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Liquid-phase NMR is a general-purpose testbed for developing methods of coherent control relevant to
quantum information processing. Here we extend these studies to the coherent control of logical qubits and in
particular to the unitary gates necessary to create entanglement between logical qubits. We report an experi-
mental implementation of a conditional logical gate between two logical qubits that are each in decoherence-
free subspaces that protect the quantum information from fully correlated dephasing.
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I. INTRODUCTION

Experimental implementations of quantum information
processors have reached sufficient complexity that it is now
possible to experimentally explore the avoidance and correc-
tion of quantum errors by encoding quantum information.
These information encoding methods include active tech-
niques, like quantum error-correcting codes �QECCs� �1–5�
and dynamical decoupling �6–9�, and passive techniques,
such as decoherence-free subspaces �DFSs� �10–12�, noise-
less subsystems �NSs� �13�, and topological schemes �14�. To
date the ability to store information �15–19�, to perform uni-
versal quantum operations �20�, and to implement simple
two-qubit algorithms within a variety of logical encodings
�21,22� has been demonstrated.

Entanglement, a uniquely quantum resource, enables
many of the speedups afforded by quantum information pro-
cessing �QIP� including many-body physics simulations
�23,24� exponential algorithmic enhancements �25�, metrol-
ogy �26�, and communication �27�. Creation of entangled
quantum states continues to drive experimental research in
quantum information �28–31� and has served as a benchmark
for coherent control. Here we combine the two concepts of
logical qubits and entanglement creation to prepare a
pseudopure version of a Bell state between logical qubits.

Control of encoded qubits must naturally respect the sym-
metries involved in the encoding. In the simplest case, this is
achieved by having the control Hamiltonians commute with
the noise generators �8�. When this is not experimentally
possible or is inconvenient, high fidelity control is achievable
via modulation schemes that limit the encoded information’s
excursion out of protected subsystems to times short com-
pared to the noise correlation time �32�.

This paper focuses on experimental implementations of
the modulation sequences studied in �32� for creating en-
tanglement among logical qubits, specifically creating a logi-
cal Bell state between a pair of DFS qubits immune to col-
lective dephasing. Furthermore, we perform our
entanglement creation gate on two distinct initial states: �i� a
pseudopure state effectively pure over the entire four-qubit

Hilbert space and �ii� a subsystem pseudopure state �see fol-
lowing paper �48��. We also give an analysis of the quantum
state correlations given these two input states and identify
the largest errors in implementing this gate.

II. LOGICAL BASIS ENCODING

Using the open quantum system approach, we model the
total Hamiltonian of our system and environment as

H = HS � 1E + 1S � HE + HSE, �1�

where HS is the nuclear spin system Hamiltonian, HE is the
environment Hamiltonian, and HSE describes the system-
environment coupling. For this example we choose an en-
coding for a simple noise model, collective �z noise, which
corresponds to random fluctuations of the local magnetic
field Bz. Defining the total angular momentum of the system
as Jz=�i=1

N �z
i , the interaction Hamiltonian is

HSE = �Jz � Bz. �2�

The potential errors that the coupling to the magnetic
fields can induce belong to the interaction algebra Az
= �1 ,Jz ,Jz

2 , . . . ,Jz
N� �20�. In the two spin case �N=2�, the

eigenspace of the noise operator Jz with eigenvalue 0 is a
C2�C2 decoherence-free subspace and can be used to en-
code one qubit of information. This DFS is thus spanned by
the basis vectors �01	 and �10	. A natural encoding of a logi-
cal qubit ��	L is given by

��0	L + ��1	L ⇔ ��01	 + ��10	 . �3�

The logical analogs of spin operators �x, �y, �z, and 1, which
fully parametrize a single qubit, are

�z
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�z
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2

2
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1�x
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1�y
2

2
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2

2
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1�x
2

2
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Furthermore, it will be convenient to describe conditional
logic using the logical idempotent operators

E±
L ⇔

1L±�z
L

2
=

11,2 − �z
1�z

2 ± �z
1 	 �z
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4
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In the four-spin case �N=4� the Jz eigenspace with eigen-
value 0 is spanned by six basis vectors: �0011	, �0101	,
�0110	, �1001	, �1010	, and �1100	. Any four of these states
can span a C4�C4 subspace containing two logical qubits of
information. We chose the basis �0101	, �0110	, �1001	,
�1010	. In addition to being immune to fully correlated
dephasing under Jz, these states are also immune to pairwise
collective dephasing under noise generators jz

12=�z
1+�z

2 and
jz
34=�z

3+�z
4. The protected subspace is thus a tensor product

space of two qubits of the form �3�.

III. IMPLEMENTING ENTANGLEMENT CREATION
GATES ON A QUANTUM SYSTEM

Given a fiducial state in the computational basis, applying
a Hadamard gate and subsequently a controlled-NOT �CNOT�
gate creates one of the four Bell states. The creation of a
logical Bell state amounts to implementing logical versions
of Hadamard and CNOT gates. The Hadamard gate on a logi-
cal qubit is specified, up to a global phase, as

iUH = i
�x

L + �z
L


2
= e−i�
/8��y

L
e−i�
/2��x

L
ei�
/8��y

L
. �6�

The unitary operator for implementing a CNOT gate can be
decomposed into a product of unitary operators of the form
of single logical spin rotations and couplings of the ZZ form:

UC0NOT = E+
1L�x

2L + E−
1L12L

=ei�
/4�11L12L
e−i�
/4��y

2L
e−i�
/4���z

1L+�z
2L�e−i�
/4��z

1L�z
2L

ei�
/4��y
2L

.

�7�

By expanding each of the exponentials above using the
logical Pauli operators �4�, many simplifications are possible.
For instance, when a logical operator consists of a sum of
commuting bilinear terms, it may suffice to drop all but one
of the terms in the sum and add a constant scaling factor
provided this simplified unitary has the same effect as the
full unitary on a state within the logical encoding. One ex-
ample is the isomorphism between a rotation of 
 /2 about
�x

1L and a 
 rotation about �x
1�x

2 or �y
1�y

2:
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Here the last lines in �8�–�10� are all equivalent. The =L

operation keeps only the terms that act within the logical
subspace. Explicitly, the logical basis states are eigenstates of
the �z

1�z
2 operator with eigenvalue −1; likewise, the eigen-

values of �±
1�±

2 are all zero. Using the following substitutions
the net unitary of a Hadamard gate and a CNOT gate can be
decomposed into four separate logical operations �up to a
global, unobservable phase�, each consisting of a 
 /2 rota-
tion about a single bilinear term:

UC0NOTUH ⇔ ei�U4U3U2U1, �11�

U1 = e−i�
/4��y
1�y

2
, U2 = e−i�
/4��y

3�y
4
,

U3 = e−i�
/4��z
2�z

3
, U4 = e−i�
/4��x

3�y
4 �12�

The �� ·�� interaction present in the internal Hamiltonian
provides a means to perform �x

L rotations, but this is efficient
only when the chemical shift differences ��
i−
0 � � are sup-
pressed. When the chemical shift differences are non-
negligible a Carr-Purcell �CP� style sequence can be used to
engineer a �� ·�� interaction �32,33�. By applying collective 

rotations on a pair of spins comprising a logical bit, the
chemical shift terms can be averaged to zero, retaining the
ZZ term to first order. Staggered 
 rotations on the spins of
the other logical bit are applied in a manner to refocus all
operators in the Hamiltonian associated with these spins �see
Fig. 1�.

To generate a �x
1L coupling, we first generate the zeroth-

order average Hamiltonian Z12��
 /2�J12�z
1�z

2 �34,35� by
employing a CP-like sequence:

�12 − 
�x1,2,3 − �12 − 
�
x

1,2,4
− �12 − 
�x1,2,3 − �12 − 
�

x

4
.

�13�

�Note the notation ���
k �exp�−i�� /2��k��

k �.� The effective
unitary propagator to zeroth order is U�0�=e−4i�12Z12.

By applying “collective” 
 /2 rotations about x̂ before the
above sequence and a 
 /2 rotation about −x̂ after, the aver-
age Hamiltonian is transformed into �y

1�y
2 which has the

same action as a �x
1L. Similarly, if the rotation axes are sepa-

rated by 
 /2 �i.e., a ŷ-phased pulse on one of the spins in the
logical pair and an x̂-phased pulse on the other�, an operator

H
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90x x x 90xx

x
1,L

σ
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FIG. 1. From left to right: Entangling circuit on logical qubits
and corresponding logical pulses and the pulse sequence imple-
menting the �x

1L logical rotation on the physical qubits.
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isomorphic to �y
1L is achieved. The logical “two-body”

interaction—�z
1L�z

2L—acting on the encoded subspaces is
isomorphic to �z

1�z
3. We obtain this by using �13� and replac-

ing spin 2 with spin 3. Each of the four rotations in �12� can
be generated in this manner yielding an overall sequence

�
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2
�

x

3�


2
�

y

4

− Z34 − �


2
�

x̄
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2
�

ȳ

4

, �14�

where Z jk denotes the subsequence generating Z jk and set-
ting � jk= �2Jjk�−1.

IV. EXPERIMENT

Our quantum system is comprised of the four 13C spins
�I= 1

2
� of isotopically labeled crotonic acid �also known as

trans-3-butenoic acid� �36�. This molecule contains nine
magnetically active nuclei in total; the total spin system
Hamiltonian takes the form

Hinternal =
1

2 �
i�C

�
i − 
0
C��z

i +
1

2 �
k�H

�
k − 
0
H��z

i

+ �
i,j�C;i�j




2
Jij��

i · �� j + �
k,l�H;k�l




2
Jkl��

k · �� l

+ �
j,k;j�k




2
Jjk�z

j�z
k, �15�

where 
0
C �
0

H� is the rotating-frame frequency near the
13C �1H� Larmor frequency, the 
i are the chemical shifts of
the four carbon nuclear spins, the 
k are the chemical shifts
of the five hydrogen nuclear spins, and the six Jij �ten Jkl� are
the scalar coupling constants between two carbon �two hy-
drogen� spins �as usual, �=1�. We are mainly concerned with
coherently controlling the carbon subsystem of spins and
seek to suppress the proton subsystem. As the heteronuclear
scalar couplings �terms Jj,k� are the only means of mixing the
two subsystems, a broadband decoupling sequence modulat-
ing the proton spin system effectively removes this coupling
during the experiment. In practice, decoupling the proton
spin system is equivalent to saturating the populations of the
proton spins. One potential artifact of this approach is the
introduction of transient nuclear Overhauser effects �37–40�.

A. Pseudopure states over the entire Hilbert space

Starting with the equilibrium density matrix of the four-
spin system, ��1 /N−��� j

N�z
j�, we prepared our system in

the dual DFS ground state �0101	= �00	L using spatial aver-
aging techniques �41,42�. As shown in Fig. 2, the preparation
of the encoded logical state is complex and requires a prepa-
ration time of 0.1186 s relative to the total experiment length
of 0.1662 s. The T2’s of the carbons are all greater than
500 ms �43� and therefore spin-spin relaxation is unimpor-
tant over the length of the experiment. Since pseudopure-
state preparation is a nonunitary, completely positive map, a

loss of observable signal is expected. In our implementation
of pseudopure-state preparation the signal is roughly 2/13
that of the equilibrium state.

All qubit rotations �selective, semiselective, or collective
for all spins� were created using robust strongly-modulating
pulses �SMPs� �44,45� by maximizing the gate fidelity of the
ideal propagator to the simulated propagator. Furthermore, as
the radio frequency �rf� control fields are inhomogeneous
over the sample, we maximize the effective gate fidelity, av-
eraging over a weighted distribution of rf field strengths.
Pulse lengths for this system range from 200 to 800 �s; the
simulated gate fidelities for any individual pulse are greater
than 0.99%. The dominant source of residual errors in a typi-
cal SMP come from two-body terms of the form ��

j ��
k. After

many pulses these small residual errors accumulate, but the
net effect can be partially suppressed by adjusting the delay
time between pulses �46� to optimize the overall gate fidelity
or state correlation. The required 
 /2 rotations about the
logical operator axes were obtained by implementing the se-
quence in �13� and setting � jk=1/2Jjk. In principle, we
would like to repeat the sequence N times and scale � by a
factor of 1 /N in order to induce a rapid refocusing of the
noise; however, in practice � is limited by the length of the
semiselective pulses. For all of the logical rotations imple-
mented experimentally, we use N=1.

The density matrices of the spin system after the initial
pseudopure preparation and after the entanglement creation
were reconstructed using state tomography �47�, which in-
volves applying 18 readout pulses to obtain coefficients for
the 256 operators comprising a complete operator basis of
the four spin-1

2
13C nuclei.

B. Subsystem pseudopure states

As shown in the following paper �48�, for mixed-state
ensemble quantum information processing there are advan-
tages to requiring the initial state to be pure only over the
subsystem containing the relevant quantum information.
Here we implement the entangling operation over logical
qubits using the double DFS initial state described in �48�.

π/2

π/2

γ

α

C1

C4

C3

C2

π/2 β

π/2 π/2

π/2

FIG. 2. Circuit for the preparation of the pseudopure state. We
represent single-qubit rotations by square boxes; controlled rota-
tions by closed circles on the controlling qubit linked to the applied
rotation on the controlled qubit; SWAP gates by two crosses on the
swapped qubits, connected by a vertical line; nonunitary operations
�gradients� by double vertical bars. Notice the number of controlled
operations, each requiring a time of the order of the inverse cou-
pling strength, and SWAP gates, each requiring three times the in-
verse coupling strength. The single-qubit rotations above have the
values ��9/20
, ��2/5
, and ��2/7
 which account for the
scaling of the signal-to-noise compared to the equilibrium state.
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This state �Fig. 3� can be prepared in half the time of the full
pseudopure state �0.0568 s� and has a smaller loss of signal
�2/3 compared to 2/13�.

C. Density matrix reconstruction

The reconstructed density matrices are shown in Figs. 4
and 5, where the vertical axes show the normalized ampli-
tude and the horizontal axes label the basis states in the com-
putational basis �i.e., �0000	,�0001	,…�. The effects of deco-

herence while performing the entangling operation can be
qualitatively seen in the final state as an attenuation of the
off-diagonal terms of the Bell state ��01	L+ �10	L� /
2. Such
attenuation does not alter this state’s protection against col-
lective dephasing. Also, we note that this particular Bell state
���01	+ �10	� /
2� is immune to collective dephasing under
the noise generator jz

12 but the Bell states ��00	± �11	� /
2 are
not.

V. DISCUSSION

Metrics of control

The quantum process associated with the encoded entan-
gling operation can be specified by the general map

E��� = �
�

A��A�
† , �16�

where A� are Kraus operators describing the experimental
implementation of the encoded operation, and � is defined
over the entire Hilbert space. If the process consists of
strictly coherent dynamics a single Kraus operator defines

π/2

π/2

π

π

π/3

π/3

C1

C4

C3

C2

π/2

π/2

FIG. 3. Circuit for the preparation of the subsystem pseudopure
state. We use the same convention as in Fig. 2.
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FIG. 4. �Color online� Density matrices for the initial
pseudopure state over only the logical subspace �a� and the corre-
sponding Bell state �b�. The darker part indicates the states in the
logical subspace. In the case of the subsystem pseudopure states,
the division of the logical subspace allows for the other areas of
Hilbert space to be mixed.
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FIG. 5. �Color online� Density matrices for the initial
pseudopure state over the entire Hilbert space �a� and the corre-
sponding logical Bell state �b�. The basis states comprising the dual
DFS have been darkened.
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the operation: A0=U. The correlation of two quantum states
is defined as

C =
Tr��id�expt�


Tr��id
2 �Tr��expt

2 �
�17�

which defines the relative closeness of states in Hilbert space
with proper normalization. Here �id=U�inU†, �expt=E��in�,
and �in define the ideal, experimental, and input states, re-
spectively. The closeness of the ideal state to the experimen-
tal state measures how well we have implemented the logical
entangling operation for a particular input state.

When the quantum process E includes incoherent and de-
coherent dynamics, the purity �Tr��2�� of the experimental
state �expt is less than that of the initial state �in. In this case,
one can define an attenuated correlation C�=�C where the
attenuation coefficient is defined as

� =
Tr��expt
2 �

Tr��in
2 �

. �18�

When the relevant quantum information resides only in a
subspace, we can also measure the correlation inside this
subspace by applying the projectors spanning the subspace
�PL� to the state �48�

CLL��� =

Tr�PL�thPL�
�

A�PL�inPLA�
† �


Tr��PL�inPL�2�Tr��PL�thPL�2�
. �19�

This measure is important when creating subsystem
pseudopure states, where nonzero contributions to the den-
sity operator outside the logical subspace contribute to C.
The logical subspace correlation CLL is identical to the full
Hilbert space correlation C provided that �in= PL�inPL and
�id= PL�idPL, which should be the case for a full pseudopure
state �FPPS�.

Since the experimental implementation of the pulse se-
quence used to generate logical entanglement is independent
of the initial state, we can use both initial states and the
aforementioned measures to gauge our control of the logical
subspace. When these measures differ with different initial
states we reveal several key features of the experimental
implementation not accounted for in the simulation.

With respect to a simulation of the NMR system over four
spins, the sequence generates the desired logical entangle-
ment with high fidelity regardless of initial state. For ex-
ample, in comparing the full pseudopure state and the sub-
system pseudopure state �SPPS�, we see that the correlation
between the ideal state and the simulated state �Csim� are
nearly unity and differ from each other by only 1%. The
resulting simulated correlations of the full and subsystem
pseudopure Bell states �FPPBS and SPPBS, respectively�,
also differ by only 1% and are quite close to unity. Last, the
attenuation coefficients differ by 2%. As the simulations do
not take into account any decoherent or relaxation processes
�T1, T2, Overhauser effects, etc.� any reduction in purity is
due solely to the simulation of rf inhomogeneity, an incoher-
ent process.

In comparing the experimentally measured density opera-
tor with the simulations we can quantify our ability to ex-
perimentally create the desired initial state, implement our
entangling operation, and see the effects of decoherence on
the system. First, we see that the correlation of the SPPS is
6% higher than that of the FPPS when measured over the
entire Hilbert space �Cexpt� but equal and nearly unity when
the states are projected onto the logical subspace �CLL�. This
apparent discrepancy represents errors due to unwanted, non-
zero contributions to the density operator outside the logical
subspace since Cexpt=� jk� jkCjk where Cjk represent correla-
tions for blocks of the density operator and � is a weighting
factor summing to unity �� jk� jk=1� �48�. To illustrate this
aspect, we can calculate CRR, �LL, and �RR for both initial
states �see Tables I and II�.

For the SPPS, CRR=0.97, �LL=0.38, and �RR=0.61.
Whereas for the FPPS, CRR�0.45, �LL�0.89, and �RR
=0.05. �For the ideal SPPS �LL should be 4/9 and �RR
should be 5/9; for the ideal FPPS �LL should be 1.� The Cexpt
value for the SPPS is much higher than that of the FPPS due
to having near unit values for both CRR and CLL and �LR
�0. Physically, this emphasizes the advantages of using a
simpler initial state. For the FPPS we must create a total
density operator with equal weightings of the many-spin cor-
relations like �z

1�z
2�z

3�z
4 and all the combinations of �z

1�z
2�z

3

TABLE I. Experimental and simulated data for the implementa-
tion of the encoded Bell state propagator. Experimental errors of
�4% can be attributed to systematic errors in the fitting algorithm
used to reconstruct the density matrix from NMR spectral data. Csim

represents the correlation between simulation of the NMR spin sys-
tem and the ideal state, taken over the entire Hilbert space. Cexpt

compares this same simulation of the experiment to the experimen-
tal tomography reconstruction of the state, in the entire Hilbert
space. CLL measures the correlation between the simulated and ex-
perimental states projected onto the logical subspace.

Quantum state Csim Cexpt cLL

Full pseudopure state 0.98 0.91 0.99

Full pseudopure Bell state 0.96 0.74 0.95

Subsystem pseudopure state 0.99 0.97 0.99

Subsystem pseudopure Bell state 0.97 0.87 0.91

TABLE II. Attenuation coefficients for encoded Bell states.
These values represent a loss of purity in implementing a sequence
of gates for entangling logical qubits. �sim shows the attenuation of
the ideal encoded Bell state of a NMR simulation including coher-
ent and incoherent processes only, normalized to the initial-state
purity. �expt shows the loss of purity between the experimental ini-
tial state and final states, reconstructed using state tomography. �LL

shows the loss of purity for the projection of these experimentally
reconstructed states onto the logical subspace. Values less than
unity indicate a loss of coherence in the spin system.

Quantum state �sim �expt �LL

Full pseudopure Bell state 0.97 0.78 0.65

Subsystem pseudopure Bell state 0.95 0.87 0.72
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between four spins starting from the thermal state: � j=1
4 �z

j. In
the SPPS only terms involving classical correlations between
two spins �like �z

1�z
3� are necessary. The primary source of

error in creating pseudopure states over the entire Hilbert
space are these many-spin correlations of the initial state,
thus accounting for the lower CRR contribution to the FPPS.

Next, we address our ability to experimentally implement
encoded quantum operations by analyzing the different cor-
relations of the FPPBS and the SPPBS. Since we use exactly
the same pulse sequence to transform the FPPS to the FPPBS
as we do for transforming the SPPS to the SPPBS, we would
naively suspect the trends for the initial states to follow for
the logical Bell states. However, the correlation between the
experiment and the simulation for the SPPBS is roughly 18%
better than that of the FPPBS. The fact that the FPPS and the
SPPS are different states within the entire Hilbert space ac-
counts for this: contributions from CRR improve Cexpt for
subsystem pseudopure states. By calculating the projected
correlations and weighting factors, we see that Cexpt for the
SPPBS is bolstered by CRR, as CRR=0.91, �RR=0.64, and
�LL=0.31. For the FPPBS, CRR=0.41, �RR=0.06, and �LL
=0.74; as with the full pseudopure initial state, small errors
outside the logical subspace considerably decrease the corre-
lation over the entire Hilbert space. Furthermore, the pulse
sequence seems to favor the SPPS state, as the purity ��expt�
of the SPPBS is larger than the FPPBS. Again, this behavior
indicates the presence of many-spin correlations in full
pseudopure states, as these correlations can develop extended
and fragile quantum coherences, decohering faster than a
single spin or a single logical qubit.

Finally, if we consider the evolution in the logical sub-
space only, we find that CLL is quite high for both the FPPBS
and the SPPBS: 0.95 compared to 0.91, respectively. Though
slightly different from the simulations, the two states are
comparable as the correlation within the logical subspace
between the experimentally measured FPPBS and the experi-
mentally measured SPPBS is 0.97. This indicates that our
control sequence will transform information within the logi-
cal subspace in a nearly identical manner, unbiased toward
the information outside the logical subspace. In summary, we
see that for a given implementation of the logical entangling
operation, we can learn about the experimental imperfections
by preparing two states that are both pure within a given
subspace but each different outside of this subspace. In par-
ticular, when considering the loss of purity and the correla-
tion with the logical subspace, a subsystem pseudopure state
outperforms a full pseudopure state when comparing the
measured initial and final states to simulations.

VI. CONCLUSION

Using a two-physical qubit encoding which protects
against collective dephasing, we have shown how to imple-

ment quantum gates between logical qubits using effective
Hamiltonians. It is important to stress that when selecting a
protection scheme against decoherence the ability to encode
a physical qubit into a logical qubit with high fidelity is not
sufficient for computation. While we have demonstrated con-
trol over a pair of logical qubits, the coding we have chosen
is not particularly relevant to the actual noise generators of
our physical qubits. This example should be seen as an in-
stance of NMR as a testbed for quantum information pro-
cessing. The logically encoded Bell state actually decoheres
faster than would the equivalent Bell state between two of
the physical spins in our system.

The structure of the external and natural Hamiltonian
plays an important role in the control of logical qubits, as the
operators needed to implement gates may not be present and
generating them may drive the information out of the sub-
system. For large systems with significant symmetry �like
quantum dots under the exchange interaction �49�� or ex-
ceedingly small systems �20�, the structure of the natural
Hamiltonian can provide the logical operations in itself.
However, for systems of intermediate size �most relevant to
the present implementations of quantum information proces-
sors� implementing quantum gates among logical qubits re-
quires both a precise knowledge of the natural Hamiltonian
and a complete set of control parameters to ensure no leak-
age from the protected subsystem or subspace. For example,
if our four-qubit system were composed of two proton spins
and two carbon spins, each individual species could be
modulated separately, thus doubling the number of control
parameters in the external Hamiltonian and limiting the leak-
age of the information from the subspace.

Our selection of logical qubits comprised of only two
physical qubits limits our logical operations for single qubit
and two-qubit interactions to only “two-body” operators. If
instead we were to attempt a repetition of the experiment
where the logical qubits were encoded under the three-qubit
noiseless subsystem �16�, the single-qubit and two-qubit ro-
tations would involve “three-body” operators �50�—quite
unlikely to be found in a natural Hamiltonian. In such a
scenario, the ability to implement logical operations would
necessarily need to come from a modulation sequence, ap-
propriately chosen to avoid leakage from the subsystem.
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