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ABSTRACT: We develop a Bayesian  approach to determine the most  probable structural  ensemble
model from candidate structures for intrinsically disordered proteins (IDPs) that takes full advantage of
NMR chemical  shifts  and J-coupling  data,  their  known errors  and variances,  and the  quality  of  the
theoretical  back-calculation  from  structure  to  experimental  observables.  Our  approach  differs  from
previous formulations in the optimization of experimental and back-calculation nuisance parameters that
are treated as random variables with known distributions, as opposed to structural or ensemble weight
optimization  or  use  of  a  reference  ensemble.  The  resulting  experimental  inferential  structure
determination (EISD) method is size extensive with O(N) scaling, with N=number of structures, that
allows for the rapid ranking of large ensemble data comprising tens of thousands of conformations. We
apply the EISD approach on singular folded proteins and a corresponding set of  ~25,000 misfolded
states to illustrate the problems that can arise using Boltzmann weighted priors. We then apply the EISD
method to rank IDP ensembles most consistent with the NMR data and show that the primary error for
ranking or creating good IDP ensembles resides in the poor back-calculation from structure to simulated
experimental observable. We show that a reduction by a factor of 3 in the uncertainty of the back-
calculation error can improve the discrimination among qualitatively different IDP ensembles for the
amyloid-beta peptide.

INTRODUCTION
X-ray  and  electron  crystallography  and
microscopy  have  excelled  at  determining  the
structure of folded proteins and their complexes1,2

since the atomic positions are overdetermined by
the available  diffraction  intensities  from protein
crystals. However these methods are ill-suited for
structure determination of intrinsically disordered
proteins (IDPs)3, since the primary characteristic
of IDPs is that they are not singular well-folded
structures, but instead need to be characterized
as  diverse  ensembles  of  conformational  sub-
states  in  solution4.  While  techniques  such  as
Nuclear  Magnetic  Resonance  (NMR)  are  highly
suitable  for  probing  the  solution  structural
ensemble of an IDP, the dynamical timescale for
IDP  motions  results  in  highly  averaged  NMR
observables  that  are  typically  unable  to  fully
resolve the conformational sub-states. Therefore,
building  the  connection  between  the
experimental  observables and the complete IDP
structural  ensemble  depends  critically  on
computational models. 

Knowledge-based  computational  models  are
those that directly use experimental NMR, SAXS
and other  biophysical  information  to  derive  the
structural  ensemble.  Methods  that  use
experimental constraints from NOE data, RDCs, J-
couplings and chemical shifts are the foundation
of  NMR  structure  determination  of  folded
proteins, and are embodied in software packages
such as CANDID5, CYANA6, X-Plor-NIH7,8, SPARTA+9,
and  TALOS10.  For  the  case  of  IDPs,  knowledge-
based approaches start with an extensive set of
conformations derived from a variety of sources,
such as MD11-13, or methods such as TraDES14 and
Flexible-Meccano15 which  create  ensembles  of
random statistical-coil  conformers.  The resulting
“basis  set”  of  structures  is  then  culled  for  the
subset  of  conformations  that  when  back-
calculated  are  in  best  agreement  with
experimental  data,  to create the IDP ensemble.
Examples of  such methodology are the energy-
minima  mapping  and  weighting  method16,17,
ASTEROIDS15, and the ENSEMBLE program which
accommodates  data from a very wide range of
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the  aforementioned  NMR  sources,  as  well  as
hydrodynamic radii (Rh) and SAXS18. 

By contrast, in recent work we have used de novo
molecular  dynamics  sampling  for  amyloid-beta
(Aβ)  in  which  no  experimental  restraints  are
applied11,19. This  de novo MD approach allows for
the possibility of discovering new conformational
ensembles,  and  their  timescales  of  inter-
conversion  that  is  important  for  correctly
capturing  NOESY  data,  and  that  may  also  be
consistent with the experimental observable once
validated  through  back-calculation.  We  have
found that  the unbiased MD calculation  yielded
qualitatively  different  structural  ensembles  than
the  TraDES  or  Flexible-Meccano  approaches  for
Aβ12,20,  in  the  sense  that  the  de  novo MD
structures  comprised  a  Boltzmann  weighted
combination of  overall  collapsed structures with
heterogeneous populations of well-defined turns,
α−helices, β−strands and β−hairpins, as opposed
to  extended  statistical  coils  with  at  most  local
secondary structure motifs. 

The  knowledge-based  and  de  novo approaches
are  also  complementary  in  that  using
experimental  data  directly  can  overcome
challenges of insufficient sampling and force field
inaccuracies, while using the power of unbiased
sampling  can  compensate  for  gaps  in
experimental  restraints  in  conformer  generation
and selection.  Even so,  while these approaches
have  been  highly  beneficial  to  the  IDP  field,
limitations  of  the  sampling  and  conformer
selection  methods  are  beginning  to  become
apparent in either case. In particular, there may
be  a  range  of  confidence  in  the  IDP  ensemble
generated depending on how severe the problem
is  experimentally  under-determined  (unlike  the
folded  protein  case),  whether  the  back-
calculations  from  structure  to  experimental
observable  contain  significant  error,  or  whether
the  basis  set  of  structures  are  actually
representative and/or complete.

For  example,  while  chemical  shifts  and  scalar
couplings  can  usually  be  experimentally
measured  with  high  accuracy,  we  require
quantitative  back-calculations  of  the  NMR
observables from structure to make the best use
of  that experimental  data,  in  order  to  generate
tighter  spatial  restraints  to  discriminate  among
alternative  structural  models.  To  illustrate  this
point, Figure 1 compares experimental  chemical
shifts  measured  for  the  IDP  Aβ42  against
chemical  shift  predictions  using  SHIFTX221 and
SHIFTX22 applied  to  the  same  IDP  structural
ensemble.

Figure  1:  Experimental  chemical  shifts  for  Aβ42
(green) compared to back-calculated chemical shifts
using SHIFTX (red) and SHIFTX2 (blue) on the same
structural ensemble. 

Although improvements realized by SHIFTX2 over
SHIFTX were significant  for  folded proteins  with
the  introduction  of  structural  homology
information, the level of difference between the
calculators  is  relatively  small  for  the  Aβ42
example, since structural homology plays no role
for IDPs. Therefore, while heuristic chemical shift
calculators  and  parameter  fits  to  the  Karplus
equation  for  J-couplings  can  be  predicted  with
reasonable  accuracy  for  folded  proteins,  their
applicability  to  unstructured  IDPs  is  currently
problematic.  Therefore,  to  most  accurately
represent  our  best  knowledge  about  the  IDP
problem, one must be careful to extract as much
information as possible from experiments,  while
accounting for any intrinsic measurement error or
back-calculation  uncertainties,  and  adding  as
little  information  as  possible  in  the  form  of
heuristics and assumptions. Hence although the
IDP  problem  is  underdetermined  for  finding  a
unique  solution,  Bayesian  optimization  seems
ideally suited for the IDP problem by narrowing
the set of solutions to ones that are more relevant
than  others  based  on  the  highest  or  lowest
probabilities. 

The seminal work of Nilges and co-workers23 used
Bayesian  inference  to  derive  a  probability
distribution  for  the  folded  structure  and  its
precision  for  well-defined  macromolecules
characterized  using  NMR.  A  number  of  groups
have  extended  the  inferential  structure
determination (ISD) method into the IDP structure
determination  domain,  such  as  the  Variational
Bayesian Weighting (VBW) method24-26,  Bayesian
ensemble  refinement27;  maximum  entropy
approaches28-30;  and  other  Bayesian
formulations31-33 that seek to define “the best” IDP
ensemble given the data. 

These  important  influences  differ  from  the
Bayesian model presented here in several ways.
In  particular,  we  define  a  set  of  “nuisance
parameters” for each experimental data type that
are  associated  with  both  the  intrinsic
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experimental error, which for NMR data tends to
be small, as well as for errors and any uncertainty
in parameters used in the back-calculation from
structure,  which  we  illustrate  using  heuristic
chemical shift calculators or Karplus equations for
J-couplings. By modeling the nuisance parameters
that  represent  uncertainty  in  experimental
information  as  random  variables  whose
distributions  are  known  from  the  available
literature,  we  then  optimize  over  those
distributions for each data point to arrive at an
optimal  combination  of  values  sampled  from
these distributions.  The resulting  formulation  of
our posterior function will  be shown to be both
size  extensive  and  to  scale  linearly  with  the
number of structures N, as opposed to the O(N3)
scaling and lack of size extensivity exhibited by
other Bayesian methods24-26. 

Our  resulting  experimental  inferential  structure
determination  (EISD)  approach  is  tested  and
shown to be quite accurate when applied to three
folded  proteins  using  a  uniform  prior,  and  we
provide  cautionary  evidence  that  Boltzmann
priors  can  overwhelm  the  experimental
information and degrade the quality of prediction
of the native state for one of the folded proteins
with  a  disordered  section.  We  then  extend  the
EISD  method  using  a  uniform  prior  to  rank  7
qualitatively different IDP ensembles for Aβ42 by
optimizing  posterior  distributions  that  are  most
consistent with chemical shift and J-coupling NMR
data. We show that the problem of determining
IDP ensembles is not strictly one of overcoming
limited  sampling,  force  field  inadequacies,  or
uncertainty  in  experimental  measurements,  but
that there are sorely needed improvements in the
accuracy of the back-calculation from structure.
Finally,  we  show  that  a  reduction  in  back-
calculation uncertainty by a factor of ~3-5 could
yield  significant  overall  improvement  in  IDP
structural ensemble determination.

THEORY 
Rieping  and  co-workers  presented  a  Bayesian
framework  for  determining  the  most  probable
structure of a well-folded protein, illustrated using
NOESY  experimental  data  that  was  back-
calculated  under  the  isolated  spin  pair
approximation23.  Their ISD method attempted to
find  the  most  probable  model  from  candidate
structures  from  the  posterior  probability
distribution  p(X , ξ∨D, I ) ,  which  is
decomposed using Bayes’ Theorem:

   p (X ,ξ|D , I )∝ p (D|X ,ξ , I ) p (ξ|I ) p (X|I )
(1)

where  X is  a  structure,   is  a  set  of  so-called
“nuisance”  parameters  which  are  uncertain
values  that  cannot  be determined directly  from
the  data  (such  as  the  uncertainties  in  the
experimental  measurements  or  back-calculation
equations),  D is a set of experimental data and I
represents  any  prior  information  about  the

system.  In  their  work,  Eq.  (1)  models  the
conformational  prior  density  p (X|I )  via
Boltzmann weighting using an empirical  energy
function, the prior density of nuisance parameters
p (ξ|I )  with Jeffrey’s (uninformative) prior, (),

and finally assumes that all  deviations from the
experimental data fit a log-normal distribution to
yield the following probabilistic model 23

p (X ,ξ|D , I )=σ−(M+1 )π (ξ )

exp( −1
2σ2

∑
i=0

M

log2[ f (oi , ξ )
di ])exp(−E ( X )

kbT )
(2)

Eq.  (2)  assumes  we  are  given  a  set  of  M

experimental data observations, D={d i}i=1
M , a

corresponding  set  of  M simulated  observables

from  a  candidate  structure  X⟶ {oi }i=1
M ,

which are back-calculated using an approximate
function  f,  and that  all  uncertainty and error  is
captured with a single variance  parameter. We
refer to the formulation in Eq. (2) as the original
inferential structure determination (OISD) method
throughout the rest of the paper.

While  these  assumptions  proved  robust  for  the
folded  class  of  protein,  it  requires  significant
reformulation  if  it  is  to  be applied to  the more
underdetermined problem of IDPs, where using all
known and reliable information well is crucial. For
example, Eq. (2) uses an uninformative prior to
represent the experimental nuisance parameters,
even though often we know quite a lot about the
distribution of these parameters. Additionally, the
underlying assumptions  about  the experimental
data  effectively  lumps  all  uncertainties  into  a
single  ,  which  prevents  us  from using  all  the
information  we  know  about  the  separate
distributions of different experimental data types,
and the variable quality with which we can back-
calculate  these  observables  from structure.  For
example, we can model the experimental error in
Cα  and  H α  chemical  shifts  as  a  normal

distribution with mean equal to 0 and variances
equal  to  0.1  and  0.01  respectively,  and  the
corresponding  error  probability  of  0.05  in  the
distributions would then be 0.1827 and 1.487 x
10-6. So if the lognormal distribution in Eq. (2) is
fit using many Cα  shifts, than a large error in

an  H α measurement  might  go  unnoticed,
although  it  is  likely  quite  significant  for
discriminating  for  or  against  a  candidate
structure. 

More recent Bayesian methods reformulate how
we evaluate the  p(X ,ξ∨D , I )  term to take
better  advantage  of  known  and  thus  useful
experimental  information  from  NMR  method24-

26,29,34.  To  model  a  more  informative  prior
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p(ξ∨I)  for the nuisance parameters, one can
decompose it  into  independent  distributions  for
each  experimental  data,  which  allows  for  the
modeling of uncertainties of individual data type
more  precisely  instead  of  lumping  it  into  one
large  variance  .  This  essentially  provides  a
higher  resolution  model  that  involves  more
refined experimental  assumptions,  and is  easily
extensible as we gain more information about the
system of interest, whether it is a folded protein
or  an  IDP.  Although  Stultz  and  co-workers  also
model  uncertainties  associated  with  individual
data types and their back-calculation, we use this
information differently  in  the formulation of  our
posterior  distribution  by  optimizing  the
experimentally  related  nuisance  parameters  to
conform within the variance of their distributions,
and not weights on structures as they do in their
Variational  Bayesian  Weighting  method  (VBW).
This has important consequences for the scaling
and size extensivity of the Bayesian model that
we show in the results section.

To  construct  the  EISD  model,  we  first  assume
independence  of  all  (x i , d i)  pairs  and  then
take the log of Eq. (1) to yield 

log p ( X ,ξ|D , I )∝ log p (X|I )+∑
i=1

M

log ⁡[ p (d i|o i ,ξ i , I ) p (ξ i|I )]

(3)    

in  which  the  structural  prior  distribution
p (X∨I ) is modeled either as a uniform prior

or as a Boltzmann prior, which is explored in the
Results  section.  For  the  experimental  prior,  we
define a set of nuisance parameters defined as

   p (ξ i|I )=p (❑(exp)i ) p (❑(back )i )                    (4)

where p (❑(exp )i )  and p (❑(back )i )  define a set

of independent Gaussian distribution models for
all  experimental  and  back-calculation  error  for
each  data  type  and  for  each  data  point  i,
respectively.  In this work, all of the experimental
and  back-calculation  nuisance  parameters  are
defined  as  Gaussian  random  variables  whose
distributions  are  taken  from the  literature,  and
described  in  more  detail  in  Methods  and
Supplementary Information. 

These terms collectively consider all  uncertainty
in  the  experimental  data  and  back-calculation,
and  we  can  therefore  model  the  conditional
distribution  of  data  point  i given  structural
measurements and nuisance parameters as

p (d i∨o i , ξ i , I )={1 if d i+❑(exp )i
=f (oi ,❑(back )i)

¿0otherwise
(5)

This inference scheme is then easily extended to
IDPs  if  we  now  assume  that  we  are  given  N

structures in the ensemble,  X={X ( j )
}j=1
N  each

of  which  contain  M structural  measurements,

X ( j)⟶ {oi
( j )
}i=1
M  as  well  as  the  data  and

nuisance  parameter  terms  of  the  particular
experimental measurement. In addition, all that is
known for a given NMR measurement on an IDP is
that  it  corresponds  to  an  average  of  that
measurement  over  every  structure  in  the
ensemble.  The  only  change  to  Eq.  (5)  that  is
required to make EISD suitable for IDPs is 

¿ f (o i
( j ) ,❑( back )i)>¿ j=1

N

p(di∨oi∈{oi( j) } j=1
N
,ξ i , I )= {1if di+❑( exp)i

=¿0otherwise
(6)

where < > denotes an average over  structures
used to back-calculate experimental observables.
For both folded proteins and IDPs,  the posterior
probability is determined by an optimization over
the combination of nuisance parameters sampled
from these distributions for each data point (Eqs.
(5) and (6)) to arrive at the model probability for
structures or IDP ensembles.

METHODS
We created an ensemble of misfolded structures
for three natively folded proteins, the 21 residue
Trp-cage  mini-protein  (1L2Y)35,  a  135-residue
retinol  binding protein  in  its  apo state  (1JBH)36,
and  a  71  amino  acid  8.3KDA  protein  with
unknown  function  from  methanobacterium
thermoautotrophicum  (1GH9)  which  has  a
disordered  section37.  In  each  case  we  used  a
reverse Metropolis algorithm to create a 25,000
member ensemble starting with the native PDB
structure  for  a  given  protein,  and  at  every
iteration perturbing the current state by randomly
sampling  ϕ ,ψ  dihedral  angles  for  a  random
residue  from  a  Gaussian  Mixture  Model  of
dihedral  angles  trained  with  10,000  PDB
structures  (thereby generating a Ramachandran
plot). The result is a set of physically reasonable
but misfolded structures with RMSD values from
the native conformation ranging from 0.0-10.0 Å.
For  each  structure  we  calculated
log p (X ,ξ∨D , I )  using  both  the  OISD

approach that lumps all uncertainty into a single
variance, and the EISD formulation which treats
experimental data types separately, as well as a
physical  energy using AMBER99 and an implicit
solvent force field as implemented in MMTK.38 

For the IDP ensembles we use previously reported
IDP data sets generated for  the Aβ42 monomer:
one  random  coil  ensemble  generated  from
TraDES14; one ensemble generated from a replica
exchange  simulation  (de  novo MD)20,  one
statistical  coil  ensemble  that  incorporates
bioinformatics  knowledge  about  independent
local secondary structure at each residue (Pred-
SS)20,  and four  ensembles generated by adding
experimental  restraints  from NMR (RDCs,  NOEs,
scalar  couplings,  and chemical  shifts)  operating
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on the de novo MD and Pred-SS ensembles using
ENSEMBLE (MD-ENS1, MD-ENS2, MD-ENS4,  and
Pred-SS-ENS)18,39,40.  

In this work we use chemical shifts and J-coupling
data  reported  for  1L2Y35,  1JBH36,  1GH937,  and

Aβ4211,20,41,42.  We  model p (ξ (exp )i )  as  Gaussian

distributions centered at the reported NMR data
value, and use the experimental uncertainty for
each measured data point to define the variance,
and  the  reader  is  referred  to  the  original
experimental  studies  for  this  nuisance  data.  To

model the Gaussian distributions for p (ξ (back )i ) ,

there  are  differences  in  the treatment  of  back-
calculations  for  scalar  couplings  and  chemical
shifts. For J-couplings we optimize over the three
nuisance  parameters  A,  B,  and  C  of  the  back-
calculation function f(x), i.e. the Karplus equation
(Table S1): 

J=A cos2ϕ+B cos ϕ+C        (7)

whose mean and variance are taken from Vuister
and Bax43. For chemical shifts we use SHIFTX221

as the back-calculator, but it does not allow for
direct  optimization  of  parameters  of  f(x).  The
modeled Gaussian  distributions  in  this  case are
given in Table S1 using the well-documented error
distributions21. 

We used the local optimization Powell algorithm
in the SciPy package44 to maximize the posterior
probabilities  by  optimizing  the  complete  (low-
dimensional) set of nuisance parameters, {}, for
all  available  experimental  chemical  shifts  and
scalar  coupling  data  and  back-calculations,  for
both  OISD and EISD. We found in  practice  that
global optimizations were sometimes required to
maximize  the  probability  in  the  OISD  model,
whereas  local  optimizers  were  always  sufficient
for EISD. This lends an advantage to EISD since
global optimization is much more computationally
intensive than local optimization algorithms. 

RESULTS 
Our first test is to see how well OISD and EISD
perform on predicting the native PDB structure of
well-folded  proteins  with  respect  to  ~25,000
other  structures  with  larger  RMSDs.  Figure  2
shows the plot of optimized log p (X ,ξ∨D , I )
vs. RMSD using 115 measured chemical shifts (H,
H, HN, and all  side chain hydrogens) for the 21
residue Trp-cage mini-protein36. 

Figure  2:  log p (X ,ξ∨D , I )  vs.  RMSD  for
~25,000   misfolded  structures  for  1L2Y  using  a
uniform prior for (a) OISD and (b) EISD. Dotted black
lines  represent  the  fit-to-data  probability  of  the
native structure. All probabilities were normalized so
the set had a mean of 0 and a variance of 1 (for
easier comparison between schemes).  

We first  use  an  uninformative  uniform prior  to
better  ascertain  the  differences  in  how
experimental information is handled. Qualitatively
we  can  see  that  for  both  schemes  the  log
probability  has  an  overall  negative  correlation
with  RMSD,  meaning  that  both  methods  can
distinguish  well  between  reasonable  and
unreasonable structures, even when energy is not
considered  via  Boltzmann  weighting  as  per  Eq.
(4). 

However,  we  find  that  the  EISD  formulation
assigns  higher  probabilities  to  lower  RMSD
structures compared to the OISD model. For OISD,
the  largest  RMSD  structure  with  a  probability
higher than the native state was 2.54 Å, whereas
the structure with the highest overall probability
had an RMSD of 1.02 Å. By contrast, for EISD the
largest RMSD structure with a probability higher
than the native  state  was 1.37  Å,  whereas  the
structure with the highest overall probability had
an RMSD of 0.76 Å. 

The same conclusions apply when we perform the
same test on the 1JBH protein using 855 chemical
shifts (Figure S2 and S3). In this case, using the
OISD method, the largest RMSD structure with a
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probability higher than the native state was 5.04
Å,  while  the  highest  overall  probability  had  an
RMSD  of  2.41  Å.  Using  the  EISD  method,  the
largest RMSD structure with a probability higher
than  the  native  state  was  0.84  Å,  while  the
highest overall probability had an RMSD of 0.55
Å.  Using  Boltzmann  weighting  as  the  prior
improves these results so that the most probable
structure  is  ~0.5  Å  RMSD  for  both  methods
(Figure S1).

Figure  3:  log p (X ,ξ∨D , I )  vs.  RMSD  for
~25,000 misfolded structures for 1GH9 for (a) OISD
and  (b)  EISD  using  a  uniform prior.  See  Figure  2
caption for further details.

To put this result in perspective, the RMSD among
~90 different experimental X-ray structure of hen
egg white lysozyme is 0.75Å45, showing that we
can obtain results with an uninformative uniform
prior  that  are  nearly  as  good  as  experimental
uncertainty associated with X-ray crystallography,
but using NMR data. In fact the Boltzmann prior
dominates the posterior distribution to overcome
any difference in the experimental error handling
between methods for the Trp-cage protein. 

For the test on 1GH9 using 59  3J(HN,Hα),coupling
constants, both posterior probability models were
able to utilize the experimental data equally well
(Figure 3) using a uniform prior. Here the results
are  more  mixed  for  both  methods  since  the
largest RMSD structure with a probability higher
than  the  native  state  was  2.02  Å  and  2.36  Å,
although the  highest  overall  probability  had an

RMSD of 0.38 Å and 0.47 Å for EISD and OISD,
respectively.

However,  when  the  Boltzmann  prior  is  applied,
there are many structures in the 1GH9 test set
with  high-RMSD  but  with  significantly  lower
energies  based  on  the  simple  non-polarizable
protein force field and implicit solvent models we
used here (Figure 4). 1GH9 is relevant to the IDP
problem since it has a large disordered section,
and we use the indiscriminate energy function to
highlight the issue for IDPs, for which force fields
may be suspect in general. This emphasizes the
well-known  problem with  poorly  chosen  energy
functions  that  are  not  able  to  discriminate  the
native state from misfolded structures.

Figure  4:  log p (X ,ξ∨D , I )  vs.  RMSD  for
~25,000 structures for  1GH9 for  (a)  OISD and (b)
EISD using a Boltzmann prior. See Figure 2 caption
for further details.

This  can  in  principle  be  remedied  by  using  a
different force field, such as the energy functions
we have  previously  developed  and  which  have
undergone  extensive  validation  for  native  state
predictions  for  folded  proteins46-48.  Alternatively,
in  the  Bayesian  formulation  of  Hummer  and
Kofinger, this would be handled as an additional
nuisance parameter that reflects low confidence
in  the  reference  ensemble  they  use  for  their
prior27. However for IDPs, we believe the best use
of Boltzmann weighting, at present, is to use it to
generate  diverse  conformational  states  via
molecular dynamics or Monte Carlo sampling, and
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then  to  rank  the  resulting  different  ensembles
using an uninformative uniform prior as we have
shown above. I.e. using it directly for conformer
selection as per previous studies would too often
lead to unpredictable outcomes such as what we
have demonstrated for 1GH9.

Next  we  turn  to  the  application  of  the  EISD
method  to  a  more  directly  relevant  IDP  case,
namely  the  amyloid- IDP.  This  will  illustrate
multiple  issues  in  regards  experimental  error
handling that both differs from the work of others,
and  which  yields  insight  into  how  to  improve
estimates of more probable IDP ensemble in the
future. Based on the outcome on 1GH9, we use a
uniform distribution for the structural prior for the
IDP results below.  

Our model for the experimental prior p(ξ∨I )
for  the  individual  NMR  data  types,  including
experimental  measurement  uncertainty  and
back-calculation error, is similar to that presented
by Fisher et al24-26,34. However our work diverges
from theirs since they do not treat the nuisance
parameters as random variables to be optimized,
but  instead they optimize weights  of  structures
keeping the nuisance parameters fixed. We refer
the reader to Eq. 10 in [49], which is the posterior
distribution equation that is minimized by VBW. To
illustrate  the  implications  of  the  difference
between  VBW and  EISD  on  the  choice  of  error
handling,  we  implemented  their  method  to
perform several comparisons. 

For  the  VBW method,  the  posterior  distribution
contains two sums over the number of structures
and thus its computational cost scales O(N2); they
further  suggest  that  to  optimize  this  equation,
one  employs  a  simulated  annealing  procedure
with 100*N steps, making their full  optimization
procedure for  an ensemble scale as O(N3).  This
clearly  restricts  the  VBW  approach  to
optimizations  over  very  small  (N~200-300
structures) data sets (Figure 5a). By contrast, our
EISD method scales as O(N) as evident from Eq.
(6). 

This  more  favorable  scaling  allows  us  to  easily
embed  our  EISD  posterior  probabilities  into  a
Metropolis-Hastings  Monte  Carlo  framework  to
optimize  ensembles  involving  thousands  of
structures.  Table  1  shows  that  the  calculated
probability of a ~1000 member ensemble derived
from  the  de  novo MD  ensemble,  and  then
optimized  for  5000  iterations  of  Monte  Carlo
sampling (MD-EISD-OPT). The new ensemble has
significantly  higher  fit-to-data  probabilities  than
the  parent  ensemble,  and  after  relatively  few
iterations  considering  the  combinatorics  of  the
state  space  size  of  this  search  problem.  This
illustrates the strength of the O(N) scaling of the
EISD method for a calculation that would not be
tractable under the VBW formulation.

Furthermore,  since  the  nature  of  the  VBW
posterior  distribution  directly  builds  in  a  strong
dependence on the sample size  N,  their  results
are  not  size  extensive.  Therefore,  the  VBW
method  relies  heavily  on  the  assumption  that
~200-300 structures (what is tractable with their
method) are representative of the IDP ensemble
and that results will  not change with respect to
larger  data sets.  In  order  to  test  the impact  of
small data sets and lack of size extensivity, we
performed a second test of the two methods for
ranking two qualitatively different  ensembles of
the  Aβ42  monomer.  We  randomly  chose  a
‘reservoir’  of  5000  structures  from  the  full  de
novo MD and RC ensembles (which have a total of
about 42,000 and 83,000 structures, respectively)
and then sampled random subsets of 30, 60, 90,
120 up to 1000 structures from this reservoir for
each size. 

Figure 5: Scaling properties and size extensivity of
the  VBW  vs.  EISD  Bayesian  models. (a)
Computational scaling for VBW is O(N3) whereas the
scaling for EISD is O(N). We note that both models
also  scale  with  the  number  of  experimental  data
points  M.  (b)  The VBW posterior  probability  is  not
size  extensive  whereas  the  EISD  method  is  size
extensive. 

Figure 5b shows the resulting optimized posterior
probabilities  using  the  VBW and  EISD  methods
across these random data sets. It is evident that
the  VBW  method  shows  significant  overlap
between the two ensembles given the small data
sets used, indicating the sensitivity to incomplete
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data,  and  furthermore  that  the  optimized
probabilities  change  with  the  size  of  the
ensemble  N.  By  contrast  the  EISD  method  can
resolve the differences between ensembles with
much smaller data sets,  and the EISD posterior
probabilities  are  largely  independent  of  system
size  beyond  ~30  structures,  since  we  always
optimize  over  the  same  set  of  M nuisance
parameters for any size  N of discrete structures
or structural ensembles. 

Next  we  consider  the  aspect  of  IDP  ensemble
determination  that  is  most  problematic  at
present-  i.e.  back-calculation  from  structure-
which  we  show  competes  with  or  even
supersedes other issues such as the adequacy of
force  fields  and  conformational  sampling.  We
have previously reported the generation of many
different IDP ensembles for the Aβ42 monomer20,
ranging  in  size  from  100’s  of  structures  to
~83,000  structures,  that  we  argue  are
qualitatively  different. The qualitative differences
among these IDP ensemble types would in  fact
lead  to  very  different  hypotheses  about  their
biology,  and  motivates  the  strong  desire  to
differentiate  between  them.  Thus  ranking  of
ensembles with well-separated probabilities using
experimental information would significantly build
confidence on the best hypothesis to pursue.

The  first  class  of  Aβ42  monomer  ensemble
comprises a structurally featureless random coil
ensemble  (RC)  as  well  as  random  coils  with
statistical  secondary  structure  motifs  (Pred-SS);
these are representative of structural ensembles
that are equivalent to an unfolded protein under
very high denaturant conditions with large radius
of  gyration.  In  addition  we  consider  very
heterogeneous  but  highly  structured  ensembles
generated from a replica exchange simulation (de
novo MD) that we would classify as an unfolded
protein under very low denaturant conditions. In
addition,  we  operate  on  the  two  classes
structures using the ENSEMBLE method to create
new ensembles that in principle agree with the
available  experimental  data  via  restraints  (MD-
ENS1, MD-ENS2, MD-ENS4, and PRED-SS-ENS). 

Table  1  tabulates  the  values  of  the  optimized
log p (X ,ξ∨D , I )  using  Eq.  (6),  for  7

qualitatively  different  ensembles  for  the Aβ42
monomer20, using 16 3J(HN,Hα) coupling constants
and back-calculations from the Karplus equation
and  194  hydrogen  chemical  shifts  and  using
SHIFTX2 as the back-calculation from structure. 

Table 1. log p (X ,ξ∨D , I )  probabilities using
Eq.  (6)  for  seven  different  IDP  ensembles  for
Aβ4220 (see main text for their description).

Structural
Ensemble

J-coupling
Chemical
Shift

Both

MD-EISD-OPT -20.443 -114.800 -133.296

MD-ENS4 -17.400 -116.588 -132.042

Random Coil -18.471 -117.316 -133.841

MD-ENS2 -20.929 -116.013 -134.996

Pred-SS-ENS -31.762 -116.414 -146.230

de novo MD -33.221 -124.257 -155.532

MD-ENS1 -39.381 -121.202 -158.637

Pred-SS -44.449 -120.344 -162.848

Figure  6  presents  the results  in  more graphical
form  by  showing  how  strongly  the  rankings
depend  on  experimental  data  types.  Figure  6a
demonstrates that when only chemical shift data
are  used,  the  MD-ENS2,  MD-ENS4,  Pred-SS-ENS
and RC ensembles are within uncertainty of the
sample  size  used  for  each  case.  When  only  J-
couplings are considered, the rank order changes
completely,  and  the  relative  rankings  of
ensembles are somewhat better differentiated as
seen  in  Figure  6b.  When  we  use  both  scalar
couplings  and  chemical  shifts  together  (Figure
6c), the relative rankings between ensembles are
qualitatively  unchanged  from  using  J-couplings
alone. 
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Figure  6:  log p (X ,ξ∨D , I )  evaluated  for  X
equal  to  the  following  qualitatively  different
ensembles for the Aβ42 monomer: random coil (RC),
statistical  secondary  structure  (Pred-SS),  de  novo
MD, and ENSEMBLE optimized ensembles (MD-ENS1,
MD-ENS2,  MD-ENS4,  and Pred-SS-ENS)  using (a)  J-
coupling data only, (b) chemical shift data only, and
(c) J-coupling and chemical shift data together.

While it might suggest that J-coupling constants
are  a  more  discriminating  measurement  for
determining IDP structure,  in  fact  it  is  that  the
inherent  errors  of  the  heuristic  chemical  shift
calculators  are  larger  than  uncertainties  in  the
Karplus  equations,  and  add  little  to  the
discrimination  among  ensembles,  as  implied  in
Figure 1. Even so, the parameters of the Karplus
equation do not escape scrutiny, since J-couplings
alone  or  together  with  chemical  shifts  can’t
differentiate between the extended RC ensemble
and the collapsed and structured MD ensembles.
Even the Metropolis  scheme for  optimizing new
ensembles using  p(X ,ξ∨D , I )  for MD-EISD-
OPT are likely  dominated by the problems with
back-calculation errors (Table 1).

To  more  explicitly  show  the  uncertainties  that
arise  from  back-calculation  errors,  we  use
Gaussian  Kernel  Density  Estimation  (KDE)50 to
approximate the probability distributions of back-
calculated  values  corresponding  to  each
experimental data point. Figure 7 shows the KDE
result for the Aβ42 J-coupling data for Pred-SS and
MD-ENS4,  the  lowest  and  highest  probability
ensembles for J-coupling, respectively, are shown
in Figure 7.

residue

Back-calc PDF
Back-calc mean
experiment

residue

Back-calc PDF
Back-calc mean
experiment

Figure 7: Gaussian Kernel Density Estimation of the
probability distributions of back-calculated J-coupling
constants from (a) MD-ENS4 and (b) Pred-SS. Wider
areas represent higher probabilities.

We can see that for both ensembles, the mean of
almost  every distribution of  back-calculations  is
within experimental error bars and is often nearly
exactly the experimental mean value. In fact, we
found  that  this  is  true  for  nearly  every
experimental  measurement,  including  chemical
shifts,  in  every  tested  ensemble.  This
demonstrates that most of the similarites in the
EISD probability between ensembles is a result of
the error and uncertainty in the back-calculation
of  experimental  observables;  in  other  words,
optimizing the EISD model almost always favors
lower-probability  nuisance  parameters  over
distributions  whose  means  are  outside
experimental  error  bars.  This  suggests  that
improving  the  accuracy  of  the  back-calculation
from structure is the most crucial step that can be
made  towards  the  overall  improvement  of  IDP
ensemble determination.

Finally, we consider the improvement that would
arise  in  IDP  ensemble  ranking  if  the  variances
used  for  the  back-calculation  from structure  to
experimental  observable  were  smaller.  We
emphasize  that  this  is  highly  artificial  for  the
reason that SHIFTX2 is currently ill-suited to true
chemical  shift  predictions  for  IDPs;  the  main
utility of this test is to demonstrate what would
happen  if  we  had  more  confidence in  the
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chemical shift prediction. Figure 8 illustrates the
result if we artificially reduce the variances of the
Gaussian  distributions  by  a  factor  of  3,
(improvements  which  in  principle  would  be
possible  with  highly  accurate  QM  calculations).
Now  the  rankings  are  becoming  more
differentiated among structural ensembles. If we
had consistent and high quality back-calculations
for  other  data types,  such as SAXS, that would
likely better differentiate between the MD and RC
ensembles  for  amyloid-β.  Combined  with  other
data  types  and  the  development  of  better
structural  priors,  EISD  can  tractably  deliver  on
even better IDP rankings or structural ensemble
refinement using Monte Carlo.

Figure  8:  log p (X ,ξ∨D , I )  evaluated  for  X
equal  to  7  different  ensembles  for  the  Aβ42
monomer  shown in  Figure 7  using both  J-coupling
and  chemical  shift  data,  but  artificially  reducing
back-calculation uncertainties by a factor of 3. 

CONCLUSION
Our  Bayesian  approach  differs  from  previous
formulations in the optimization of experimental
and back-calculation “nuisance” parameters that
are  treated  as  random  variables  with  known
Gaussian distributions. Our resulting EISD method
is  both  size  extensive  with  O(N)  scaling  that
allows for the rapid evaluation across very large
data sets. When we applied the EISD approach on
singular folded proteins and a corresponding set
of  ~25,000  misfolded  states  we  found  that
uninformative uniform priors performed nearly as
well  as  Boltzmann  weighting  for  two  proteins.
Furthermore,  we showed the problems that can
arise  using  Boltzmann  weighted  priors  for  a
protein  with  a  disordered  segment,  which
directed  us  toward  using  an  uninformative
structural  prior  in  the  formulation  of  our  EISD
posterior probability for IDPs. 

The  EISD  formulation  presented  here  offers
significant  advantages  over  other  existing
Bayesian  methods  since  it  is  size  extensive,  is
able to clearly rank very different IDP ensembles,
and the O(N) scaling allows the characterization
of very large IDP ensembles of tens of thousands

of structures and ease of Metropolis optimization
to create new ensembles. 

Finally, we showed that what is just as important
as  a  greater  range  of  experimental  restraints,
better force fields, or computational sampling to
create  candidate  ensembles,  is  higher  accuracy
back-calculations  from  structure  for  important
NMR data  types  such as  chemical  shifts  and  J-
couplings.  Since the error  in  NMR experimental
measurements for these data types are relatively
small,  a  factor  of  3  improvement  in  the  back-
calculation error from structure could change this
situation,  allowing  us  to  better  discriminate
among  alternative  structural  ensembles,  and
possibly extending to the ability to refine for an
IDP  structural  ensemble  model  given  the
experimental data. But because the large number
of degrees of freedom for the IDP is much larger
than the number of experimental constraints, the
underdetermined  nature  of  the  ensemble
construction  problem  will  continue  to  be  a
significant  challenge  in  the  future.  In  order  to
produce better IDP models, we must 1) produce
better  back-calculators  from  all  types  of
experimental data, which reduces one source of
degeneracy and 2) create a prior distribution that
can accurately reflect the quality of an ensemble
before  experimental  constraints  are  added  in.
EISD is  sufficiently  general  to  allow for  both  of
these advances to be incorporated.
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