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Abstract

Machine learning methods provide algorithms for mining databases in or-

der to help analyze the information, find patterns, and improve prediction

accuracy. In practice, the user of a data mining tool is interested in accu-

racy, efficiency, and comprehensibility for a specific domain which may be

reached through feature selection.

In this work we use the wrapper approach for Feature Subset Selection.

The FSS algorithm from MCC++ library was used to run experiments with

datasets containing many features. Accuracies for five inducers using all

features, features found by FSS as well as the union of all those selected

features are presented.

Results confirm the superiority of FSS wrapper approach but in some

cases the computational cost is excessive.

1 Introduction

In the last few years, the extraction of higher-level knowledge from

low-level data has become a challenge. With huge volumes of data

accumulated from several sources, human ability to analyze and un-

derstand it is not sufficient or even efficient enough to extract useful

knowledge.

New techniques to support the extraction of useful knowledge

from the growing volume of data have been developed in Data Mining
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— DM — one step in a more complex process called Knowledge

Discovery in Databases — KDD[4].

One way to transform raw data into useful knowledge is using

Machine Learning — ML — algorithms. Usually in Data Mining

several representative samples from the database are taken and pre-

sented to a ML algorithm. Then the knowledge extracted by ML

algorithms using those samples is combined in some way [3].

In many cases, databases containing large numbers of attributes

are becoming more and more common. This is easy to understand,

for instance, in the medical diagnosis field where the goal is to learn

diagnosis rules for different diseases from several medical records.

Generally, these records contain much more information (features)

than is really necessary to describe each disease.

In the specific case of learning the diagnosis for cardiac and hor-

monal diseases, it is known that the relevant features for one disease

are not the same for the other. So not to lose any important informa-

tion, generally all features are used and it is left to the ML algorithm

to select the most relevant ones.

It is well known that many ML induction algorithms degrade in

performance — accuracy precision and run time — when given too

many features. In fact traditional ML algorithms were not developed

to deal with high dimensionality. So it is not straightforward using

ML algorithms directly in these databases. One possible solution to

this problem consists in reducing this dimensionality through feature

selection.

Research in ML has sought to automate the selection of features,

and many different algorithms have been developed for this purpose.

There are, basically, three main approaches that have been pursued:

filter, embedded and wrapper[2]. This paper reports the results of

experiments measuring the performance of the wrapper feature subset

selection on several databases containing many features.

The next sections are organized as follows: Section 2 introduces

Feature Subset Selection and the wrapper model for selection of rel-

evant features. Section 3 describes experiments and results using

wrapper selection in four real-world datasets with many features. Fi-

nally, in Section 4 the conclusions are presented.
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2 Feature Subset Selection

There are two aspects to be considered in conceptual learning: which

features to use in describing the concept and deciding how to combine

those features.

In supervised learning, a learning algorithm (or inducer) is given

a set of n training examples. Each example X is an element of the

set FI x FI x ... x Fm, where Fi is the domain of the ith feature.

Training examples are tuples (X, Y) where Y is the label, output or

class. The Y values are typically drawn from a discrete set of classes

{!,..., K} in the case of classification or from the real values in the

case of regression. In this work we will refer to classification. Given

a set of training examples, the learning algorithm outputs a classifier

such that, given a new instance, it accurately predicts the label Y.

One of the central problems is the selection of relevant features

and the elimination of irrelevant ones. There are several reasons for

doing Feature Subset Selection — FSS. One of them is that they

improve accuracy since many induction algorithms degrade in per-

formance when given too many features. Another reason is that FSS

improves comprehensibility, which is the ability for humans to un-

derstand the data and the classification rules induced by the learning

algorithm. Finally, FSS can reduce measurement cost since in some

domains measuring features may be expensive.

FSS can be described as a state space search where each node

(state) represents a feature subset, the value of a node is the estimated

prediction accuracy, and the operators are commonly add/delete fea-

ture.

Methods for feature selection that have been developed can be

grouped into three classes: those that embed the selection within the

basic induction algorithm, those that use feature selection to filter

features during a pre-processing step ignoring the induction algo-

rithm, and those that treat feature selection as a wrapper around the

induction process, using the induction algorithm as a black box[l].

It should be noted that induction algorithms differ considerably

in their emphasis on focusing on relevant features. In this work we will

concentrate on the wrapper approach where the induction algorithm

is used as a black box. Specifically, we will use the wrapper method

implemented in MCC++ where the search is conducted in the space

of subsets with add/delete operators using best-first search, and the

heuristic for the search is the estimated prediction accuracy using
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cross-validation [6].

A4£C++ is a library of C++ classes and tools developed at Stan-

ford University[5]. Ai£C++ provides general machine learning algo-

rithms as well as a wide variety of tools that can be used by end

users. Some algorithms support visual output of the classifiers and

may generate output for Silicon Graphic's MineSet^^ product.

It is considered that the wrapper method should provide a better

estimate of accuracy than filter methods since wrappers methods use

the same induction algorithm that will be used on the feature subset

selected, i.e., they run a search using the inducer itself to determine

which attributes in the database are useful for learning.

On the other hand, the computational cost of wrapper methods

can be very high since they have to call the induction algorithm for

each feature set considered, as can be seen in the next section.

3 Experimental Results

In order to evaluate FSS using the wrapper approach, we ran exper-

iments on four real-world datasets taken from the UCI Data Reposi-

tory [8]. Table 1 summarizes the datasets descriptions in terms of the

total number of instances as well as the number of continuous and

discrete attributes used for describing the instances. It also shows,

for each domain, the names of the classes and proportion of instances

in each class. The datasets have no missing values.

As explained in the previous section, the FSS approach needs one

inducer that will be used as a black box for feature selection. We have

chosen five inducers for FSS in our experiments: C4.5, CN2, Instance

Based (IB), Naive-Bayes (NB) and Table Majority (TM)[7]. To run

the experiments each dataset was submitted to the FSS algorithm

implemented in Ai£C++. Since the FSS algorithm looks for the best

features for a given inducer, five features subsets were found, one for

each of the inducer used in the experiment. Results are shown in Ta-

ble 2 for each dataset and inducer used, information related to CPU

time consumed by FSS using the given inducer, number and pro-

portion of selected features as well as the selected features (features

numbering starts at zero) are shown. The CPU time (in seconds)

spent to obtain each feature subset is related to a standard Indigo 2

Silicon Graphics workstation. The table line union represents con-

ventional set union of all selected features. The CPU times for the
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dna dataset and inducers CN2 and IB are not available since their

execution was suspended after more than ten days running in back-

ground. In these two cases, we used the best features found by the

algorithm up to that moment.

Dataset

anneal

dna

genetics

sonar

# Instances

898

3186

3190

208

# Features
(continuous,discrete)

38 (6,32)

180 (0,180)

60 (0,60)

60 (60,0)

Class Class %

1 0.89%
2 11.02%
3 76.17%
5 7.46%
U 4.45%
1 24.07%
2 24.01%
3 51.91%
N 51.88%
El 24.04%
IE 24.08%
M 53.37%
R 46.63%

Majority
Error

23.83%
on value 3

48.09%
on value 3

48.12%
on value N

46.63%
on value M

Table 1: Datasets Descriptions

In Table 3, for instance, the first line (all features) shows accura-

cies obtained using all features (the original dataset) with C4.5, CN2,

IB, NB and TM for the anneal dataset. The second line (FSS(C4.5)}

shows results using only features selected by FSS using C4.5 as in-

ducer and tested with C4.5, CN2, IB, NB and TM and similary to

all others rows. Tables 4, 5 and 6 show those results for dna, genetics

and sonar datasets, respectively.

After running the FSS algorithm, the accuracy for all features and

for each feature subset selected was evaluated using 10-fold stratified

cross-validation (each fold contains approximately the same propor-

tion of class labels as the original dataset) against each inducer. The

results obtained for each dataset are shown in Tables 3, 4, 5 and

6. Columns represent each inducer used; each row exhibits accuracy

and standard deviation of the accuracy using all features, the fea-

tures selected by FSS using C4.5 as inducer, the features selected by

FSS using CN2 as inducer, and so on. In order to verify the inducer

behavior accuracy, we decided to include an extra experiment: test-

ing all inducers with the union of all features selected through FSS

algorithm using the five algorithms (the union line in these tables).
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Dataset

anneal

dna

genetics

sonar

FSS
Inducer

C4.5

CN2

IB
NB
TM

union
C4.5

CN2

IB

NB

TM
union
C4.5

CN2
IB
NB

TM
union
C4.5
CN2

IB

NB
TM
union

CPU
time (s)

3721.0

87607.7

4138.5
187.1
565.5

47896.5

N/A

N/A

7966.5

11012.2

8546.3

42479.4
36520.4
2279.7

1627.1

569.2
5726.9

2161.3

126.7
83.0

# Features
(% total)

28 (73.68%)

23 (60.53%)

12 (31.58%)
11 (28.95%)
25 (65.79%)

37 (97,37%)
25 (13.89%)

15 (8.33%)

11 (6.11%)

40 (22.22%)

10 (5.56%)
53 (29.44%)
14 (23.33%)

5 (8.33%)
5 (8.33%)
25 (41.67%)

6 (10.00%)
30 (50.00%)
7 (11.67%)
12 (20.00%)

21 (35.00%)

10 (16.67%)
1 (1.67%)
33 (55.00%)

Selected Features

0 2 3 4 6 7 8 12 16 17 18
19 20 21 22 23 24 25 26 27 28
29 30 32 33 35 36 37
1 2 34 78 10 11 13 14 15 17
18 19 20 21 22 23 24 25 31 32 34
0 2 4 6 7 8 10 11 12 19 24 32
021012 15 19 20 23 24 31 33
0 1 3 4 5 8 10 11 12 13 16 17
18 19 20 22 23 24 25 28 29 30
35 36 37

62 64 71 81 82 83 84 89 92
93 94 95 96 99 104 108 117 119
127 143 146 150 153 165 167
41 54 63 81 83 84 85 89 92
93 94 95 96 99 104
81 83 84 89 92 93 94 95 99
104 156
16 18 23 39 45 48 51 53 54
56 57 59 60 62 63 69 71 72
74 75 77 80 81 83 84 89 92 93
94 95 96 97 99 104 118 119
127 133 157 179
81 83 84 89 92 93 94 95 96 104

15 17 23 27 28 29 30 31 33
34 35 45 48 59
6 28 29 30 31
27 28 29 30 31
0 6 7 11 12 13 17 18 20 22 24
25 27 28 29 30 31 33 34
38 39 43 49 50 59
27 28 29 30 31 34

3 10 30 35 45 50 51
0 10 11 15 22 25 26 29 33 39
45 57
0 3 4 5 7 8 9 11 13 15 29 30
31 34 37 40 41 42 45 52 57
5 10 11 15 27 31 35 39 48 52
58

Table 2: Selected Features by FSS Algorithm.
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anneal C4.5 CN2 IB NB TB

all features
FSS(C4.5)
FSS(CN2)
FSS(IB)
FSS(NB)
FSS(TB)
union

92.54±1.18
92.55±1.24
91.65±1.09
91.32ztl.14
78.51ztO.59
81.29±0.39
92.54±1.18

90.42±1.08
89.53±0.76
96.44ztO.94
83.63±0.77
79.30±0.45
79.29̂ :0.42
90.42±1.08

99.33±0.25
94.88dzO.67
98.78±0.31
99.78±0.15
90.31±0.58
99.67±0.24
99.33±0.25

91.65zfcO.71
75.06±0.92
87.75zfcO.96
87.75zfcO.77
88.42zfcO.60
73.60ztl.25
91.54ztO.76

76.84ztO.22
85.19ztO.59
86.41ztl.18
97.55ztO.54
87.31ztO.78
99.67ztO.17
76.84ztO.22

Table 3: Accuracy using FSS 10-stratified cross validation folds for

the anneal dataset.

dna C4.5 CN2 IB NB TB

all features

FSS(C4.5)
FSS(CN2)
FSS(IB)
FSS(NB)
FSS(TB)
union

92.40ztO.46
95.45ztO.38
94.38ztO.38
93.97ztO.34
93.82ztO.35
94.85ztO.35
94.07ztO.39

88.15ztO.62
91.94ztO.61
94.89ztO.41
93.80ztO.47
91.91ztO.53
94.76ztO.35
90.91ztO.61

74.23ztO.44
88.23ztO.58
92.62ztO.45
93.72±0.34
85.31ztO.43
94.07ztO.31
81.39ztO.60

94.04ztO.34
94.35ztO.44
94.88±0.44
94.13ztO.51
96.83ztO.23
94.22ztO.37
96.llztO.25

61.24ztO.47
66.32ztO.55
91.40ztO.38
94.29ztO.46
64.34ztO.69
94.73ztO.35
63.18ztO.63

Table 4: Accuracy using FSS 10-stratified cross validation folds for

the dna dataset.

As expected, all inducers have the same or better accuracy when

using its own subset of features. Another fact that can be observed for

these experiments is that features selected by FSS using one specific

inducer do not always improve the accuracy of the other inducers.

However in the dna dataset, the accuracy was always better when

using any subset of selected features to feed each one of the five

inducers than the accuracy obtained when all features were used.

An interesting point is related to features union which means

that each inducer is allowed to look at FSS relevant features of all

inducers including itself. For dna and genetics datasets accuracy was

better than using all features for all inducers; for the anneal dataset

it was not better only for NB inducer; finally, the sonar dataset was

not better with C4.5 and NB inducers.

Figure 1 shows experimental error comparison for each of the

five inducers and the four datasets used in the experiments. For each

dataset the error related to the accuracy of each inducer (Tables 3,

4, 5 and 6) when all features, features selected by FSS for the same

inducer — pairs (FSS(i),i) for i in {C4.5, CN2, IB, NB, TB} from

those tables, i.e., diagonal table entries — and the union of these
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genetics C4.5 CN2 IB NB TB

all features
FSS(C4.5)
FSS(CN2)
FSS(IB)
FSS(NB)
FSS(TB)
union

94.17iO.39
94.67±0.30
89.69iO.50
91.07iO.48
93.95iO.50
93.51iO.46
94.45±0.40

79.53il.45
81.54i2.01
89.47iO.53
85.32±2.64
85.58±2.14
81.98i2.68
86.51il.87

78.75iO.71
86.61iO.54
88.71iO.63
90.88iO.62
82.60iO.50
90.38iO.63
81.79iO.59

95.45iO.32
94.51iO.31
89.09iO.58
90.75iO.55
96.21iO.26
93.61iO.54
95.58iO.31

60.94iO.28
64.23iO.48
89.44iO.55
91.69iO.55
62.95iO.49
92.95iO.52
62.41iO.48

Table 5: Accuracy using FSS 10-stratified cross validation folds for

the genetics dataset.

C4.5 CN2 IB NB TB

all features
FSS(C4.5)
FSS(CN2)
FSS(IB)
FSS(NB)
FSS(TB)
union

69.74il.97
83.19i2.30
72.14i3.05
74.98i3.73
74.93i2.33
51.00il.21
67.81i3.16

71.19i3.30
75.98i3.00
81.32i3.46
70.28i3.28
73.98i2.84
61.50il.35
73.16i4.05

85.60i2.00
72.19i2.37
84.12i2.03
92.81il.27
84.57i2.77
55.24i2.35
86.07il.65

69.26i4.53
68.36i2.59
71.69i2.74
67.33i2.19
78.74i3.24
53.88i2.50
68.33i2.89

53.38iO.54
53.38iO.54
53.38iO.54
53.38iO.54
53.38iO.54
56.24il.51
53.38iO.54

Table 6: Accuracy using FSS ID-stratified cross validation folds for

the sonar dataset.

features are used.

It can be observed that for each inducer used there is a consider-

able variation of the error depending on the dataset used. Except for

the sonar dataset, C4.5 seems to be the one that better adapt itself

for learning from different subset of features;

4 Conclusions

In this work we have used the wrapper approach for Feature Subset

Selection. The FSS algorithm from MCC++ library was used to run

experiments with datasets containing many features. Accuracies for

the five inducers using all features, features found by FSS as well as

the union of all those selected features are presented. Results confirm

the superiority of the FSS wrapper approach although in some cases

the computational cost is excessive.

While most studies of supervised machine learning discuss accu-

racy on an unseen test set as the performance component, in many

cases it is equally or more important to induce comprehensible struc-
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Figure 1: Error Comparison for all Datasets.

tures which give the users new insight regarding this data.

We are currently trying to verify if the rules generated by sym-

bolic algorithms, like CN2 for example, when using all features and

the ones selected by FSS improve human comprehensibility.
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