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Abstract

Many future quantum technologies rely on the generation of entangled states. Quantum devices 

will require verification of their operation below some error threshold, but the reliable detection of 

quantum entanglement remains a considerable challenge for large-scale quantum systems. Well-

established techniques for this task rely on the measurement of expectation values of entanglement 

witnesses, which however require many measurements settings to be extracted. Here we develop a 

generic framework for efficient entanglement detection that translates any entanglement witness 

into a resource-efficient probabilistic scheme, whose confidence grows exponentially with the 

number of individual detection events, namely copies of the quantum state. To benchmark our 

findings, we experimentally verify the presence of entanglement in a photonic six-qubit cluster 

state generated using three single-photon sources operating at telecommunication wavelengths. We 

find that the presence of entanglement can be certified with at least 99:74% confidence by 

detecting 20 copies of the quantum state. Additionally, we show that genuine six-qubit 

entanglement is verified with at least 99% confidence by using 112 copies of the state. Our 

protocol can be carried out with a remarkably low number of copies and in the presence of 

experimental imperfections, making it a practical and applicable method to verify large-scale 

quantum devices.
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Introduction

The reliable verification of quantum entanglement [1] is an essential task for quantum 

technologies, but it remains a considerable challenge for large-scale quantum systems. The 

generation of large entangled states [2–9] is required to investigate new quantum phenomena 

and develop novel applications. At the same time, this makes the problem of reliable 

verification both more important and significantly more consuming in terms of time and 

resources. The most exhaustive method for inferring quantum entanglement is to reconstruct 

density matrices via quantum state tomography [10]. However, the number of measurement 

settings required to characterize a generic quantum state grows exponentially with the size 

of the system, making this approach unfeasible for large devices. In many cases the full 

density matrix is not needed and alternative approaches for entanglement detection, such as 

witness-based methods, have been developed (see [11] and references therein). Although 

these techniques show significant improvements with respect to the number of measurement 

settings [12–15], they still require many detection events (i.e. many copies of the quantum 

state) to extract expectation values of different operators used to construct a witness. 

Moreover, almost all the standard techniques assume that every detection event is identical 
and independent, a situation that is challenging to achieve in practice. For these reasons, as 

large quantum devices move closer to practical realization, novel methods are urgently 

needed that are both reliable and resource-efficient.

In the past few years, new approaches exploiting various random sampling techniques have 

been developed, such as randomized benchmarking [16], quantum state tomography via 

compressed sensing [17] and machine learning [18, 19], direct fidelity estimation [20], self-

testing methods [21–26], quantum state verification [27, 28], entanglement verification [29–

33], and many others. Most of these techniques are focused on minimizing the number of 

measurement settings, while an increasing number of copies is needed when higher accuracy 

in parameter estimation (for example the expectation value of an entanglement witness) is 

required. These parameters are compared to a certain threshold to conclude whether or not 

the state is entangled. In contrast here, instead of doing parameter estimation with a certain 

accuracy, we ask the following: given a certain number of experimental runs, what is the 

statistical significance that the state is entangled? Remarkably, in this case it has been shown 

in [34] that even a single copy of the quantum state can be considered as a meaningful 

resource for entanglement detection. Although parameter estimation reveals much more 

information about the actual state, it requires significantly more resources than our protocol.

Here we develop a generic framework to translate any entanglement witness into a reliable 

and resource-efficient procedure and apply it to a real experimental situation. We show that 

our approach detects entanglement with an exponentially-growing confidence in the number 

of copies of the quantum state, is implemented via local measurements only, and does not 

require the assumption of independent and identically distributed (i.i.d.) experimental runs.

Furthermore, we show that in certain cases our procedure works even if the number of 

available copies is less than the total number of measurement settings needed to extract the 

mean value of the witness operator, i.e. even if the corresponding witness-based method is 
not logically possible.
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We demonstrate the applicability of our method by validating the presence of quantum 

entanglement in a six-photon cluster state. This state, produced for the first time at 

telecommunication wavelengths, is generated with three high-quality single-photon sources 

and detected with pseudo-number resolving superconducting nanowire detectors. We obtain 

a fidelity between the produced state and the ideal one of 0.75 ± 0.06, which is equivalent to 

fidelities obtained in state-of-the-art photonic experiments [2]. We verify the presence of 

entanglement with at least 99.74% confidence by using around 20 copies of the quantum 

state and also show that 112 copies suffice to certify genuine six-qubit entanglement with at 

least 99% confidence. In this way, we lay the foundation for a new efficient and 

advantageous detection scheme, providing a key tool to characterize quantum devices with 

minimal resources.

While our work shows similarities with Ref. [34], substantial improvements have been 

made. Ref. [34] focuses only on reducing the resources down to a single copy of the state, 

thus finding only some suitable classes of quantum states for which the theory works. 

Furthermore, a reduction down to a single copy is made possible by increasing the size of 

the system up to tens of qubits, thus not being practically applicable in realistic situations. In 

contrast, here we develop a new theory applicable to any quantum state (of arbitrary system 

size) for which one can construct an entanglement witness. Moreover, Ref. [34] does not 

discuss different types of entanglement (e.g. genuine multipartite entanglement), while we 

provide a tool to explicitly distinguish between them. In many cases, this distinction is 

essential as, for example, genuine multipartite entanglement is required for many quantum 

information protocols.

Probabilistic entanglement verification

We start by clarifying some basic definitions and types of entanglement. A bipartite quantum 

state is called separable if it is a mixture of product states (i.e. states of the type |ψ1〉|ψ2〉). A 

non-separable state is called entangled. For multipartite systems, one can define various 

types of entanglement [11]. For a multipartite quantum system we say that the state is 

biseparable if we can divide the system into two parts, such that the state is separable with 

respect to such bipartition. If this is not possible, the state exhibits genuine multipartite 

entanglement. Full separability refers to separability across any bipartition of the system.

In the standard witness-based approach (a witness operator always specifies the type of 

entanglement), the presence of entanglement is verified by measuring the mean value of the 

witness operator W to be less than zero, i.e. 〈W〉 ≥ 0 for any separable state ρsep, where 〈W〉 
= Tr(W ρsep). W is in general not locally accessible (one has to decompose it into the sum of 

local observables Wk’s as W = ∑
k = 1
L

W
k
, where each Wk needs to be measured in a separate 

experimental run), requiring one to estimate several mean values and therefore demanding a 

large number of copies. Thus, this technique is not reliable when few copies are available. 

Moreover, for a limited number of copies N, one has to use L independent measurement 

settings and ensure that for every individual detection event the source provides exactly the 

same copy of the quantum state (this is the i.i.d. assumption). Neither of these two 

requirements is very practical.
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We overcome both of these difficulties by using a probabilistic framework for entanglement 

detection. More precisely, our protocol is centred on a set ℳ = {M1, M2, …, ML} of binary 

local multi-particle observables, which we will show can be derived for any entanglement 

witness. Each Mk (with k = 1, …, L) returns a binary outcome mk = 1, 0, associated with the 

success or failure of the measurement, respectively. The procedure consists of randomly 

drawing the measurements Mk’s (each with some probability εk) N times from the set ℳ 
and applying each of them to the quantum state, obtaining the outcomes mk’s. The set ℳ is 

tailored such that the probability to obtain success (i.e. to get mk = 1 for a randomly chosen 

Mk) for any separable state is upper bounded by a certain value ps < 1, that we call separable 
bound. On the other hand, the probability of success is maximized to pe, called entanglement 
value, if a certain entangled state (target state) has been prepared. The entanglement value pe 

is strictly greater than the separable bound ps, i.e. the difference δ0 = pe − ps > 0. In a 

realistic framework, we can prepare a certain state ρexp and assume that the application of 

the Mk’s to it returns S successful outcomes. The observed deviation from the separable 

bound δ = pobs − ps (where pobs is the observed entanglement value) therefore reads

δ =
S

N
− ps . (1)

It has been shown in [34] that the probability P(δ) to observe δ > 0 for any separable state is 

upper bounded as P(δ) ≤ e−D(ps+δ‖ps)N, which goes exponentially fast to zero with the 

number of copies N. Here D x ∥ y = x log
x

y
+ 1 1 − x log

1 − x

1 − y
 is the Kullback-Leibler 

divergence. Therefore, the confidence C(δ) of detecting quantum entanglement is lower 

bounded by Cmin(δ) as follows:

C δ = 1 − P δ ≥ 1 − e
−D(p

s
+ δ ∥ p

s
)N

= Cmin δ , (2)

and converges exponentially fast to unity in N. From (2) we can estimate the average number 

of copies Nav needed to achieve a certain confidence C0, meaning that for a target state 

preparation we find

Nav ≤ − K log 1 − C0 = Nmax, (3)

which grows logarithmically at the rate of K = D(ps + δ0‖ps)−1 as C0 approaches unity.

If δ evaluates to a positive number, we can use (1) to calculate Cmin(δ) from (2). We 

summarize the entanglement detection procedure in Fig. 1.

Additionally, due to random sampling of the measurement settings, our protocol does not 

require the i.i.d. assumption (see [34] for the proof). This is an important feature of our 

procedure as the experimental state is necessarily subject to variations over time due to 
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experimental conditions such as source drift etc. It is known that in such cases other schemes 

can lead to inadequate results [35, 36], whereas in our case we never obtain false positives.

Translating entanglement witnesses into the probabilistic framework

Any entanglement witness can be translated into our probabilistic verification protocol. 

Therefore, our method can detect any type of entanglement (e.g. genuine multipartite, 

bipartite) for which there exists a corresponding witness. Here we will show how to 

construct the set ℳ and find the corresponding separable bound ps for any entanglement 

witness (see Methods, Section I for the detailed proof). We start with the observation that for 

every witness W, one can define a new equivalent one W′, whose mean value is always 

positive and bounded by 1, by using the equivalence transformation W′ = aW + b. The 

mean value of this new witness is the probability of success of our protocol, which is upper 

bounded by ps for any separable state and achieves pe > ps for a certain entangled state. To 

illustrate the translation procedure, we consider the example of multipartite entanglement 

detection in an n-qubit graph state |G〉 via the witness W =
1
2

� − G G , for which we have 

〈W〉 ≥ 0 for any biseparable state. This witness W can be easily transformed into the 

equivalent one W′ =
1
2

� +
1
2

G G , for which we get 〈W′〉 ≤ 3/4 = ps for any biseparable 

state. The graph state can be decomposed as the sum of its stabilizers Sk’s as 

G G =
1

2n
∑k = 1

2n
S

k
, where the Sk’s are certain products of local Pauli observables. 

Therefore, the new witness reads W′ =
1

2n
∑k = 1

2n
M

k
, where Mk = (� + Sk)/2 are the binary 

observables needed in our probabilistic protocol. The sampling is uniform, i.e. the 

probabilities equal εk = 1/2n. As the Sk’s stabilize the state, pe = 1 for an ideal graph state. 

This procedure also leads to an estimate of the fidelity F = 〈G|ρexp|G〉 between the 

experimentally generated state ρexp and the ideal one ρideal = |G〉〈G|, as in [20]. Note that we 

can also use our experimental data for quantum state verification [27].

Given pe and ps we can obtain the average number of copies needed to achieve a certain 

confidence C0 from (3). We get Nav ≤ −D(1‖3/4)−1 log(1 − C0) ≈ −3.48 log(1 − C0). 

Therefore, to achieve confidence of C0 = 0.99 we need at most Nmax ≈ 16 copies of |G〉, 
which is a remarkably low number. Furthermore, this number is independent of the system 

size (i.e. number of qubits n). Notice that different local decompositions of the witness will 

lead to different scaling constants K in (3), and finding the optimal decomposition is an open 

challenge [31]. Reduction of resources down to a single copy can be achieved in certain 

cases [34] by considering a particular dependence of the separable bound on n (see Methods, 

Section II for a detailed discussion).

Once we have found the Mk’s and ps, we can apply the protocol illustrated in Fig. 1 and find 

the minimum confidence for entanglement detection.
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Entanglement verification tailored for a six-qubit cluster state

We will now translate two different witnesses, tailored for our experimental state, into our 

probabilistic framework. Our ideal experimental six-qubit cluster state is

|Cl6〉 =
1
2

(|H1H2H3H4H5H6〉 + |H1H2H3V4V5V6〉 + |V1V2V3H4H5H6〉

− |V1V2V3V4V5V6〉),

(4)

which is equivalent to the state shown in Fig. 2 up to local unitary transformations.

We consider the two following witnesses, defined to detect genuine six-qubit entanglement:

a) The witness presented in [12], composed of only two measurement settings:

W1 = 3 � − 2 ∏
k = 1, 3, 5

� + Gk

2
+ ∏

k = 2, 4, 6

� + Gk

2
, (5)

where the Gk’s (with k = 1, …, 6) are the experimental generators of the cluster 

state [37], listed in the Methods, Section III;

b) The standard witness tailored for our cluster state [38]:

W2 =
1
2

� − |Cl6〉〈Cl6|, (6)

which requires 26 = 64 measurement settings (since |Cl6〉〈Cl6| =
1

26 ∑k = 1
26

S
k
,

analogously to the previous graph state example).

For both witnesses 〈W1〉, 〈W2〉 ≥ 0 for any biseparable state, thus allowing detection of 

genuine six-qubit entanglement. Nevertheless, both can be also used to distinguish fully 

separable and entangled states, i.e. to detect only some entanglement, and the corresponding 

separable bounds can be evaluated numerically [39]. We can then distinguish two types of 

separable bounds: one is the so called biseparable bound pbs, that can be directly extracted 

from our translation protocol and is therefore used for detection of genuine six-qubit 

entanglement, the other one is the fully separable bound pfs, which is evaluated numerically 

and used to detect some entanglement.

Following the procedure shown in the Methods, Section I, we find for W1 the set 

ℳ
W1

= {M1 = ∏
k = 1, 3, 5

� + G
k

2
, M2 = ∏

k = 2, 4, 6

� + G
k

2
}, where M1 and M2 are the binary 

local observables, and the corresponding biseparable bound is pbsW1 = 3/4. For W2, the 

binary observables constituting the set ℳW2 are 
� + S

k

2
 (with k = 1, …, 64) and the 
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biseparable bound is pbsW2 = 3/4 (see the example of the graph state discussed in the 

previous section). The derived fully separable bounds read pfsW1 = 9/16 and pfsW2 = 5/8. 

The entanglement values are peW1 = peW2 = 1.

The experimental setup

The experimental setup used for the cluster state generation is shown in Fig. 3a.

In the Preparation stage, a Ti:Sapphire pulsed laser is temporally multiplexed [40, 41] to a 

repetition rate of 152 MHz with two beam splitters (BSs). It then pumps three identical 

single-photon sources, each built in a Sagnac configuration [42–45]. Each source produces a 

polarization-entangled photon pair at telecommunication wavelengths via collinear type-II 

Spontaneous Parametric Down-Conversion (SPDC), specifically the singlet state 

|ψ−〉
i, j

= (|H
i
V

j
〉 − |V

i
H

j
〉)/ 2, where |H〉, |V〉 denote the horizontal and vertical photons’ 

polarization states and i, j the photons’ spatial modes. A schematic of one single-photon 

source is shown in Fig. 3b (see Methods, Section IV for details). It is possible to switch 

between different Bell states with a half-waveplate (HWP) placed along one photon path 

(see Fig. 3b) and/or by rotating the HWP positioned along the pump path right before the 

source.

In the Generation stage, after switching from |ψ−〉1,2 and |ψ−〉3,4 to |ϕ−〉1,2 and |ϕ−〉3,4, and 

from |ψ−〉5,6 to |ϕ+〉5,6, where |ϕ±〉
i, j

= (|H
i
H

j
〉 ± |V

i
V

j
〉)/ 2, photon pairs from different 

sources interfere at two polarizing BSs (PBSs), at which they are temporally synchronized 

with the help of delay lines placed along the second and third pump paths. A HWP placed in 

the path of the third photon is needed to generate the target cluster state.

In the Detection stage, each photon passes through a tomographic system — composed of a 

motorized quarter-waveplate (QWP) and HWP followed by a PBS — that enables 

measurements in different polarization bases, and is then sent to the detection apparatus, 

which consists of twelve pseudo-number resolving multi-element superconducting detectors 

[46, 47]. Lenses to adjust the beam size, fibers and manual polarization controllers (to 

compensate for polarization changes into the fibers) are not shown in the figure. When the 

HWP in the third photon path is set to perform a Hadamard gate, the simultaneous detection 

of the six photons at the outputs nominally produces the state (4).

Results

For the witness W1, we applied NW1 = 150 different measurement settings that were 

randomly sampled from the set ℳW1. For each measurement setting, we acquired data for 40 

seconds. In order to ensure that our sampling was random, we only analyzed the first six-

photon event in each setting. In 12 of the settings, no six-photon events were detected (see 

Methods, Section IV), resulting in 138 copies of the state being produced. Fig. 4a,b show 

plots of the minimum confidence Cmin(δW1) versus the number of copies N when the fully 

separable bound pfsW1 and biseparable bound pbsW1 are used, respectively. The points are 

obtained by plugging the experimentally observed δW1 into (2) to find Cmin(δW1).
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For the witness W2, we acquired data in the same manner, randomly choosing NW2 = 160 

different measurement settings from the set ℳW2. As before, Fig. 4c,d show the increase in 

the minimum confidence in the full separability (where pfsW2 is used) and biseparability 

(where pbsW2 is used) cases, respectively.

The experimental plots confirm the efficiency of our entanglement verification method by 

showing an exponential growth of the confidence. The insets show that the confidence 

stabilizes towards a certain value with N. For the ideal state (cluster state with fidelity of 1), 

the expression for the minimum confidence in (2) is a monotonic function in the number of 

copies because all the binary outcomes evaluate to 1. However, since usual technical 

imperfections decrease the fidelity, occasional events with the binary outcome 0 can occur at 

random. This will occasionally pull the confidence down, while an outcome 1 will pull it up. 

Obviously, the fluctuations in the confidence values are linked to the number of measured 

copies, such that a higher number of copies suppresses these fluctuations. All of this can be 

seen in Fig. 4.

In Fig. 4a the confidence stabilizes to at least 99.12% with only 36 copies. Already 58 

copies suffice to exclude full separability in the system with at least 99.99% confidence. Fig. 

4b shows verification of genuine six-qubit entanglement with at least 91% confidence with 

75 copies, and already 126 copies suffice to reach at least 97%.

In Fig. 4c we see that only 20 copies suffice to reveal the presence of entanglement with at 

least 99.74% confidence, and 50 copies provide more than 99.99%. Fig. 4d shows that 

biseparability can be excluded with more than 97% confidence with 50 copies, and 112 

copies provide more than 99%. Interestingly, in contrast to the standard witness-based 

method, in this case our protocol works with fewer copies than the total number of 

measurement settings, i.e. 64. As previously discussed, in this last case we can also estimate 

the fidelity F = 〈Cl6|ρexp|Cl6〉 = 0.75 ± 0.06. The different areas marked with different 

colours in both plots and the red dotted lines help the visualization of the different 

confidence levels.

In our new approach we bypass the measurement of mean values. Our results clearly show 

that we are able to detect entanglement with a very high confidence using only a few copies 

of the quantum state. The practicability of our method may prove essential for entanglement 

detection in large-scale systems in future experiments. It should also be advantageous to 

apply our techniques to entanglement verification in other physical systems, such as trapped 

ions [3], superconducting circuits [4], or continuous-variable systems [7–9].

Methods

Section I Formal proof for generic witness translation

Here, we show how to translate any entanglement witness into our probabilistic protocol. 

Conventionally, a witness operator W is normalized such that 〈W〉 = Tr(Wρsep) ≥ 0 for any 

separable state ρsep. An equivalent form reads W = gs� − O, where O is an Hermitian 

operator for which 〈O〉 = Tr(Oρsep) ≤ gs holds for any ρsep [48]. Now, let us consider the 

local decomposition O = ∑
k = 1
q

W
k
, where q is the number of local settings needed to 
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measure 〈O〉. We are free to add a constant term to each local component W
k
′ = W

k
+ a �

such that they become non-negative observables. This transformation leads to the new 

witness O′ = ∑
k = 1
q

W
k
′ = O + aq � . We choose a ≥ 0 to take the minimum possible value. 

Altogether, we can rewrite the separability condition as

O′ = Tr(O′ρsep) ≤ gs + aq . (7)

Our main aim is to test this inequality in practice via our probabilistic procedure. Note that 

this inequality is violated for certain entangled (target) state ρent, i.e. Tr(O′ρent) = ge + aq, 

with ge − gs > 0. We proceed by writing the spectral decomposition W
k
′ = ∑

s = 1

μ
k

λ
ks

M
ks

,

where Mks are eigen-projectors (binary observables), with λks > 0 since Wk’s are non-

negative operators. The number µk counts the non-zero eigenvalues of Wk. Furthermore, we 

define the constant τ = ∑
k = 1
q ∑

s = 1

μ
k

λ
ks

. We have all we need to set up our verification 

procedure. As the Wk’s are local observables, the binary operators Mks’s are local as well. 

They constitute the set ℳ, which contains in total L = ∑
k = 1
q

μ
k
 elements. The probability 

weights for Mks’s are set to εks = λks/τ. For a given copy of a separable state ρsep, the 

probability to obtain success for a randomly drawn measurement Mks from the set ℳ is 

given by

p = ∑
k = 1

q

∑
s = 1

μ
k

εksTr(Mksρsep) =
1
τ

∑
k = 1

q

Wk′ ≤
1
τ

(gs + aq) . (8)

Therefore, the separable bound is given by p
s

=
1
τ

(g
s

+ aq) . Clearly, for the target state 

preparation we obtain p
e

=
1
τ

(g
e

+ aq) with the strict separation δ0 = pe − ps = (ge − gs)/τ > 0. 

Once we have defined the set ℳ and found ps, we can apply the protocol illustrated in Fig. 1 

and find the minimum confidence for detecting quantum entanglement. We would like to 

point out that our protocol could possibly be applied to the device-independent entanglement 

witnesses as well. In this case our procedure would need to be adapted to a device-

independent framework.

Section II Scaling of resources with the size of the system

The example of the graph state discussed in the section “Translating entanglement witnesses 

into the probabilistic framework” shows a constant gap between ps and pe that does not 

depend on the number of qubits n. For this reason, the number of required copies needed to 

achieve a certain confidence does not grow with the number of qubits (we recall that only 16 

copies are required to achieve 99% confidence, regardless of the number of qubits). In this 

case, the standard witness-based approach would require 2n measurement settings, and each 

setting would demand a large number of copies, whereas our procedure provides reliable 

detection with a constant overhead. Thus, our method applies even if the number of settings 
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exceeds the number of available copies. A further reduction of copies (even to a single one) 

was shown for certain classes of large multi-qubit states [34]. More precisely, in [34] 

examples were presented with ps = e−αn (where α is a constant), which vanishes 

exponentially fast in n, while maintaining pe constant in n. In this case, we can approximate 

K ≈ 1/(αn), thus even a single copy of the quantum state suffices to verify entanglement 

with high confidence (provided that n is sufficiently large). On the other hand, as long as δ0 

does not vanish when increasing the system size, we still have exponential efficiency of the 

procedure at the constant rate K. Finally, an interesting case occurs if δ0 approaches zero as 

we increase the number of qubits. In this case, we can approximate K ≈
2p

s
(1 − p

s
)

δ0
2

, leading 

to Nmax ≈ −
2p

s
(1 − p

s
)

δ0
2

log(1 − C0) . Therefore, as long as δ0
−2 grows moderately in n, the 

procedure remains resource-efficient as the size of the system grows.

Section III Generators of the six-qubit cluster state and witness decomposition

Our six-qubit cluster state (4) is uniquely defined by the following six generators [37]:

G1 = Z1Z2, G2 = X1X2X3Z5, G3 = Z2Z3

G4 = Z4Z5, G5 = Z2X4X5X6, G6 = Z5Z6,
(9)

where X and Z are two of the standard Pauli operators. From this set, we can construct all 

the products of Gk’s, and there are in total 26 = 64 independent operators which are called 

stabilizers. This witness allows one to combine three of the six generators of the cluster state 

into one measurement setting, reducing the number of measurement settings from six to two. 

To translate the witness W1 (see main text) into our procedure, we start with 

O = 2 ∏
k = 1, 3, 5

� + G
k

2
+ ∏

k = 2, 4, 6

� + G
k

2
 and gs = 3. The witness O is already in the 

spectral form with M1 = ∏
k = 1, 3, 5

� + G
k

2
 and M2 = ∏

k = 2, 4, 6

� + G
k

2
 with eigenvalues +1, 

therefore a = 0. We get τ = 4 and the sampling is uniform from the set ℳW1 = {M1, M2}. For 

the biseparable bound we clearly get pbsW1 = 3/4. For full separability, we used the 

algorithm presented in [39] to obtain pfsW1 = 9/16.

The translation procedure for the witness W2 is explained in detail in the main text. For this 

witness we obtain a biseparable bound of pbsW 2 = 3/4. Also in this case, we numerically 

found the fully separable bound to be pfsW 2 = 5/8.

Section IV Experimental details

We implement the random measurements Mk’s with our tomography setup. We only analyze 

measurement results consisting of six-fold coincidence events. When more than one six-fold 

event is detected during the same measurement setting, we only use the first coincidence 

event, to ensure that only one copy of the state is used per measurement. We will now give a 

detailed explanation of Fig. 3a, providing a technical overview of our setup.
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Preparation stage—A mode-locked Ti:Sapphire Coherent Mira 900 laser emits pulsed 

light at a repetition rate of 76 MHz and at an average power of 1.2 W. The pulses have a 

central wavelength of 772.9 nm and a duration of 2.1 ps. The first two BSs along the pump 

path are used to double the repetition rate of the laser and decrease at the same time the 

power of each pulse, such that unwanted contributions from SPDC higher-order emissions 

are reduced [40]. This approach is referred to as passive temporal multiplexing [41]. One 

output of the second BS is sent to a third BS, which equally splits the pump power. The 

other one passes through a HWP and a PBS, wherein the reflected port is stopped by a beam 

block. This allows us to adjust the pump power along this path if needed. The two output 

beams from the third BS and the one from the PBS go through a HWP and a QWP so that 

polarization can be adjusted, and are then used to pump three single-photon sources. Delay 

lines in the second and third beam paths are needed later for temporal synchronization. A 

photon pair is generated from each source via collinear type-II SPDC from a 30 mm long 

periodically poled KTiOPO4 (PPKTP) crystal placed into a Sagnac interferometer, which 

has the advantages of compactness and phase stability. A schematic of a single-photon 

source is shown in Fig. 3b. It is composed of a dichroic mirror (DM) reflecting the pump and 

transmitting the photons, a dual PBS (DPBS) and a dual HWP (DHWP), which work for 

both pump and photon wavelengths, and a PPKTP. The crystal temperature set to 24° 

enables photon wavelength degeneracy at 1545.8 nm. The photons generated from the 

crystal pass through ultra-narrow filters with a bandwidth of 3.2 nm that improve their 

spectral purity and are eventually coupled into single-mode fibers, not shown in the figure. 

The residual pump beam is removed using longpass filters.

Generation stage—Each pair of photons coming from different sources is sent to a PBS, 

at which it has been temporally synchronized using the delay lines discussed above. The 

photons exit in fibers — not shown in the figure — and propagate in free space through the 

PBSs, before being coupled into fibers again. A HWP placed along the third photon path is 

used to generate the cluster state.

Detection stage—Photons from each output go to free space again and then pass through 

a system composed of a motorized QWP and HWP followed by a PBS. They are eventually 

re-coupled into fibers and sent to a detection system composed of 12 multi-element 

superconducting detectors. Each multi-element detector is made up of four nanowires on the 

same chip, allowing for a pseudo-number resolution and a high detection efficiency (0.87 on 

average at around 1550 nm). The detectors operate at a temperature of 0.9 K. Photon 

coincidences are registered using a custom 64-channel time-tagging and logic module.

Our six-fold coincidence rate is primarily affected by coupling losses in the Generation stage 
coming from the propagation of the photons in free space through the PBSs before being 

coupled again into fibers and filter imperfections. As coupling losses are largest in the 

second source, we doubled the second source pump power by rotating the HWP placed 

before the PBS in the Preparation stage to compensate. Our final six-fold rate is around 0.1 

Hz. To maximize the probability that each measurement detects at least one copy of the state 

in every basis, we set the measurement time to 40 seconds. The tomography waveplates are 

automatized using PCB motors.
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Fig. 1. Illustration of the entanglement detection protocol.
The first step consists of randomly drawing from the set ℳ the measurements Mk’s N times. 

Next, they are applied to the experimental state ρexp, which then returns binary outcomes 1 

or 0 (success or failure, respectively). The superscripts in ρexp account for possible 

variations of the state due to experimental imperfections. After N runs, the protocol returns S 
successful outcomes. If the deviation δ = S/N − ps > 0, entanglement is verified in the 

system with a confidence of at least Cmin(δ). Otherwise, the protocol is inconclusive.
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Fig. 2. Schematic of an H-shaped six-qubit cluster state.
The standard way to represent a graph state is to draw a set of vertices and edges. Each 

vertex is drawn as a disk representing a single qubit prepared in the eigenstate |+〉 of the 

Pauli operator X. Edges are solid lines representing pairwise controlled phase gates applied 

to the connected qubits. As a result of the application of these gates, entanglement is created 

between the linked qubits.
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Fig. 3. Experimental setup.
(a) A picosecond Ti:Sapphire laser outputs a beam that is temporally multiplexed to double 

the repetition rate and reduce contributions from unwanted SPDC high-order emissions. Two 

beams, equally split at the third BS, pump the first and third single-photon source, while the 

beam exiting the right output of the second BS passes through a HWP and a PBS before 

pumping the second source. In this way the power of the second source can be tuned. 

Movable translation stages are used as delay lines for temporal synchronization. A HWP and 

a QWP are placed along each beam path to set the needed polarization. Each beam pumps a 

single-photon source, which emits a polarization-entangled photon pair via type-II SPDC. At 

each PBS, two photons from different sources interfere. All the photons are then sent to a 

tomographic system composed of a QWP, a HWP and a PBS. Eventually, photons exiting 

both outputs of the PBSs reach the single-photon detectors. (b) Schematic of a single-photon 

source. A PPKTP crystal placed into a Sagnac interferometer is used to generate single 

photons. DM, Dichroic Mirror; DPBS, Dual wavelength PBS; DHWP, Dual wavelength 

HWP. Narrow-Band and Longpass filters are respectively used to increase the spectral purity 

of the photons and cut the residual pump.
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Fig. 4. Growth of confidence of entanglement with the number of copies of the quantum state.
Blue dots represent Cmin extracted from (2). (a), (b) show the results for the witness W1, (c), 
(d) for the witness W2. (a) and (c) show the minimum confidence when the fully separable 

bound is used (meaning Cmin(SW1/N − 9/16) and Cmin(SW2/N − 5/8) for (a) and (c), 
respectively) and (b), (d) are extracted by using the biseparable bound (meaning 

Cmin(SW1/N − 3/4) and Cmin(SW2/N − 3/4), respectively). δW1 and δW2 are positive for all 

the points in the four plots. The region in which the confidence stabilizes is highlighted and 

shown in the insets, where areas marked with different colors indicate different thresholds 

for the confidence level. Red dotted lines emphasize the different levels.
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