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Experimental Implementation of Fast Quantum Searching
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Using nuclear magnetic resonance techniques with a solution of chloroform molecules we implement
Grover’s search algorithm for a system with four states. By performing a tomographic reconstruction
of the density matrix during the computation good agreement is seen between theory and experiment.
This provides the first complete experimental demonstration of loading an initial state into a quantum
computer, performing a computation requiring fewer steps than on a classical computer, and then
reading out the final state. [S0031-9007(98)05850-5]
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The study of computation in quantum systems began
with the recognition of the theoretical possibility [1–3].
This was followed by a series of results leading up to
proofs that a quantum computer requires fewer operations
than a classical computer for problems including factoring
[4] and searching [5,6]. Appreciation of the power
of quantum computing was quickly tempered by the
realization that preserving quantum coherence made the
implementation of practical quantum computers appear to
be unlikely [7–9].

Two recent developments have changed that conclusion.
The first is the recognition that quantum error correction
can be used to compute with imperfect computers [10,11].
And the second is that it is possible to decrease the
influence of decoherence by computing with mixed-state
ensembles rather than isolated systems in a pure state.
This can be done by introducing extra degrees of freedom
[12] using quantum spins [13], space [14], or time [15]
to embed within the overall system a subsystem which
transforms like a pure state. We apply these ideas here in
the first experimental realization of a significant quantum
computing algorithm, using nuclear magnetic resonance
(NMR) techniques to perform Grover’s quantum search
algorithm [5,6].

Classically, searching for a particular entry in an
unordered list of N elements requires O sNd attempts.
The list could be stored as a table, such as finding a name
to go along with a phone number in a phone book, or
computed as needed, like testing possible combinations
to unlock a padlock. Grover’s surprising result is that a
quantum computer can obtain the result with certainty in
O s

p
Nd attempts.

The simplest interesting application of Grover’s algo-
rithm is the N ­ 4 case, which can be posed as follows:
on the set x ­ h0, 1, 2, 3j a function fsxd ­ 1 except at
some x0, where fsx0d ­ 21. How many evaluations of
f are required to determine x0? In the worst case, x0 has
a uniform probability of being either 0, 1, 2, or 3, and
so the average number of evaluations required classically

is 9y4 ­ 2.25. With a quantum computer using Grover’s
algorithm, this is reduced to a single evaluation. We have
experimentally implemented this case using molecules of
chloroform as a quantum computer, and confirmed the pe-
riodic behavior expected of the algorithm.

The algorithm works by representing x as a pair of two-
state quantum systems. We take these to be the spins
of the carbon and hydrogen nuclei, writing j "l ­ j1l
and j #l ­ j0l. The function fsxd is implemented as a
unitary transform that flips the phase of the x0 element.
If the operator corresponding to x0 ­ 3 is applied to the
superposition jc0l ­ sj00l 1 j01l 1 j10l 1 j11ldy2 the
result is sj00l 1 j01l 1 j10l 2 j11ldy2. Measurement
of this state is not useful because each answer occurs
with equal probability. Grover’s algorithm amplifies the
correct answer by following the conditional flip with a
second operation that inverts each state about the mean.
Applied to a superposition

P

k akjkl this step gives a new
state

P

k bkjkl with bk ­ 2ak 1 2kal, where kal is the
mean value of ak . For N ­ 4 and x0 ­ 3 the result
of the conditional flip followed by the inversion about
the mean is the state jc1l ­ j11l, providing the answer
immediately. For general N , about p

p
Ny4 repetitions of

these two steps are required to find x0 [16].
Further iteration of the flip and inversion operations

leads to a periodicity in the state. Let U be the unitary
transform which does these two operations, so that
jcnl ­ Unjc0l is the state after the nth iteration. Boyer
et al. have shown that the amplitude kx0 jcnl ø
sinfs2n 1 1dug, where u ­ arcsins1y

p
Nd; this periodi-

city arises from the finite size of the system and the uni-
tarity of U. For N ­ 4 the theoretical expectation is the
sequence j11l ­ jc1l ­ 2jc4l ­ jc7l ­ 2jc10l . . . , a
period of 6 (or 3 if the overall sign is disregarded).

Our experiments used a 0.5 milliliter, 200 millimolar
sample of Carbon-13 labeled chloroform (Cambridge
Isotopes) in d6 acetone. Data were taken at room
temperature with a Bruker DRX 500 MHz spectrometer.
The coherence times were measured to be T1 ­ 20 sec
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and T2 ­ 0.4 sec for the proton, and T1 ­ 21 sec and
T2 ­ 0.3 sec for the carbon (the large ratio is due to
C-Cl relaxation), and the coupling was measured to be
J ­ 215 Hz. All resonance lines from other nuclei and
the solvent were far from the region of interest in this
experiment. In the rotating frame of the proton (at
about 500 MHz) and carbon (at about 125 MHz), the
Hamiltonian for this system can be approximated as [17]

H ­ 2p h̄JIzAIzB 1 PfAstdIfA 1 PfBstdIfB 1 Henv ,

(1)

where IfA and IfB are the angular momentum operators

in the f̂ direction for the proton (A) and carbon (B),
and Henv represents the coupling to the environment,
responsible for the decoherence. PfA and PfB describe
the strength of radio-frequency (rf) pulses which are
applied on resonance to perform single-spin rotations to
each of the two spins. These rotations will be denoted as
X ; expsipIxy2d for a 90± rotation about the x̂ axis, and
Ȳ ; exps2ipIyy2d for a 90± rotation about 2ŷ, with a
subscript specifying the affected spin.

We used temporal labeling [15] to obtain the signal
from the pure initial state
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(2)

by repeating the experiment three times, cyclically per-
muting the j01l, j10l, and j11l state populations before
the computation and then summing the results.

The calculation starts with a Walsh-Hadamard trans-
form W , which rotates each quantum bit (qubit) from j0l
to sj0l 1 j1ldy

p
2, to prepare the uniform superposition

state
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Note that W ­ HA ≠ HB, where H ­ X2Ȳ (pulses ap-
plied from right to left) is a single-spin Hadamard
transform.

The operator corresponding to the application of fsxd
for x0 ­ 3 is as

C ­
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1 0 0 0
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7
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. (4)

This conditional sign flip, testing for a Boolean string
that satisfies the AND function, is implemented by

using the coupled-spin evolution which occurs when
no rf power is applied. During a time t the system
undergoes the unitary transformation exps2piJIzAIzBtd
in the doubly rotating frame. Denoting a t ­ 1y2J

(2.3 millisecond) period evolution as the operator t, we
find that C ­ YAX̄AȲAYBX̄BȲBt (up to an irrelevant
overall phase factor).

An arbitrary logical function can be tested by a network
of controlled-NOT and rotation gates [13,18], leaving the
result in a scratch pad qubit. This qubit can then be
used as the source for a controlled phase-shift gate to
implement the conditional sign flip, if necessary reversing
the test procedure to erase the scratch pad. In our
experiment these operations could be collapsed into a
single step without requiring an extra qubit.

The operator D that inverts the states about their mean
can be implemented by a Walsh-Hadamard transform W ,
a conditional phase shift P, and another W :

D ­ WPW ­ W
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(5)

This corresponds to the pulse sequence P ­

YAXAȲAYBXBȲBt.
Let U ­ DC be the complete iteration. The state after

one cycle is

jc1l ­ UW jc0l ­ j11l ­
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A measurements of the system’s state will now give with
certainty the correct answer, j11l. For further iterations,
jcnl ­ Unjc0l,
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We see that a maximum in the amplitude of the x0 state
j11l recurs every third iteration.

Like any computer program that is compiled to a mi-
crocode, the rf pulse sequence for U can be optimized
to eliminate unnecessary operations. In a quantum com-
puter this is essential to make the best use of the avail-
able coherence. Ignoring irrelevant overall phase factors,
and noting that H ­ X̄2Ȳ also works, we can simplify U
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by removing sequential rotations which cancel each other
out, to get

U ­ X̄AȲAX̄BȲBtXAȲAXBȲBt sx0 ­ 3d . (8)

The other possible cases are obtained by changing the
signs of the first two X rotations,

U ­

8

<

:

X̄AȲAX̄BȲBtXAȲAX̄BȲBt sx0 ­ 2d ,

X̄AȲAX̄BȲBtX̄AȲAXBȲBt sx0 ­ 1d ,

X̄AȲAX̄BȲBtX̄AȲAX̄BȲBt sx0 ­ 0d .

(9)

Because the magnetization that is detected in an NMR
experiment is the result of a weak measurement on
the ensemble, the signal strength gives the fraction of

the population with the measured magnetization rather
than collapsing the wave function into a measurement
eigenstate. The readout can be preceded by a sequence
of single spin rotations to allow all terms in the deviation
density matrix rD ­ r 2 trsrdyN to be measured [19].
Nine experiments—no rotation, rotation about x̂, and
about ŷ, for each of the two spins—were performed to
do this reconstruction of the density matrix to facilitate
comparison between theory and experiment.

Figure 1 shows the theoretical and measured devia-
tion density matrices rDn ­ jcnl kcnj 2 trsjcnl kcnjdy4

for the first seven iterations of U. As expected, rD1 clearly
reveals the j11l state corresponding to x0 ­ 3. Analo-
gous results were obtained for experiments repeated for

FIG. 1. Theoretical and experimental deviation density matrices (in arbitrary units) for seven steps of Grover’s algorithm
performed on the hydrogen and carbon spins in chloroform. Three full cycles, with a periodicity of three iterations are clearly
seen. Only the real component is plotted (the imaginary portion is theoretically zero and was found to contribute less than 12% to
the experimental results). Relative errors jjrtheory 2 rexptjjyjjrtheory jj are shown as percentages.
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the other possible values of x0. Measuring each density
matrix required 9 3 3 ­ 27 experimental repetitions, nine
for the tomographic reconstruction and three for the pure
state preparation. Both of these operations were performed
as tests of the computation, but neither was necessary. In
our experiment, starting from the thermal state the maxi-
mum population can be identified in a single iteration, with
the result obtained from a single output spectrum. In the
general N case, readout of log N expectation value mea-
surements would be required, and good inputs for Grover’s
algorithm can be distilled in a number of steps polynomial
in logsNd [15].

The longest computation, for n ­ 7, took less than
35 milliseconds, which was well within the coherence
time. The periodicity of Grover’s algorithm is clearly seen
in Fig. 1, with good agreement between theory and experi-
ment. The large signal-to-noise ratio (typically better than
104 to 1) was obtained with just single-shot measurements.
Numerical simulations indicate that the 7%–44% errors
are primarily due to inhomogeneity of the magnetic field,
magnetization decay during the measurement, and imper-
fect calibration of the rotations (in order of importance).

These experimental results demonstrate the operation of
a simple quantum computer that can load an initial state,
perform a computation, and read out the answer. While
there is a long way to go from such a demonstration
to a system that can exceed the performance of the
fastest classical computers, the experimental study of
quantum computation has already come much farther in
its short life than either early theoretical predictions or
the history of mature computing technologies would have
suggested. While scaling up to much larger systems poses
daunting challenges, many optimizations remain to be
taken advantage of, including increasing the sample size,
using coherence transfer to and from electrons, and optical
pumping to cool the spin system [19]. Furthermore,
Grover’s algorithm can be matched to convenient physical
operations by performing generalized rapid search, which
uses transforms other than the Walsh-Hadamard [20].

The NMR system that we have described already has all
of the components of a complete computer architecture,
including the rudiments of compiler optimizations. It
can implement a nontrivial quantum computation; the
challenge now is to accomplish a useful one.
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