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Experimental Evidence for Heavy Tailed

Interference in the IoT
Laurent Clavier Senior Member, IEEE, Troels Pedersen, Ignacio Rodriguez, Mads Lauridsen and Malcolm Egan

Abstract—5G and beyond sees an ever increasing density of
connected things. As not all devices are coordinated, there are
limited opportunities to mitigate interference. As such, it is
crucial to characterize the interference in order to understand
its impact on coding, waveform and receiver design. While
a number of theoretical models have been developed for the
interference statistics in communications for the IoT, there is
very little experimental validation. In this paper, we address this
key gap in understanding by performing statistical analysis on
recent measurements in the unlicensed 863 MHz to 870 MHz
band in different regions of Aalborg, Denmark. In particular, we
show that the measurement data suggests the distribution of the
interference power is heavy tailed, confirming predictions from
theoretical models.

Index Terms—Interference, IoT, statistical models, subexpo-
nential distributions, heavy tails.

I. INTRODUCTION

As the density of connected Internet of Things (IoT)

increases, interference is a pressing concern for emerging

wireless networks. In addition, non-orthogonal multiple ac-

cess, stringent constraints on cost, energy and computational

capabilities, grant free access schemes with low coordination

between devices, as well as the lack of control mechanisms

mean that interference management is a key challenge. How-

ever, characterizing the interference in unlicensed bands is

a non-trivial issue. One reason is the high level of hetero-

geneity within the network, ranging from access protocols to

PHY-layer design. In particular, time-on-air, symbol duration,

bandwidth and waveform selection can significantly differ

from one radio access technology to another. To address

this issue, a number of different probability models for the

interference have been proposed sharing a key observation:

additive Gaussian noise is a poor model.
In this paper, we analyze recent measurements in Aalborg

of interference in the unlicensed European ISM 863 MHz

to 870 MHz band [1], which is duty cycle limited and not

based on listen before talk, such as the US 915 MHz band.

Our analysis validates key features of interference statistics

predicted from theoretical models. The converging variance

test and analysis of the empirical survival function both in-

dicate that the interference distribution from the measurement
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data is heavy tailed. This observation is confirmed through the

estimation of the tail index.

Section II sets up the notation and give the necessary

background on interference models. Section III describes

the expected properties of impulsive interference. Section IV

studies the measurement data, states the main results and opens

the discussion for the appropriate model.

II. THEORETICAL INTERFERENCE MODELS

Interference results from (partially) concurrent transmis-

sions from different devices, called interferers, on the channel

observed by a given receiver. We consider a case where a

receiver is surrounded by a set of interferers, whose locations

form a point process denoted as Ω (see Fig. 1). Interferer 8 ∈ Ω

sits at a distance 38 from the receiver. Its signal is subject to a

path loss ℓ(38) given by the positive path loss function ℓ. At

a particular time-frequency (C, 5 ) bin, the interference can be

expressed as a complex number

-C , 5 =

∑

8∈Ω

ℓ(38)&8,C , 5 . (1)

The term &8,C , 5 includes propagation effects (e.g., multipath

and shadowing) as well as the baseband emission of interferer

8 at time C and frequency 5 . In existing work, the path loss

function ℓ(·) can take different forms, but is often given by

ℓW,n (3) = 3−W/21{3≥n }, where W is the path loss exponent and

n is the guard zone radius; that is, no interferer can be closer

than n from the given receiver.

A key challenge is to characterize the probability distribu-

tion of the interference, -C , 5 or the corresponding interference

power IC , 5 = |-C , 5 |
2. Here, we characterize IC , 5 by its prob-

ability distribution function � (G) = P(- < G) or equivalently

its survival function ((G) = 1 − � (G). Analytical results have

been proposed in very particular settings by using the tools of

stochastic geometry. The early work by Middleton [2] showed

that, if interferers were located according to a homogeneous

Rx

n
838

Fig. 1. Receiver (Rx) surrounded by interferers (dots). Interferer 8 is at
distance 38 from the receiver and sits outside the guard zone of radius n .
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Poisson point process, non-Gaussian interference distributions

naturally arise. For example, when the network radius is finite

and the guard zone radius, n , is non-zero, the interference

distribution is known to be Middleton distributed [2], [3].

While exact, the Middleton model is difficult to work with

analytically (e.g., for the purpose of receiver design), and a

number of approximations have been proposed; e.g., Gaussian

mixtures [4], like the n-contaminated model [5].

When instead interferers are located according to a binomial

point process, Weber and Andrews have shown that the result-

ing interference amplitude is subexponential [6]1. In this case,

the tail behaviour is dominated by the strongest interferer: �

is subexponential if for independent and identically distributed

(i.i.d.) -8 with common survival function (, with G =
∑=

8=1 -8 ,

( (G) → =( (-1) as G → +∞.

A detailed study of the interference power has been carried

out by Haenggi and Ganti [8]. In particular for interferers

located according to a Poisson point process, they showed that

the distribution depends heavily on the path loss attenuation

coefficient W. For example, also shown by Win and Pinto [9],

in a network with infinite radius and no guard zone (n = 0), the

interference power has the totally skewed U-stable distribution,

where U depends on W.

While these theoretical results suggest that interference is

better modeled by heavy tailed distribution, there has been

little experimental validation; particularly in the context of

the IoT. In the following sections, we address this issue by

identifying features of the Aalborg measurement data that is

consistent with a family of heavy tailed distributions.

III. CLASSES OF HEAVY TAILED DISTRIBUTIONS

Several important performance metrics, such as outage

probability, strongly depend on the probability that the interfer-

ence is large. These rare events of high interference values play

a key role, but are under-represented by the Gaussian model

distribution in which the tail decay too rapidly. Alternative

models such as the Middleton or U-stable with fatter tails exist.

Heavy tailed distributions are defined in general as dis-

tributions with tails that decay slower than the exponential

distribution [10]. Formally, a distribution is heavy tailed if for

any " > 0 and C > 0, the survival function does not satisfy

((G) ≤ " exp(−CG), ∀G > 0. (2)

Failing to satisfy (2) means that the moment generating

function does not exist, and hence higher order moments, the

variance or even the mean are not finite.

It is natural to ask whether measurements are consistent

with heavy tailed models. To clarify if such models, predicted

theoretically, are indeed good approximations of the real

interference behaviour, we consider two subclasses of models

and their corresponding corresponding statistical tests.

A. Fat Tailed Distributions

A distribution with infinite variance is said to be fat tailed.

Given a set of observations, the hypothesis that the variance

1We also note that the subexponential family has been used to model the
transmit power distribution in [7].

of the underlying distribution is finite can be tested using the

converging variance test [11, Section 5.5]. Assuming that the

process is a first order stationary and ergodic time-frequency

process, we estimate the variance by computing the sample

variance using all available time and frequency measurements

(indexed by a single integer) as

f2
= =

1

=

=
∑

:=1

(

I: − I=

)2

, (3)

where I= =
1
=

∑=
:=1 I: . If I has finite variance, then f= should

rapidly converge to a finite value as = increases. If, on the other

hand, the variance is infinite or very large, the convergence

should not be obvious and features such as large jumps can

be present as = increases.

B. Subexponential Tail Decay

A distribution � is said to have subexponential tail decay if

there exists some ^ > 0 such that its survival function satisfies

((G) = G−
1
^ !(G), for G > 0, (4)

where ^ is called the tail index and ! is a slowly varying

function satisfying lim
C→∞

! (C G)
! (C)

= 1. Plotting ((G) against log(G)

yields, for subexponentially decaying �, a straight line with

slope −1/^ for G large. An exponentially decaying distribution

has ^ = 0 which leads to an abrupt decrease in the curve as

log G increases.

Again, assuming that the interference process is first order

stationary and ergodic, we estimate the marginal distribution

by computing the empirical distribution function as �̂ (G) =
1
=

∑=
:=1 1{I: ≤G } and the empirical survival function as (̂(G) =

1 − �̂ (G).

C. Tail index estimation.

To quantify the results, we estimate the tail index ^. To

do so, we assume the interference process is stationary and

ergodic and order the observations to obtain the sequence

{I(8) }8=1,...,= such that I(1) ≥ I(2) ≥···≥I(=) . With the : largest

samples, the tail index is obtained via the Hill estimator [12]

�:,= =
1

:

:
∑

8=1

log
I(8)

I(:)
(5)

This estimator is consistent, meaning that if (:=)=∈N is such

that, as = goes to infinity, := goes also to infinity but :=/=

goes to zero, then �:= ,= tends in probability to 1/^, provided

that {I=}, besides stationary, satisfies one among a broad set

of assumptions, for instance being i.i.d [12]. However, the

performance of �:,= strongly depends on the choice of : . It

is then useful to construct the Hill plot, by plotting : against

�:,= for : = 1, . . . , =. The value of ^ can be obtained from

a flat region in the graph. To make such a plot more useful,

[13] proposes to use a log scale for the x-axis, by choosing

: = ⌈=\ ⌉, 0 < \ < 1 and plotting �:,= against \. Here, ⌈G⌉

denotes the smallest integer greater than or equal to G.
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IV. MEASUREMENT DATA ANALYSIS

We now analyze the measured interference data first re-

ported in [1], where received power measurements were

performed at five distinct locations in Aalborg (Denmark):

1) downtown shopping area; 2) a business park with office

buildings; 3) hospital complex; 4) industrial area consisting

of industrial production facilities and office buildings; and 5)

residential area with single-family houses. At each location,

measurements were performed at street level by using a radio

network scanner equipped with an omni-directional antenna

for a period of 2 hours. While the measurements do not reflect

the interference at an elevated position, which is relevant for

a base stations, they cover many IoT use cases like private

homes, smart things around roads and parks, smart meters,

etc... The entire on-air RF activity in the 868 MHz ISM band

(863 MHz to 870 MHz) was recorded with a 7 kHz bin

resolution in frequency and 200 ms sampling time yielding

a sensitivity level of approximately –115 dBm. The setup and

measurements are further detailed in [1].

We reduce the data by aggregating data in time-frequency

windows of 200 ms and 126 kHz to fit a LoRa scheme [14].

This yields a sequence of interference samples I1, . . . ,I=, = =

#C · # 5 with #C and # 5 the number of time and frequency

samples, respectively, as shown in Fig. 2 for a given frequency

band. The presence of rare but large values can be observed.

A. Fat Tails: Converging Variance Test

We first test whether the data set is consistent with fat tails;

i.e., infinite variance, or at least some infinite moments. To

illustrate the variance convergence test, we plot in Fig. 3

the results on one finite variance distributions (exponential

with parameter ` = 1) and two subexponential distributions

from the U-stable family (with U = 1.9, slightly impulsive,

and U = 1.2, more impulsive). For the exponential model,

as expected, the estimated variance converges rapidly as the

sample size increases. For the two non-Gaussian U-stable

distributions, there is no clear convergence even for very large

sample sizes up to = = 200 000. For the measured data, no

clear convergence can be seen which is consistent with fat

tailed models.

B. Subexponential Tail Decay

In Fig. 4, we plot the log empirical survival function versus

log(G) for the different areas. To highlight the slow decay of

the tails, we also plot curves corresponding to the exponential
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Fig. 2. Examples of recorded interference samples for different areas.

TABLE I
HILL ESTIMATE OF THE TAIL INDEX (\ = 0.4).

Case ˆ̂

Shopping Area 1.41

Residential Area 2.34

Industrial Area 2.10

Hospital complex 0.41

Business park 1.05

Exponential (` = 1) 8.15

U-stable (U = 1.7, V = 1, W = 0.1, X = 0) 1.61

distribution (` = 1) and an U-stable distribution fitted to

the data (subexponential decay). The estimated U is also

given in the different plots. These visual tests clearly confirm

that, on the measurement sets, interference is consistent with

subexponentially decaying tails.

C. Tail Index Estimation

Fig. 5 shows the modified Hill plots. The plot for exponen-

tial distribution is decreasing while the U-stable model yields

a plateau. In the measurements, the plateau is clearly present

and not the monotonically decreasing line which is consistent

with sub-exponential distributions. The Hill estimate of the tail

index is the plateau value (see [12] for more details). Hence

we read of the values at \ = 0.4, see Table I. It appears that the

tail indices of the data agree far better with heavy tail models

(like the U-stable) than the exponential model.

V. DISCUSSION

Measurement data obtained at five different locations con-

firm the heavy tailed nature of the interference power distribu-

tion. The survival function and tail index are clearly those of

sub-exponential random variables. Even distributions with in-

finite moments of order two or larger could be attractive: they

can represent sudden changes in the interference that is harder

to capture by distributions with all moments finite. While

there is an abundance of theoretical studies of interference

statistics, the measurements in Aalborg are—to the best of our

knowledge—the first to clearly validate the heavy tailed nature

of the interference in the context of IoT communications.

However, further measurements are required to properly

explain the deviations in the tails and identify the best adapted

models. Indeed, the data set is limited (one city, five locations

and a receiver at the ground level). In particular, this work

focused on a frequency band where users exploit random

access with a duty cycle constraint (e.g., SigFox and LoRa).

Other frequency bands may exploit listen-before-talk access

strategies. However, at present, there are no measurement data

to study the interference statistics in such cases. Also, in an IoT

network, access points will more likely be at higher altitudes

which could impact the interference statistics. Finally we did

not analyze time or frequency dependence which is another

important issue for future study.

Heavy tailed interference is known to affect the performance

of signal processing and network design in wireless commu-

nication systems, and the signal processing at the receiver side
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Fig. 3. Variance convergence test for four measured data sets, along with similar curves for the exponential and skewed U-stable models.
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Fig. 5. Modified Hill plots for the interference data, the U-stable and exponential models. Numerical values for ^ at \ = 0.4 are reported in Table I.

should take it into account. Also, this work suggests several

important avenues of research. One such issue is the design of

channel access strategies depending on user locations to limit

the impact of interference.
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