(/, ) in a feedback loop. The experiments

reported here allowed for the testing of this type of measure as well.

There is a substantial literature on the psychophysics of human vision, and one could expect
to draw on that to aid in the determination of good distortion metrics. This has in fact been done,
although different researchers have come to different conclusions. One of the aims of the present
study was to compare some of the published distortion metrics in a single psychophysical testbed.
The present experiments were designed so that any number of metrics can be considered after the

data collection phase; for this reason several novel metrics are proposed here.

2. Image Distortion Metrics



2.1, Human Visual System Models

Before proceeding with a description of the actual metrics considered in these experiments,
we review some of the salient features of models of the human visual system typically considered
in the engineering literature. Good overviews may found in Pratt [2] and Clarke [3], and more
detailed treatments are given by Stockham [4], Hall and Hall 5], Limb [6], Sakrison [7], and
Tzou [8]. In all of this work there seem to be four phenomena which are predictable and thus

useful in an engineering sense.

First, there are non-linearities in the way the visual system responds to incident light. For a

wide range of light intensities /, the just-noticeable-difference in intensity Al satisfies

Al .. . I . .
— = constant; this is known as Weber’s Law. This suggests a logarithmic relationship between

the physical and the "perceived" intensity of light, where the just-noticeable-difference increases

with increasing intensity. Other nonlinear relationships have been proposed as well.

Second, there are spatial filtering mechanisms at work - one due to the optics of the eyeball,
which is essentially lowpass, another due to the lateral inhibition in the retina which has the effect
of applying a spatial highpass filter, and others at later stages of the visual system. The overall
bandpass characteristic can be demonstrated via an illusion called the Mach band effect, which is

quite striking. Mach bands demonstrate edge enhancement due to Iateral inhibition.

The third aspect of vision affecting quality assessment is called spatial masking; this is the
suppression of errors or distortion as a result of high image activity or contrast. Although the
exact physiological mechanism is not well understood, spatial masking played a prominent role in
the psychophysical experiments of Limb [6].

Finally, there is the issue of local versus global attention in the interpretation of images.

Since humans attend to visual fields which subtend only 1° - 3° of visual angle, it is not possible
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to "take in" all of a large image simultaneously. Complex images are viewed with a series of
brief fixations, between which brief, rapid eye movements occur. Some medels of how observers

integrate the various parts of an image are thus important.

2.2, Type I Metrics

This section describes 5 different metrics of the form d(/, /) which were considered as can-
didates to be tested in the psychophysical experiments. A sixth metric of a slightly different form
is also described. The following notation will be used throughout: x denotes one pixel in the

domain of the image, X is the set of all pixels, and N the number of pixels in the image.

1. Mean-Square-Error (MSE). The MSE metric is given by the average squared difference

in gray levels between the original and distorted images:

d=— 3% |Ix)- )P . 2.1)

1

N ik
2. Mean-Square-Error after Non-Linearity (MSENL). Here the two images are passed

through a pointwise non-linearity designed to compress the dynamic range of the gray levels.

The non-linearity employed here is the cube root, although any other similar concave function

such as the p-law compression function would probably yield comparable results. The mean-

square-error of the transformed images is then determined:

d = "j'f}" M) - Pl . 22)

xeX

In (2.2) it is assumed that the gray levels are defined to lie in the range 0 < J(x) < 1.

3. Mannos-Sakrison metric (MANNOS). This metric was proposed by Mannos and Sakri-
son [9] and studied in a psychophysical experiment not unlike ours. Here one applies a pointwise
cube-root non-linearity followed by a spatial bandpass filter to both images, and computes the

mean-square-error between the resulting transformed images. The parameters of the bandpass
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filter were determined empirically in [9]; it has a radially symmetric 2-dimensional frequency
response of the form

H(r) = 2.6[0.0192 + 0. 114r] exp[—(0. 114r)"1] (2.3)
where r is the magnitude of the frequency (in the 2-dimensional frequency plane) measured in
cycles per degree of visual angle subtended. It is important to note that applying this metric

requires precise knowledge of the viewing distance and pixel size.

4. The Logarithmic Image Processing metric (LIP). This metric is based on the Logarithmic
Image Processing model of Jourlin and Pinouli [10]. The actual metric was proposed by Brailean
et al. [11] in the context of image restoration. Computation of this metric involves a conversion
of both the original and distorted images to the “contrast domain" - each pixel value is replaced
by a number representing its local contrast. The mean-square-error between the two contrast-
domain images is then taken as the metric. Although computation of this metric is not particu-
larly difficult, it is time-consuming. The details are omitted here for brevity; see [11] for further

information.

5. Distortion Contrast (DCON). In this metric one computes the average Michelson con-

trast between corresponding pixels in the original and distorted images. The expression is
1 o L@-L®)

N ek L(x)+L(x)

where L(x) represents the actual luminance value at pixel location x. This expression can be

d = (2.4)
given in terms of gray level intensity if one knows the relationship between luminance and gray
level. For our experimental system (see Sec. 3.2 below) the expression for contrast becomes

1 | 1(x)— f(x)]

TN A I+ in+23 @3)

6. Bit Rate (BITS). This is a metric which is defined only for sub-blocks of an image, and

depends on the use of the JPEG DCT-based coding algorithm. If one assumes an overall bit rate



R for an image coded in this way, sub-blocks of the image will exhibit a variable bit rate such that
the average over all the sub-blocks is R. It was hypothesized that the bit rate for an image sub-
block, relative to the average over the entire image, might be related to the perceived quality of
that sub-block. These bit rates are a simple matter to determine if the JPEG algorithm is used to

introduce distortion.

2.3. Type Il Metrics

The second class of metrics involves those which are not an actual measure of distance
between an original and a distorted image. Rather, these functions take as their input the original
image, and return a value d which can be used as a measure of a characteristic of an image that
may be related to the perceived distortion introduced by a lossy processing scheme, JPEG in this

case.

1. Mean Intensity (MI). The first metric of this type is quite simple - it is the average gray

level over the image:

d = 3 I (2.6)

1
Nk
2. Spectrum Slope (SS). This measure is based on the work of Cargill ez al. [12] who used a
similar scheme in the classification of biomedical images. It was hypothesized that significant
high-frequency content in the image will have a masking effect on distortion. In computing this
measure, one first computes the 2-dimensional Fourier transform. Then, by averaging the squared
Fourier magnitudes over concentric rings in the 2-dimensional frequency plane, a one-
dimensional radial power spectrum is obtained. The slope of a line which is fit to this power
spectrum, plotted in log-log coordinates, is a measure of the relative high-frequency content of

the image (this slope is usually negative, and the less negative it is the greater the high-frequency

content).
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3. Spectrum Slope over Mean Intensity (SS/MI). This metric is the ratio of metrics 1 and 2

above.

4, Local Contrast (LCON). In this measure one computes the average Michelson contrast
between a pixel and its four neighboring pixels. This is a measure of the local "activity" at that
pixel in the image. The average of this local contrast is then taken over all the interior pixels of a

block.

2.4. The Role of the Q-Factor

Since the focus of the present study is perceived distortion in JPEG-encoded images, it is
important to look at the role of a key parameter of that algorithm, known as the "Q-Factor". This
is a parameter which is under the control of the system designer and which determines the bit rate
and the loss of visual fidelity. More specifically, it determines the bin width used in the quantiza-
tion of the transform coefficients. The higher the value of Q, the larger the quantization bins, and
hence the higher the compression rate and distortion introduced. Typical values of Q are in the

range 10-100.

In a sense, Q could be considered a Type I metric - it increases with increasing distortion,
and one might hypothesize that there is a fixed value of @ for which the distortion is just notice-
able, over a wide range of images. Although this is not the case, as discussed below, it is worth-
while to examine relationships between the metrics described above and @, particularly in thresh-
old experiments. It will be shown that the threshold Q is highly correlated with certain Type 11

metrics, a result with significant engineering implications.



3. Experimental Methods

There were two psychophysical experiments, one threshold and one suprathreshold. The
objective of the threshold experiment was to determine the threshold of distortion at which the
observer can just distinguish a distorted image from the original. In the suprathreshold experi-
ment, observers were asked to assess the relative quality of a set of image sub-blocks which were
coded to a constant bit rate (0.5 bits per pixel). As pointed out in the Introduction, a good distor-

tion metric should be able to predict the observers’ responses for both of these experiments.

3.1. Observers

A total of 11 individuals (the authors and others involved in the project) served as observers
in these experiments. The number of observers that participated in each experiment is specified

below. All had normal or corrected-to-normal visual acuity.

3.2. Stimuli

Apparatus. Stimulus presentations were controlled by a Sun 3/260 computer. Images were
presented on a 19-inch color monitor (Pixar II, Sony GDM-1950). The largest images, 13.7 by
13.7 cm, were centered on the display screen and subtended 21.4 degrees of visual angle at a
viewing distance of 35 cm. The luminance of the display was calibrated such that it varied lin-
early from 1.85 cd/m? (all pixels black) to 42.54 cd/m? (all pixels white). This range was divided
into 256 equal gray-scale values. Observers viewed the display with their head held steady by a
chin rest and forehead support. The display was viewed binocularly under flourescent room
lights.

Images. Gray-scale images were digitized from black and white photographs at 8 bits/pixel

(bpp). The content of 1mages used for these experiments included portraits, still life, and outdoor

scenery. The full-size images used in Experiment 1 were 512 x 512 pixels in size. The spatial
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sampling rate at the viewing distance specified above was thus 23.1 pixels/degree. Image presen-
tation was synchronized with the vertical retrace of the display and was completed within 16.67

ms (the refresh rate of the display was 60 Hz).

In addition to the original images described above, 40 different compressed images were
computed for each original, at bit rates ranging from 0.1 bpp to 4.0 bpp, in 0.1 bpp increments.
Images were compressed and de-compressed according to the JPEG draft standard [1] with
sequential coding and Huffman coding options. The luminance quantization table and the Huff-
man code tables used were from the Examples section of [1]. These compressed/decompressed
(i.e. distorted) images were compared with the original images in the two experiments described

below,

In the second part of Experimentl, and in Experiment 2, sub-blocks of size 128 x 128 pixels
were taken from the original and compressed images described above. These sub-blocks were

used in order to mitigate the effects of attention shifting in the larger images.

3.3. Procedure - Experiment 1 (Threshold)

Two-alternative, temporal forced-choice trials in conjunction with a staircase procedure
were used to measure distortion thresholds. Each trial consisted of two 500-msec observation
intervals, separated by 500 msec. Trials were preceded by a 1-sec interval during which a fixa-
tion mark was displayed on the otherwise blank screen. One of the observation intervals con-
tained the original image and the other contained a distorted version of the same image. The dis-
torted image was presented randomly in the first or second interval with equal probability. The
observer’s task was to indicate, by pressing one of two buttons, the interval containing the dis-
torted image. The observer received feedback in the form of coded tones to indicate cor-

rect/incorrect responses. Each response initiated the next trial.
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The staircase procedure was used to determine the level at which the distortion produced by

compression could be detected at the 70 percent correct level (see [13])". (It is implicitly
assumed that the observer’s ability to detection distortion is monotonically decreasing with
increasing bit rate, or equivalently, is monotonically increasing with increasing Q-factor.) Two
consecutive correct responses produced a reduction in the bit rate of the distorted image (i.e. an
increase in the distortion), and one incorrect response produced an increase in the bit rate. Ini-
tially, the distorted image was coded at 0.1 bpp, for which the distortion was clearly visible, and
the staircase moved in relatively large steps, 1.6 bpp. Following the second, fourth, sixth, and
eighth reversals, the step size was reduced by one half. Following the eighth reversal, the step
size remained constant at 0.1 bpp. The staircase terminated after 11 reversals had occurred. Dis-

tortion threshold was defined as the mean bit rate associated with the last three reversals.

This staircase procedure was used for 8 full-size (512x512) images and for 12 smaller
image sub-blocks (128 x 128), Each staircase typically consisted of 40-50 trials, and each daily
testing session lasted between 45 and 60 minutes. Three staircases were performed for each full-
sized image and the mean of the last two were used for the analyses presented below. A single
staircase was completed for each of the image sub-blocks. For full-size images, the order within
a session was randomized such that a staircase was completed for each image in the group before
beginning the next staircase for a given image. Thresholds for each of the eight full-sized images
were obtained from five observers and thresholds for each of the 12 image sub-blocks were

obtained from nine observers.

A modification of the standard staircase procedure was also employed for each of the full-
sized images. After the standard procedure was completed on a given image, informal debriefing
of the observers provided an indication of which region of the image most clearly revealed the

distortion. This information was then used in a second set of staircases to direct observers’
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attention to the region of each image in which the distortion was most easily detectable. Distor-
tion thresholds were obtained with this modified staircase procedure from the same five observers

(the "Hints" condition.)

3.4. Procedure - Experiment 2 (Suprathreshold)

Four of the images used in Experiment 1 were subdivided into 16 128 x 128 sub-blocks.
Each full-sized image was compressed/decompressed at 0.5 bpp before being sub-divided. A
modified method of paired comparisons was then used to rank the image sub-blocks with respect
to the amount of perceived distortion. Image sub-blocks were ranked in groups of 16, such that

each block was compared only to other blocks taken from the same image.

In the standard method of paired comparisons, every item is compared with every other
item in a group, resulting in a large number of comparisons (120 in our case). In our modified
method, a smaller set of comparisons was performed, from which a complete ranking can be
inferred. An tmplicit assumption here is that the comparisons are consistent, that is, if item A is

preferred to item B, and B is preferred to C, then A will be preferred to C.

Each paired comparison was conducted in the following way. Four image sub-blocks were
displayed, as shown in Figure 3.1. The four images were the original and distorted versions of
sub-blocks i and j, as shown. The subjects were asked to determine subjectively which of the

two blocks appeared more distorted when compared with the original.

The result of each comparison was used in conjunction with a sorting algorithm to arrive at
a complete ranking of the 16 sub-blocks. We used the HEAPSORT algorithm [14], which can
sort a list of N objects with O{N log N) comparisons. This algorithrn was implemented as a com-
puter program running on the Sun 3/260; each comparison of items i and j in this program would
initiate a comparison of distorted sub-blocks as described above. The exact number of compar-

isons cannot be determined a priori, but in our experiment approximately 60-70 comparisons
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were required to sort the 16 sub-blocks. The result for each observer would be a ranking of the
the 16 sub-blocks, ordered from least distorted to most distorted. An additional step of allowing
the subjects to modify their ranking by making adjacent pairwise permutations was included at
the completion of sorting program. In this way it was assumed that the subjects were satisfied

with their completed rankings.

4. Results

4.1. Experiment 1

Mean threshold bit rates for the full-sized images, as estimated with the standard staircase
procedure and the staircase procedure with hints, are presented in Figure 4.1. The mean threshold
bit rate across images for the standard staircase was 1.89 bpp, and the mean across images for the
staircase with hints was 2.36 bpp. A two-way analysis of variance (see Table 4.1), image by pro-
cedure, indicates that the improved performance with hints is statistically significant, and that the

difference between images is marginally significant. There was no significant interaction effect.

In order to evaluate the behavior of both the Type I and Type II metrics, data were analyzed
for the 12 128 x 128 image sub-blocks (3 each from 4 of the larger images). For each of these
sub-blocks, several quantities were computed: 1) the actual bit rate at the threshold of just-
noticeable distortion, 2) the -factor for the JPEG algorithm, also at threshold, 3) the value of
each of the Type I metrics, at threshold, and 4) the value of the Type II metrics for each of the

original sub-blocks.

The variabilities of the Type I metrics at threshold were analyzed. Because the actnai val-
ues of the metrics have no intrinsic meaning (they were scaled somewhat arbitrarily in software to
yield numerical results in the 1-10 range) the coefficient of variance (standard deviation divided

by mean) was used to to quantify the variability of each metric. These are shown in Table 4.2.
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DCON achieved the lowest coefficient of variance {0.301).

In Table 4.3 the coefficients of variance for the ensemble of Type II metrics are shown. In
this case, we expect a good metric to have a large coefficient of variance, since this would imply
that the measure is bringing out significant differences in the qualities of the original image

blocks. MI and SS/MI had coefficients of variance of 0.700 and 0.916, respectively.

Because we expect the ideal Type I metric to be a constant over all compressed images
when evaluated at the threshold of just-noticeable distortion, the experimental error in the deter-
mination of such a metric should not be correlated with system variables such as threshold bit rate
and threshold Q-factor. If this were not the case, it would imply that there was residual informa-
tion in the Q-factor or bit rate which the metric itself was not conveying. For this reason, in our
statistical analysis we examined correlations between Type I metrics, evaluated at threshold, and

the threshold bit rates,

Table 4.4 shows the correlation analysis for Type I metrics versus threshold bit rate. All the
correlation values are quite low. This is illustrated further in Figure 4.2, in which the DCON met-
ric is plotted as a function of bit rate for each of the 12 sub-blocks. The circles indicate the
threshold point of just-noticeable distortion for each of the curves; there is no apparent pattern in
the collection of threshold points. Figure 4.3 gives similar curves for the DCON metric vs. Q-
factor; again the threshold points are plotted. In this figure a pattern is evident for the threshold
points: most of the points lie close to convex curve of decreasing slope. Similar patterns were
evident for other metrics. From this pattern it can be concluded that the DCON metric by itself
will not summarize everything about the visibility of the distortion, since knowledge of the Q-

factor evidently would provide more information toward predicting the threshold point.

While one would hope that a good Type I metric would, at threshold, be uncorrelated with

bit rate and Q-factor, a good Type II metric should be correlated with these latter quantities. This
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is because the intrinsic qualities of the image should or may reveal something about the level of
distortion that can be tolerated. In Table 4.5 the correlations between the Type II metrics and the
threshold bit rate are presenfed, and in Table 4.6 the correlations between the metrics and the
threshold O-factors are presented. Note the particularly high correlation between MI and thresh-
old Q-factor (r=0.836). To illustrate this further, in Figure 4.4 the threshold Q-factor is plotted

as a function of MI for the 12 image sub-blocks. A regression line is also plotted.

4.2. Experiment 2

For the analysis of the data from the block-sorting experiment nonparametric methods of
rank correlation, as described in Kendall [15], we used. Only the ranks assigned to the 16 sub-
blocks according to the distortion metrics were considered, rather than the numerical values of the
metrics themselves. In this way each metric can be treated as an observer. The objective was to

determine which metric gives rankings which are in agreement with the human observers.

The rank data were examined to determine whether or not there was agreement among the 9

observers. Kendall proposes a test statistic, called the "coefficient of concordance”, which is a

measure of this agreement. This statistic, appropriately scaled, is approximately subject to a x2
distribution, and can be used to reject the null hypothesis that the rankings from the 9 observers
were chosen independently and uniformly from the set of 16! possible permutations, The coeffi-
cient W itself, which can take on values between 0 (no agreement) and | (identical rankings), was
in the range 0.76 (PATH) to 0.89 (YOSEMITE) (p < 0.01). Thus it was concluded that there was

significant agreement among the rankings of the 9 observers.

To compare the rankings given by the metrics to those given by human observers, the
Spearman p statistic was used. This is a measure of the agreement between two rankings of N
objects, normalized so that =1 < p <+1. A value of 1 indicates that the rankings are identical

(complete agreement), while a value of -1 indicates that one ranking is exactly the reverse of the
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other (complete disagreement). To evaluate a given distortion metric, the Spearman p statistic
was computed for the observer/metric pair for each of 9 observers, then the average taken across

observers.

Mean Spearman p statistics (rank versus metric) across observers for each image are plotted
in Figure 4.5 for each of the metrics tested. Inspection of this figure shows the substantial vari-
ability obtained, not only between metrics, but particularly between the same metrics applied io
different images. No single metric was consistently highly correlated with psychophysical rank-
ing for all images; for some metrics, correlations were positive for some images and negative for
other images. In general, Type I metrics tended to have lower, more variable correlations than
Type II metrics. Overall, of the Type I metrics, DCON was most highly correlated with observer
rankings (mean p = 0.6814) suggesting that the amount of perceived distortion increased with
this particular pointwise distance measure. However, other metrics (MSENL and MSE in particu-

far) were more highly correlated with some of the images.

Type II metrics, with the exception of Spectrum Slope, tended to be more highly and more
consistently correlated with observer rankings than Type I metrics. Overall, SS/MI had the high-
est mean correlation {mean p = 0.763); MI was also highly correlated with observer ranking

(mean p =-0.719).

4.3. Comparison of Experiment 1 and Experiment 2

The 12 128 % 128 blocks used in the threshold experiment were chosen based on an infor-
mal assessment of the visibility of the distortion at 0.5 bpp. From each of the 4 images, three
sub-blocks were chosen to have low, medium, and high perceived levels of distortion, respec-
tively. This informal assessment was borne out by the rankings assigned to the 3 sub-blocks

within the group of 16 sub-blocks for the respective images. For example, a sub-block with low
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perceived distortion had a low median rank, and a sub-block with high perceived distortion had a

high median rank.

To see if the results of the two psychophysical experiments were consistent, median ranks
of each of the 12 sub-blocks from the suprathreshold experiment were compared with the thresh-
old bit rates and Q-factors for these same blocks. (Note that the rank of a particular sub-block is
only meaningful in comparison to the ranks of other sub-blocks from the same image.) These
results are summarized in Figure 4.6. The threshold bit rates did not exhibit a pattern which is
consistent with the suprathreshold rankings. On the other hand, the threshold Q-factors within
each group of 3 sub-blocks had the opposite ordering of the median ranks, in all 4 cases. This
implies that those blocks for which the distortion is most objectionable at 0.5 bpp are the same

blocks for which the Q-factor must be lowered in order to reach the distortion threshold.

5. Discussion of Results

1. The results of the threshold experiment for full 512x 512 images indicate that high-
quality images can be obtained using the JPEG algorithm at around 2 bpp. The naive observer
will be unable to detect distortion due to compression at this level, at least for ordinary photo-
graphic images. Under very careful scrutiny, and perhaps with a little practice and prior knowl-

edge, the observer can detect distortion at slightly higher bit rates.

2. Because of the issue of global versus local attention in the interpretation of images,
smaller image blocks were used in those experiments involving the computed metrics. In so
doing, one must remain cautious about attaching too much significance to the actual bit rates
associated with these blocks. The JPEG compression algorithm, as implemented with the Huff-
man coding option, is a variable bit rate code. For a fixed Q-factor, or overall image bit rate,
there can be considerable inter-block variability in bit rates. While of course the average bit rate

is the single most important parameter in any data compression scheme, it is not safe to assume
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that a rate of R bpp over some small region of the image is representative of image quality over
that region. This variability in bit rate can explain in part the low correlations in Table 4.1. For
small image blocks, the Q-factor is a more reliable measure of information (or information loss)
since it determines the coefficient quantization bin width, and is a constant. Note, for example,
the high correlations between the threshold Q-factor and Type II metrics, and the agreement

between suprathreshold rankings and threshold Q-factors.

3. MSE is a poor predictor of observer response. Note the high variability of the measure

at threshold, and the results of the suprathreshold experiment as shown in Figure 4.5.

Another curious fact about MSE is that, when the Q-factor or the average bit rate is held
fixed, then MSE tends to correlate positively with bit rate over small image blocks. This may
seem counter-intuitive at first; however, on further refiection, one could envision a scenario in
which image blocks which are less probable according to the Huffman code tables could simul-
tacously suffer increased squared-error and increased bit rate. For example MSE and BITS
exhibit similar behavior in Figure 4.5, although neither one is a good predictor of observer
responses. Recall that BITS is the true block bit rate when the average bit rate over the 16 image

blocks was 0.5 bpp.

4. Of the Type I metrics, DCON appears to have reasonable performance, both in terms of
the variability at threshold, and in agreement with the suprathreshold rankings. What is most
interesting about this result is not the particular metric, but the fact that it is a simple pointwise
measure which does not take into account spatial properties or local contrast in the image.
Because of the pattern in the relationship between DCON and threshold Q-factor, as shown in
Figure 4.3, we cannot assume that this measure summarizes all of the relevant information about
distortion thresholds. Indeed, Figure 4.3 leads us to believe that some combination of the DCON

metric and the Q-factor could lead to excellent prediction of distortion thresholds. Still, we are
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encouraged to search further for other pointwise measures. Although it is possible to find metrics
which provide an optimal fit to the psychophysical data presented here, it is recommended instead
that the search for the "best" pointwise measure be accompanied by a larger experiment involving

more observers and more images.

5. Quite similar results were obtained for MSENL and MANNOS, both in the correlation
with suprathreshold rankings, and in variability at threshold. The rank correlations were similar
to those of DCON, whereas the threshold variabilities were larger by about a factor of 2. The dif-
ference between these two metrics is that MANNOS employs a spatial frequency weighting
which adds significantly to the computational complexity. The present results suggest that there is
no advantage to be gained by this frequency weighting. Also, proper use of this frequency
weighting requires exact knowledge of the viewing distance and pixel size, which can vary
depending on the viewing situation. Metrics which are especially sensitive to viewing conditions

should probably be avoided.

6. The success of mean intensity in predicting observer ranking in the suprathreshold
experiment, and the Q-factor in the threshold experiment, was remarkable. It was not especially
surprising, however, in light of the physiological evidence that perceived differences in intensity
are related to mean luminance, and also our informal debriefings with the observers which indi-
cate that distortion is indeed much more visible in darker regions of the images. The engineering
implications of this result may be significant, as this particular quantity is trivial to compute.
Coding schemes which take into account the mean intensity of a block of pixels can easily be
envistoned: for example, one could vary the Q-factor in the JPEG algorithm according to local
mean luminance. The mean luminance for an 8 x 8 block of pixels is simply the DC coefficient

from the Discrete Cosine Transform (DCT), so the information is already available for use.
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7. There does not seem to be a masking effect associated with the distortion introduced by
the JPEG compression algorithm. Note, for example, that when the LCON metric is large, the
distortion is actually more visible, as evidenced by the lower threshold Q-factor. The reason for
this is the fact that the JPEG algorithm suppresses high-frequency components within in each
8x 8 block, and thus in the distorted image there is less contrast to create a masking effect.
Observers will detect and respond to this change in local contrast. This phenomenon also forms
the rationale behind the LIP metric, which measures pointwise differences in local contrast rather

than intensity.

8. The SS/MI metric is a good predictor of the suprathreshold rankings. Still, we do not rec-
ommend that it be considered as a viable metric, for the following reasons. First, SS by itself has
no value in predicting observer rankings, and second, the coefficient of variance of SS is very low
(0.155). This suggests that the SS metric carries very little information about the image block,
and that the correlation between SS/MI and observer rankings can be explained almost entirely by
the MI factor. Also, SS is extremely time-consuming to compute, involving (as does MANNQOS)
a two-dimensional Fourier transform, and several additional multiplications and additions per

pixel.

6. Summary and Conclusion

We have presented results of two psychophysical experiments designed to evaluate com-
putable distortion metrics for photographic images. It was determined that mean-square-error is
not a good distortion measure. Other simple pointwise distance measures (MSENL, DCON) cor-
related well with observer suprathreshold rankings; DCON in particular exhibited the lowest vari-
ability at the distortion threshold. Computationally intensive metrics such as MANNOS and LIP

do not seem to be worth the extra effort, even though they can be justified on physiological
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grounds. The use of the metrics based on the spatial frequency properties of the human visual
system is especially discouraged, requiring as it does precise knowledge of the viewing condi-

tions.

The importance of mean intensity in the assessment of image distortion introduced by the
JPEG algorithm was most surprising. What is interesting about this is that, whereas much atten-
tion was paid to the spatial frequency response of the human visual system in the development of
the standard, no consideration has been given to even simple pointwise nonlinear models, It is
our conclusion that the nonlinear response to luminance is a dominant effect which should not be
ignored if one wants to incorporate the human visual system into algorithm design. Our specific
recommendation is that a simple pointwise measure such as DCON be used as a distortion mea-
sure in further image compression and rate-distortion studies, and that the search for better point-

wise metrics continue.
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Tables
Factor df F-Ratio | Probability
Tmage 7,56 2.633 0.020
Hints 1,56 8.305 0.006
Image x Hints | 7,56 0.393 0.902

Table 4.1. Analysis of variance for threshold bit rates for the full-sized images.

Metric Coef., Var.
MSE 0.765
MSENL 0.648
MANNGS 0.661
LIP 0.388
DCON 0.301

Table 4.2. Variability of Type I metrics at threshold.

Meiric | Coef. Var.
Ml 0.700
SS 0.155

SS/MIL (0.916

LCON 0.297

Table 4.3. Variability of Type IT metrics.




Metric r
MSE -0.319
MSENL 0.011
MANNOS | 0.280
LIP 0.044
DCON 0.137

Table 4.4. Correlation analysis for Type I metrics at threshold versus threshold bit rate.

Metric r
MI -0.208
SS -0.189

SsS/MI | -0.261

LCON | 0.583

Table 4.5. Correlation analysis for Type II metrics versus threshold bit rate.

Metric r
MI 0.836
SS -0.248

SS/MI | -0.506

LCON | -0.766

Table 4.6. Correlation analysis for Type II image metrics versus threshold O-factor.
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Figure Legends
Figure 3.1. Display of image sub-blocks used in suprathreshold experiment.

Figure 4.1. Mean threshold bit rates for each of the full-sized images. Results of the standard
staircase procedure are represented by white bars and the staircase procedure with hints by the
shaded bars. Error bars represent + 1 standard error of the mean.

Figure 4.2. DCON metric as a function of bit rate for the 12 image sub-blocks. Circles indicate
the distortion threshold averaged across the observers. For bit rates below the threshold the dis-
tortion is visible, and for bit rates above the threshold the distortion 1s not visible.

Figure 4.3. DCON metric as a function of Q-factor for the 12 image sub-blocks. Circles indicate
the distortion threshold averaged across the observers. For Q-factors above the threshold the dis-
tortion is visible, and for Q-factors below the threshold the distortion is not visible.

Figure 4.4. Threshold Q-factor as a function of MI metric for 12 image sub-blocks. The dashed
line is the regression line.

Figure 4.5 Mean Spearman p coefficients for each metric versus the observers’ ranks. Each of
the images is represented with a different shading pattern. The top panel contains results for Type
I metrics and the bottom panel contains results for Type II metrics.

Figure 4.6. Top Panel: Mean threshold bit rate for each of the image blocks. Middle Panel:
Mean threshold Q-factor for each of the image blocks. Bottom Panel: Median rank for each of
the image blocks. A lower rank indicates a smaller amount of perceived distortion. The labels
along the horizontal axis indicate the names of the images and the identifying number of the sub-
block within that image.
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