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Abstract

In this paper the dynamics of a system composed of a harmonically
forced single-degree-of-freedom linear oscillator coupled to a Vibro-Impact
Nonlinear Energy Sink (VI-NES) is experimentally investigated. The mass
ratio between the VI-NES and the primary system is about 1%. Depending
on the external force’s amplitude and frequency, either a Strongly Mod-
ulated Response (SMR) or a constant amplitude response (CAR) is ob-
served. In both cases an irreversible transfer of energy occurs from the lin-
ear oscillator towards the VI-NES: process known in literature as passive
Targeted Energy Transfer (TET). Furthermore, the problem is analytically
studied by using the method of multiple scales. The obtaineSlow Invariant
Manifold (SIM) shows the existence of a stable and of an unstable branch
of solutions, as well as of an energy threshold (a saddle-node bifurcation)
for the solutions to appear. Subsequently the fixed points of the problem
are calculated. When a stable fixed point is reached, the system is natu-
rally drawn to it and a CAR is established, whereas when no stable point
is attained, the system exhibits a SMR regime. Finally a good correlation
between the experimental and the analytical results is presented.
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1 Introduction

A Nonlinear Energy Sink (NES) is defined as a vibration absorber with a rel-
atively light mass, nonlinearly attached to a primary system whose vibrations
are to be mitigated. The use of a NES as a vibration absorber has been object
of interest in the field of nonlinear dynamics in the last decade. Studies have
shown that, if compared to the classical linear Tuned Mass Damper (TMD),
it could be efficient in a broader frequency range and for a smaller addition of
mass to the primary system [1–3]. It has been shown that the nonlinear at-
tachments can lead to an irreversible energy transfer from the primary system
towards the NES, this process is known as Targeted Energy Transfer (TET) or
energy pumping [4, 5].

Experimental works have investigated this phenomenon and are presented
in [6–8]. They have shown that the dynamics which governs the energy transfer
phenomenon is a 1:1 resonance capture between the primary system and the
NES. An important feature of this kind of devices is that they do not have
a preferrable frequency of oscillation because of their intrinsic nonlinear na-
ture. Thanks to this characteristic, they are able to tune themselves to the
primary system’s frequency. TET under external forcing has been investigated
theoretically [9] and experimentally [10] showing that in addition to the steady-
state-constant-amplitude-response regime, another type of response can arise
which is referred to as Strongly Modulated Response (SMR). NESs have also
been studied when applied to passive control of instabilities. In [11] a NES was
used to control the limit cycles of a Van der Pol oscillator. In [12–15] it was
used to suppress aeroelastic instabilities.

Most of the works mentioned so far have dealt with a nonlinearity represented
by a cubic stiffness. The principle consists in using the geometric nonlinearity
of an elastic element to attain a restoring force proportional to the cube of the
displacement. Nevertheless, the nature of the nonlinearity may theoretically be
of any kind. Later studies have explored other ideas such as: non-polynomial
functions [16], multiple states of equilibrium [17], non-smooth functions and
Vibro-Impacts [18–21]. Many of the first works on Vibro-Impacts were based
on numerical simulations. Recently, similarly to what was used for smooth non-
linearities, an analytical approach adopting the multiple-scale analysis has been
proposed in [22] for impulsive forces, and extended to the case of a harmonic
forcing in [23]. In [24] preliminary experimental observations of the different
regimes of response has been achieved for a VI-NES applied to a harmonically
forced linear oscillator.

In this paper the experimental and the analytical study of the response of a
system composed of a Vibro-Impact NES coupled to a single- degree-of-freedom
linear oscillator is carried out. The main purpose of this work is to bridge the
theoretical and experimental studies, in order to reach a comparison between the
analytical results and the experimental observations. The study carried out in
[24] is used as an important starting point to broaden the general understanding
of the VI-NES. In [24], experimental investigations have shown how such a
system may exhibit different types of response as the external forcing changes

2



in amplitude and/or frequency. It also has been shown how an analytical study
based on the multiple-scale analysis is able to describe this kind of behavior.

Thanks to these initial observations, it can be stated that the forcing term
plays a crucial role in the problem. In this paper the analytical treatment is
slighlty different than in [24], in order to take into account the forcing term since
the very first steps of the multiple-scale expansion. As for the experimental part,
in order to prove the efficacy of the absorber for different frequencies, the same
VI-NES as in [24] is used, but applied to a different primary system having a
higher natural frequency. Moreover, the use of a bearing slider is avoided as it
turned out being a source of perturbation for the experiments. Four levels of
force are tested and for each level a frequency sweep is performed; this leads
to a study of the response of the VI-NES over a considerable range of forcing
cases.

Finally, the analytical model is used to explain the behavior experimentally
observed and a comparison between the experimental and the analytical results
is presented. In addition, the influence of the design parameters of the VI-NES
on the system’s response is discussed thanks to some analytical examples.

2 Experimental tests

The experimental study has been conducted aiming to observe the behavior of
the system and to explore the existing different types of response which can
arise and how they are related to the external forcing in terms of magnitude
and frequency. This phase of experimental investigation will be subsequently
exploited and the observations explained by the analytical study of the system.

The experimental apparatus is shown in Fig.1. It is constituted of a single-
degree-of-freedom linear oscillator (LO) to which the VI-NES is attached. The
LO is harmonically forced by an electrodynamic shaker.

Figure 1: The LO coupled to the VI-NES: the prototype installed on the vi-
brating table.

Figure 2 displays the tested prototype and its schematic: the primary mass
M is connected to its base by means of two flexible blades. The base is then
screwed to the vibrating table. On the primary mass, a cylinder is placed and
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Figure 2: The prototype (left) and its schematic (right).

the small VI-NES mass is free to roll inside. The cylinder is pierced on the sides
in order to make the air effect negligible and to visually observe the motion of
the ball. Firstly a dynamic identification of the primary system is performed.
The system is excited by a swept-sine external force with constant amplitude
and the displacement of the primary mass is measured by means of a Laser
Doppler Vibrometer (LVD). The use of a LVD rather than an accelerometer has
been dictated by the fact that the impacts would drastically perturb the signals
delivered by an accelerometer.

f0[Hz] K[N/m] λ[Ns/m] ξ

21.18 67421 8.566 0.008

Table 1: Modal parameters of primary system.

The modal parameters of the primary system are shown in Tab.1 and the
mass values and their ratio in Tab.2. Several tests were performed on the pri-
mary structure at different levels of base acceleration between 0.1− 0.5g. They
showed that the primary system was not perfectly linear and that a slight vari-
ation in the modal parameters occurred as the external force varied. However
this was a weakly nonlinear behavior that did not affect the purpose of the
tests. It is important to highlight the particularly small mass ratio between
the VI-NES and the primary system: less than 1%. Once the primary system
has been identified, we arm the VI-NES by inserting the small mass into the
cavity and we carry out some swept-sine tests for four different levels of forcing:
[0.2; 0.3; 0.4; 0.5]g; the displacement is measured by the LVD and the spectra
are then obtained. The fact of using a large-mass shaker permits the shaker not

M [kg] m[kg] ǫ = m/M

3.807 0.032 0.84%

Table 2: Mass values and their ratio ǫ.
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(a) ẍe = 0.2g
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(b) ẍe = 0.3g
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(c) ẍe = 0.4g
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(d) ẍe = 0.5g

Figure 3: Experimental spectra of the primary mass displacement with (red)
and without (blue) the VI-NES for four different levels of external forcing. It
can be observed that the VI-NES is inactive for values of the primary mass’
displacement under a certain threshold (≈ 2.8mm). When the threshold is
reached, the VI-NES turns active and two different regimes may occur: either a
constant amplitude response (CAR) or a strongly modulated response (SMR).

to be perturbed when it goes through the natural frequency of the LO during
the swept-sine.

Fig.3 shows the displacement spectra for the system with and without the
VI-NES for four levels of external excitation: [0.2; 0.3; 0.4; 0.5]g. Fig.4 shows
the measured displacement for two different frequencies at the same amplitude
of external acceleration.

Firstly, we can observe that a threshold in the amplitude of the primary
mass’ oscillations exists for the VI-NES to become active: we will refer to it
as activation threshold. Secondly, the system can exhibit two types of response
and, depending on the magnitude and the frequency of the external forcing,
either one or another may appear.

The responses can qualitatively be classified as:

• - Idle VI-NES: no impacts occur and the primary system’s dynamics is
not perturbed by the presence of the VI-NES: the amplitude of the LO’s
oscillations is lower than the activation threshold.

• - Constant Amplitude Response (CAR): the VI-NES is stably active and
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the amplitude of the primary mass displacement remains constant (fig.4
left).

• - Strongly Modulated Response (SMR): the primary system goes through
alternatively increasing and decreasing amplitude cycles and as a conse-
quence the fast oscillations appear to be modulated. This behavior is
caused by a cyclical activation/deactivation of the VI-NES (fig.4 right).
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Figure 4: Time series: constant amplitude response - ẍe = 0.4g − f = 20.9Hz
(left) and strongly modulated response - ẍe = 0.4g − f = 21.5Hz (right).
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Figure 5: Experimental impacts detection: acceleration of the LO measured by
an accelerometer placed on the VI-NES in order to capture the impact instants.
The peaks represent the shocks occurring throughout the oscillations of the LO,
highlighted by the dashed line. A denotes the normalized acceleration of the
LO. It can be seen as two impacts per cycle occur.

The VI-NES seems to well accomplish its task as a vibration absorber since
the amplitude of the response is reduced nearby the resonance of the primary
system. This is the proof that a Targeted Energy Transfer occurs from the LO
towards the VI-NES and that the energy is then dissipated by the impacts. It
is important to highlight that this goal has been achieved although a proper
sizing process of the VI-NES has not been carried out and with a significantly
small mass ratio ǫ = 0.84%. This result proves that the VI-NES is able to
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Figure 6: Map showing the regime zones of the responses experimental observed
as functions of the external excitation’s magnitude and frequency.

automatically tune itself to the primary system. This is a relevant general
feature of nonlinear absorbers due to their lack of a natural frequency. However,
whereas for a cubic stiffness NES the absence of a natural frequency is a delicate
goal to reach [10], for a VI-NES it appears to be as an evident outcome. Still,
we remind that the primary objective of this experimental study was not to seek
the optimal performance but rather to investigate the qualitative behavior of
the VI-NES.

Looking at the spectra of Fig.3 one can draw the conclusion that there
exists a criterion on primary mass displacement in order to activate the VI-
NES. Indeed a threshold in amplitude/energy is observed beyond which the
VI-NES goes through a 1:1 resonance with respect to the LO. The terminology
1:1 resonance is used to maintain a correlation with the cubic stiffness NES,
even though in this context it means that two impacts per oscillation cycle of
the LO occur. This can be seen in Fig.5 where the signal of an accelerometer
placed on the primary mass is shown. The peaks represent the shocks occurring
two times per period throughout the oscillations of the LO.

Fig. 6 shows a map illustrating the nature of the observed responses as a
function of the magnitude and the frequency of the external forcing. For a low
level of external forcing only a SMR is registered through the whole range of
frequencies where the VI-NES is active. As the external force increases, a CAR
appears at the lowest frequencies of the activation range and the SMR tends to
disappear. When high levels of external forcing are reached the CAR becomes
the prevalent, if not the only, type of response detected. It is therefore clear
that for a given VI-NES the kind of response which might arise is a function of
the magnitude and the frequency of the external forcing. In the next section
this behavior will be explained by an analytical analysis of the mathematical
problem.
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3 Analytic treatment

In this section the mathematical problem associated to the VI-NES is studied.
An analytical treatment is presented, in which the multiple-scale method is used
in order to obtain the Slow Invariant Manifold (SIM) and the fixed points of the
problem. The multiple-scale is a perturbation method used to construct uni-
formly valid approximations to the solution of the problem under consideration.
This is done by introducing fast-scale and slow-scale variables and treating these
variables as independent. This method is particularly useful when the problem
is characterized by having multiple dynamics, each with their own scales. In
our problem one scale is associated to the fast oscillations and another to their
amplitude’s slow modulation.

The approach followed is mainly based on the work of Gendelman [22], where
the analytic treatment of an unforced system with a VI-NES is presented. Al-
though not original, these derivations are required for the sake of completeness
of the exposition. Here we extend the treatment to a damped and forced system
such as in [24], with the difference that the forcing term is not hypothetically
supposed to be of order 1 but considered since order 0 in the multiple-scale
expansion.

The schematic of the model is presented in Fig.2. We define the variables
u, v, and xe as the displacements of the primary mass M , of the NES mass m
and of the base respectively. Before going through the study of the equations of
motion, we model the impacts by using the Newton’s experimental law and the
momentum conservation principle. This model, although quite simple, is able
to represent the physics of the impacts by means of only one parameter: the
restitution coefficient r.

u̇(t+j )− v̇(t+j ) = −r(u̇(t−j )− v̇(t−j )) (1)

Mu̇(t+j ) +mv̇(t+j ) =Mu̇(t−j ) +mv̇(t−j ) (2)

Where t+j and t−j are the time instants after and before the jth impact re-
spectively. Eq.(1) provides a relation for the relative velocities of the two col-
liding masses after and before the impact by use of the restitution coefficient
0 < r < 1. Then, in the limit cases, impacts can be characterized as perfectly
elastic r = 1 or perfectly inelastic r = 0. Eq.(2) expresses the momentum
conservation throughout an impact. Each mass experiences an instantaneous
momentum variation that can be represented by a Heaviside step function. The
derivative of momentum with respect to time is the force acting through the
impact. Thus in (3) we express the force each mass is subjected to as a Dirac
delta function, which represents the distributional derivative of the Heaviside
step function. In Eq.(3) the summation includes all the impacts that occur over
the time. Since all the terms of the summation are Dirac delta functions, it
means that they are always zero except when an impact occurs. When this
happens, only the one term of the sum associated to that specific impact takes
a value different than zero, as its delta becomes one.

8



Finally the equations of motion can be written as:

Mü+ λu̇+Ku+
Mm(1 + r)

M +m

∑

j

ẇ−δ−j = Kxe + λẋe

mv̈ − Mm(1 + r)

M +m

∑

j

ẇ−δ−j = 0 (3)

Where M , λ and K are the mass, damping and stiffness of the primary
system, m is the mass of the VI-NES and r the restitution coefficient.

Or:

ü+ 2ω0ξu̇+ ω2
0u+

m(1 + r)

M +m

∑

j

ẇ−δ−j = ω2
0xe + 2ωξẋe

ǫv̈ − m(1 + r)

M +m

∑

j

ẇ−δ−j = 0 (4)

Where ω2
0 = K/M , 2ω0ξ = λ/M and ǫ = m/M .

Defining the barycentric coordinates X and w1

X := u+ ǫv

w := u− v (5)

And the following new variables:

τ := t
ω0√
1 + ǫ

γ :=
2ξ√
1 + ǫ

(6)

We end up with a system of two equations for X and w, where the subscript
τ denotes the partial derivative ∂

∂τ . They are up to now exact equations since
no approximation has been made.

Xττ + γXτ + ǫγwτ +X + ǫw = (1 + ǫ)xe + γ(1 + ǫ)xeτ

wττ + ǫγwτ + γXτ + ǫw +X + (1 + r)
∑

j

w−

τ δ
−

j = (1 + ǫ)xe + (1 + ǫ)γxeτ

(7)

3.1 Multiple-scale analysis

Assuming that the mass of the VI-NES m is small with respect to the primary
mass M , ǫ = m/M << 1 can be used as a small parameter in the multiple
scales analysis [25].

τk = ǫkτ, k = 0, 1, . . . ;
d

dt
=

∂

∂τ0
+ ǫ

∂

∂τ1
+ . . . ;

X = X0(τ0, τ1, . . . ) + ǫX1(τ0, τ1, . . . ) + . . . ;

w = w0(τ0, τ1, . . . ) + ǫw1(τ0, τ1, . . . ) + . . . ;

(8)

1The symbol := meaning equals by definition

9



Bearing in mind that ǫ << 1, the parameter γ can be expressed as a first-
order Taylor polynomial:

γ =
2ξ√
1 + ǫ

= 2ξ(1 + ǫ)−1/2

≃ 2ξ(1− ǫ

2
)

(9)

The same is done with the external forcing term:

xe = X sin(ωt)

= X sin

(

ω

ω0
(1 + ǫ)1/2τ

)

xe ≃ X sin(
ω

ω0
τ0) +

1

2

ω

ω0
τ1X cos(

ω

ω0
τ1)ǫ (10)

Substituting (8), (9) and (10) into (7) and only keeping the zero-order terms:

∂2X0

∂τ20
+ 2ξ

∂X0

∂τ0
+X0 = Xe0 + 2ξ

∂Xe0

∂τ0

∂2w0

∂τ20
+ 2ξ

∂X0

∂τ0
+X0 + (1 + r)

∑

j

∂w−

0

∂τ0
δ−j = Xe0 + 2ξ

∂Xe0

∂τ0

(11)

Where Xe0 = X sin(Ωτ0) with Ω = ω
ω0

.
By considering the experimental values we identified (ξ ≈ ǫ ≈ 0.8%) we can

reasonably assume that ξ = λ
2ω0M

has the same order as ǫ and therefore that
ξ = O(ǫ). Consequently, the terms multiplied by ξ in Eq.(11) can be neglected.
That yields:

∂2X0

∂τ20
+X0 = Xe0

∂2w0

∂τ20
+X0 + (1 + r)

∑

j

∂w−

0

∂τ0
δ−j = Xe0

(12)

Alternatively, one can say that solutions of Eq.(12) will be very close to
solutions of Eq.(11) given the small influence of ξ. Then the two equations
of Sys.(12) can be solved for X0 and w0. Here we follow the ansatz given by
Gendelman in [22] and [23] with the exception that the forcing term is present
at the ǫ0 order. That leads to the following expression for X0:

X0 = C(X,Ω, τ1) sin(Ωτ0 + ψ(τ1)) (13)

C and ψ are the amplitude and the phase of X0. The amplitude C is a function
of the external forcing Xe0 and terms of order-1. The phase ψ is a function of
order-1 terms as it depends on damping ξ.

Substituting (13) in the second equation of (12) we obtain:

∂2w0

∂τ20
+ (1 + r)

∑

j

∂w−

0

∂τ0
δ−j = A sin(Ωτ0 + θ) (14)
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Where A sin(Ωτ0+ θ) is the sum of X0 and Xe0. These two terms are two sinus
with the same frequency Ω and shifted in phase by ψ. It can be shown that
the sum of them is a single sinus with a new amplitude A and phase θ to be
determined.

A solution for w0 in the following form is sought:

w0 = −A(C,X,ψ)
Ω2

sin(Ωτ0 + θ) + f(τ0, τ1) (15)

Inserting (15) into (14):

∂2f

∂τ20
+ (1 + k)

∑

j

[

∂f

∂τ0

∣

∣

∣

∣

τ−

0

− A

Ω
cos(Ωτ0 + θ)

]

δ−j = 0 (16)

Assuming that TET occurs in an established state of 1:1 resonance between
the VI-NES and the LO and neglecting the transient process leading to 1:1
resonance, the particle will move symmetrically and at the same frequency of
the LO. A form of f representing the ”free flights” interrupted by the impacts
is:

f(τ0, τ1) =
2α

π
arcsin (cos(Ω(τ0 − η))) (17)

Where tj = η + πj, j = 1, 2, . . . are the unknown impact instants. A schematic
representation of f is presented in Fig.7.

Substituting (17) into (16) and integrating over a small interval around time
τ0 = η:

−4αΩ

π
+ (1 + r)

(

2αΩ

π
− A

Ω
cos(Ωη + θ)

)

= 0 (18)

And finally:

−A cos(Ωη + θ) = Ω2 2(1− r)

π(1 + r)
α = Ω2σα (19)

Where σ = 2(1−r)
π(1+r) . One more relation between A and α can be found by

considering the expression (15) evaluated when an impact occurs: τ0 = η and
w = ±L.

− A

Ω2
sin(Ωη + θ) + α = L (20)

Finally we have:

AΩ cos(Ωη + θ) = σα

AΩ sin(Ωη + θ) = L− α (21)

With AΩ = −A/Ω2.
The two equations (21) allows one to analytically define the Slow Invariant
Manifold of the problem:

α =
L±

√

L2 − (1 + σ2)(L2 −A2
Ω)

1 + σ2

11



Or:

α =
L±

√
1 + σ2

√

A2
Ω −A2

Ωmin

1 + σ2
(22)

Where AΩmin
= σL

√

1+σ2
is a minimum value of amplitude A/Ω2 for a 1:1 reso-

nance to be established.

τ
0

-Ω/2 0 η Ω 2Ω 3Ω

f

-α

-α/2

0

α/2

α

Figure 7: Sketch of function f according to eq.(17) (blue) and its derivative
(red).

Eq.(22) defines the Slow Invariant Manifold of the system and a graphical
representation for the couple of parameters r = 0.65 and L = 15mm is displayed
in Fig.8. A first important piece of information we can draw from Eq.(22) is
that a minimum for AΩ exists for solutions to appear. In order to have a
physical meaning of the two variables of the SIM, AΩ and α can be thought
as respectively the LO’s and the NES’ oscillation amplitudes. Then the lower
threshold is actually a minimum amount of LO’s energy (oscillations amplitude)
the VI-NES needs to turn active. As previously mentioned this is a typical
feature of nonlinear systems [2, 3, 5]. Moreover, information about stability of
solutions can be obtained from ǫ0-equations. Indeed a stability analysis can
be performed by means of the Poincaré Map which reveals that the SIM is
composed by two branches of solutions: one stable and one unstable. We will
not describe the analysis here but only suggest that the reader refer to [26] for
a detailed mathematical description. Indeed, to have the same formal problem
as in [26] we just need to rearrange the second equation of Sys.(12) as:

∂2w0

∂τ20
= A sin(Ωτ0 + θ) |w0| < L

∂w+
0

∂τ0
= −r ∂w

−

0

∂τ0
|w0| = L

(23)

As it will be explained more in detail in the next section, from a mathemat-
ical point of view this threshold represents a saddle-node bifurcation beyond
which two branches of solutions appear, one stable and one unstable.

The SIM strongly depends on the design parameters length L and restitution
coefficient r as graphs in Fig.9 show. Particularly, it is interesting to highlight

12



how in the case of r = 1 the value for AΩmin
is zero and the corresponding value

of α is equal to half the tube length, i.e. the distance gap between the ball
and the tube before impacting. This is physically explicable as r = 1 means no
loss of energy during the impacts, the state with two impacts per cycle could
therefore be maintained without the primary mass moving, i.e. with no input
of energy into the system.

α

-0.005 0 0.005 0.015 0.025 0.035

A
Ω

0

A
Ω  min

0.004

0.008

0.012

0.016

0.02

Figure 8: Slow Invariant Manifold - r = 0.65, L = 15mm. Two branches of
solutions exist: one stable (solid blue) and one unstable (dashed red). AΩmin

is
the minimum value of AΩ for the solutions to appear; this point mathematically
represents a saddle-node bifurcation point.
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Length

15 - 50 mm

Figure 9: Evolution of ǫ0-SIM for constant L = 15mm as the restitution coeffi-
cient varies (left) and for constant r = 0.65 as the length varies (right).

Once the SIM obtained, we push further our analysis and study Sys. (7) at
the ǫ1 scale in order to study the evolution of the system on the SIM as the
amplitude and the frequency of the forcing term vary.

Only keeping the ǫ1-order terms, the first equation of Sys.(7) becomes:

∂2X1

∂τ20
+X1 = −2

∂2X0

∂τ0∂τ1
− γ

∂X0

∂τ0
− ∂2X0

∂τ20
− w0 + Y cos(Ωτ0 + β(τ1)) (24)
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Where Y cos(Ωτ0 + β(τ1)) = X sin(Ωτ0) + γΩX cos(Ωτ0).
After substituting (13) into (24) and eliminating secular terms we are able

to find the approximate solution provided by the multiple-scale analysis. By
equaling derivatives with respect to time to zero, the fixed points are obtained.
These steps are not reported here for the sake of conciseness and can be found
in [24]. Finally we obtain a fourth order polynomial relating A and α:

a2A
4 + a1A

2 + a0 = 0 (25)

Where the coefficients a0, a1, a2 are functions of α:

a0 =
64

B2π4

(

σ2 + 1
)

α4 − 128

B2π4
α3 +

64

B2π4
α2 (26)

a1 =
32

B2π2

(µσ

2
+ δ

)

α2 − 32δ

B2π2
α− 1

a2 =
(µ2 + 4δ2)

B2

Where δ is the detuning parameter defined as Ω = 1+ǫδ, B is the scaled external

amplitude term B = X
Lǫ and µ is the scaled damping coefficient µ = 2ξ/ǫ. It

can be seen that, unlike the SIM, the fixed points expression depends on the
external excitation’s amplitude X and frequency Ω through the variables B and
δ. It is also important to notice that, as it was for the SIM, the fixed points
expression is a function of the design parameters tube’s length L and restitution
coefficient r (through σ).

The solutions of the problem will satisfy both Eq.(22) and Eq.(25) and can
graphically be identified by the intersections of these two curves on the plane
AΩ − α. Alternatively, one can say that the fixed points of Eq.(25) have to
respect the constraints given by the SIM of Eq.(22).

To summarize, through this section we mathematically described the physi-
cal problem, the impacts were modeled and the equations of motion obtained.
The multiple scale method was applied to simplify and analytically solve the
equations of motion. Under the assumption of 1:1 resonance between the LO
and the VI-NES we found an expression for the Slow Invariant Manifold of
the problem which provides some important information about the existence
and the stability of all the possible solutions. Subsequently, by developing the
equations of motion up to ǫ1-order, the fixed points were calculated, i.e. the
steady-state solutions for a given external forcing. These points should respect
the conditions imposed by the SIM to be actual physical solutions.

4 Experimental and analytical results compari-

son

The purpose of this section is to find an analytical description and explanation to
the VI-NES’ behavior we observed experimentally. Particular attention is paid
to the type of response the VI-NES may exhibit depending on the magnitude
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and frequency of the external forcing. Three levels of forcing amplitude are
considered: low, medium and high. For each level the evolution of the system
on the SIM as the external forcing frequency varies is analytically analyzed and
compared to the experimental observations. For the analytic calculations, a
coefficient of restitution r = 0.65 is used. This is a typical value for an impact
involving two metal bodies. Each case is presented as a graph on the AΩ − α
plan where the curves (22) and (25) have been plotted. It is important to notice
that eq.(25) can have real or imaginary solutions. In the graphs that follow only
the real solutions are plotted as they represent the only physical fixed points.

4.1 Low level forcing

For a low level of forcing (ẍe = 0.1g) the activation threshold condition is not
respected at any frequency and the VI-NES is never active. Experimentally
the LO is not affected at all by the presence of the VI-NES. Analytically, as
shown in fig.10, the fixed points evaluated by solving Eq.(25) (green curve) do
not intersect the SIM curve and as a consequence no steady solution can be
reached.
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(c) Ω = 1.010
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(d) Ω = 1.030

Figure 10: Evolution of the fixed points for a low level of external forcing ẍe =
0.1g and four values of Ω. The stable and unstable branches of the SIM are
the blue and red-dashed lines respectively. The green curves are the solutions
of (25). No intersections are present at any frequencies: the VI-NES is never
active.
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4.2 Medium level forcing

Fig.11 shows the experimental spectrum of the primary mass displacement for
a base acceleration ẍe = 0.2g. The VI-NES stays idle up until the primary
system’s oscillations reach the activation threshold, it is active for a range of
frequencies nearby the natural frequency of the LO and it turns idle again for
higher frequencies of the forcing. However, the only type of response observed
is the SMR, suggesting the VI-NES is not able to establish a stable-state solu-
tion. This assumption is actually confirmed by looking at the evolution of the
fixed points on the SIM in Fig.12. Four different values of forcing frequency
Ω = 0.97; 1.00; 1.01; 1.03 are shown. For Ω = 0.97 and Ω = 1.03 the isles (green
curves) representing the fixed points do not intersect the SIM and the VI-NES
is idle. For both Ω = 1.00 and Ω = 1.03 the fixed points curves have two
intersection with the SIM. Nevertheless the points intersected are located on
the unstable branch of the SIM: the solutions are then unstable. This is in
agreement with the experimental observations which featured a Strongly Mod-
ulated Response. Analyzing the SMR, we can assume that the phase when the
VI-NES is active is an unstable solution and therefore cannot be held. Sub-
sequently the oscillations amplitude decreases until the VI-NES is not active
anymore since the activation threshold condition is no more satisfied. Because
of the constant external forcing the primary mass’ oscillations get higher again
and go beyond the activation threshold and the cycle starts over. Looking at
Fig.4, It should be noticed that the cycles are each time different and appear
to be chaotic. Recently Gendelman et al. [23] referred to this phenomenon as
Chaotic Strongly Modulated Response (CSMR). A study of the chaotic SMRs
is planned to be done in future work, where different chaos criteria might be
applied to the experimental time series featuring SMR.

Ω=0.97 Ω=1.00 Ω=1.01 Ω=1.03 

Figure 11: Experimental spectra of the LO’s displacement with (red) and with-
out (blue) the VI-NES. The regime of strongly modulated response (SMR) has
been highlighted.
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Figure 12: Evolution of the fixed points for a medium level of external forcing
ẍe = 0.2g and four values of Ω. The stable and unstable branches of the SIM
are the solid-blue and red-dashed lines respectively. The green curves are the
solutions of (25). A SMR regime is the only type of solution that can be reached.
This is in agreement with the experimental results of Fig.11.

.
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4.3 High level forcing

When the external base acceleration is ẍe = 0.4g the measured spectrum showed
in Fig.13 presents two distinct zones featuring a CAR and a SMR. The VI-NES
exhibits a CAR for most of the frequency range of activation and a SMR for
a little portion just before turning back idle. The evolution of the fixed points
on the SIM is illustrated in fig.14. At Ω = 0.94 we can see that a second fixed-
points isle appears but that still there are no points of intersection with the
SIM. At Ω = 0.97 this second isle intersects twice the SIM on the stable and
on the unstable branch. It means that at least one stable solution exists and a
CAR can be established. When the frequency goes up, the stable point tends
to lose its stability and eventually becomes unstable (Ω = 1.04) as the isle of
fixed points gets smaller. At Ω = 1.06 there are not intersections anymore and
the VI-NES is idle again.

Ω=0.94 Ω=0.97 Ω=1.04 Ω=1.06 

Figure 13: Experimental spectra of the LO’s displacement with (red) and with-
out (blue) VI-NES for ẍe = 0.4g. The regimes of constant amplitude (CAR)
and strongly modulated response (SMR) have been highlighted.
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(c) Ω = 1.040: SMR
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Figure 14: Evolution of the fixed points for a high level of external forcing
ẍe = 0.4g and four values of Ω. The stable and unstable branches of the SIM
are the solid-blue and red-dashed lines respectively. The green curves are the
solutions of (25). The system can have either stable (Ω = 0.97) or unstable
(Ω = 1.04) fixed point intersections. CAR and SMR can both be observed.

5 Influence of the tube’s length and the mass

ratio on the VI-NES response

In this section the influence of the mass ratio ε = m/M and the tube’s length L
on the response of the VI-NES is studied. The case of low level forcing presented
in the previous section is used to show how a variation in the parameters m and
L can lead to a change in the VI-NES’s response. This is done by means of
the analytical model and by calculating the SIM and the fixed points of the
problem.

In Sec.4.1 we saw how for a low level of forcing (ẍe = 0.1g) the activation
threshold condition is not respected at any frequency and the VI-NES is never
active. A way to have solutions for this level of forcing would be reducing the
tube’s length. If this happens the SIM would move left on the AΩ −α plan and
the fixed points could intersect it. This example is illustrated in Fig.15 where
the tube’s length has been divided by two (L = L0/2 = 7.5mm).

The VI-NES is now capable to reach a Strongly Modulated Response state.
If we go further in this analysis and keep reducing the length, there will be a
point when the system gets to a Constant Amplitude Response. This example is
shown in Fig.16 where the length has been divided by three (L = L0/3 = 5mm)

We can assume that the smaller the tube’s length is the easier it is to reach a
stable solution (CAR), i.e. even with a low level of external excitation. However,
it is highly important to point out that this is a discussion about the qualitative
responses the VI-NES may exhibit and not about the efficiency of the VI-NES
as an absorber. Here the problem is studied from a kinematic point of view,
not involving energy aspects. It means that reducing the length and reaching a
stable fixed point may potentially make the VI-NES less efficient as an absorber.
This point can be better understood by studying the effect of a mass ratio
variation.
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Figure 15: Same case as in Fig.10 of low level forcing but for a tube’s length
divided by two (L = L0/2 = 7.5mm). It can be seen that now a SMR regime is
possible.
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Figure 16: Same case as in Fig.10 of low level forcing but for a tube’s length
divided by three (L = L0/3 = 5mm). It can be seen that now a CAR regime is
possible.
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Figure 17: Same case as in Fig.10 of low level forcing but for a smaller mass
ratio. It can be seen that a SMR and a CAR regime are possible.

A similar analysis is conducted in the case where the mass ratio ε = m/M
varies and the tube’s length is kept constant. If the VI-NES mass is decreased
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to ε = 0.2%, a Strongly Modulated Response can be established, as shown in
Fig.17a. When the mass ratio is further decreased (ε = 0.15%) a Constant
Amplitude Response state appears (see Fig.17b). It should be clear that the
effect of reducing the mass ratio allows the VI-NES to reach a stable state but
at the same time reduces the level of energy dissipated by the shocks and con-
sequently the VI-NES’s efficiency as an absorber. For this reason and because
of the complex dependency of the problem on these parameters, an extensive
energetic study will be carried out in future investigations.

6 Conclusion

In this work the dynamical behavior of a harmonically forced 1-dof LO coupled
to a VI-NES has been explored. An experimental study has been carried out, in
which the different regimes of response that may arise (constant amplitude and
strongly modulated) and their dependence on the external forcing have been
analyzed. The experimental results have also shown that the VI-NES is able to
significantly reduce the resonance peak of the primary system even in the case
of a considerably small mass ratio (ǫ = 0.84%) and with no need of an optimized
designing process. The Targeted Energy Transfer mechanism is observed.

Subsequently, the system has been analytically studied by means of the
multiple-scale analysis. The Slow Invariant Manifold and the fixed points of the
mathematical problem have been calculated. It has been shown that a threshold
in the LO’s amplitude for the TET to occur exist and how the SIM and the
fixed points evolve as the external forcing term varies. The analytical model
has allowed for a prediction of the response regime of the system and a good
correlation with the experimental observations has been obtained.

These results complete the study begun in [24] by providing an exhaustive
experimental and analytical analysis of the VI-NES and its dynamics when
applied to a 1-dof linear oscillator. This work will constitute the basis for
further investigations on the VI-NES: an energetic study and an optimization
of the performances as a vibration absorber will be the next steps to reach a
complete characterization of this kind of device.
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