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Abstract This paper presents an experimental inves-

tigation of the dynamic behaviour of a single-degree-

of-freedom (SDoF) system with a metal-to-metal con-

tact under harmonic base or joined base-wall excita-

tion. The experimental results are compared with those

yielded by mathematical models based on a SDoF sys-

tem with Coulomb damping. While previous experi-

ments on friction-damped systems focused on the char-

acterisation of the friction force, the proposed approach

investigates the steady response of a SDoF system when

different exciting frequencies and friction forces are

applied. The experimental set-up consists of a single-

storey building, where harmonic excitation is imposed

on a base plate and a friction contact is achieved

between a steel top plate and a brass disc. The experi-

mental results are expressed in terms of displacement

transmissibility, phase angle and top plate motion in

the time and frequency domains. Both continuous and

stick-slip motions are investigated. The main results

achieved in this paper are: (1) the development of an

experimental set-up capable of reproducing friction

damping effects on a harmonically excited SDoF sys-

tem; (2) the validation of the analytical model intro-

duced by Marino et al. (Nonlinear Dyn, 2019. https://

doi.org/10.1007/s11071-019-04983-x) and, particu-
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larly, the inversion of the transmissibility curves in the

joined base-wall motion case; (3) the systematic obser-

vation of stick-slip phenomena and their validation with

numerical results.

Keywords Coulomb damping · Friction · Displace-

ment transmissibility · Base motion · Joined base-wall

motion · Single-degree-of-freedom

1 Introduction

Friction plays a central role in many engineering

systems, ranging from civil to mechanical applica-

tions. The main research interest in this field is the

development of a predictive model for frictional joint

behaviour: the challenge is rooted in the lack of under-

standing of the phenomenon across small and large

scales [2]. As the Coulomb friction model has not

proved sufficient to address accurately the dynamic

regimes commonly experienced by engineering struc-

tures [2], most of the recent studies have focused

on proposing alternative constitutive laws. These can

account for friction-related effects not addressed such

as stiction, friction dependence on sliding speed and

hysteresis [3]. Stribeck [4,5], LuGre [6,7] or rate-and-

state [8–10] models account for different combinations

of these phenomena.

In the literature, experimental approaches have been

used for three main different purposes: friction model

development [11,12], identification of existing models
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and/or parameters [13–15] or model validation [3,16–

18]. Attempts to characterise the friction force include

models simply based on the friction coefficient µ (the

coefficient of proportionality between friction force

and normal force acting on the contact) [19,20] or on

more complicated constitutive laws which attempt to

account for the dynamic friction component as well.

Frequency dependency of µ is of interest for the analy-

sis of jointed structures [21,22]. It is not yet clear which

underlying physical agents generate this dependency

[23].

Experiments involving friction usually offer poor

reliability and repeatability [3]. An effective solution

is to consider alternative metrics during a test. For

instance, the frictional frequency response (i.e. the ratio

between the dynamic component of the friction force

and sliding velocity fluctuations) has been used in ref-

erences [3,11,23,24].

Several analytical and numerical approaches have

been developed for investigating the response of struc-

tures with friction damping considering different con-

stitutive laws. The dynamic response to forced vibra-

tion is not known analytically, even when applying

Coulomb friction to a simple mass–spring system.

Analytical approaches based on a Coulomb damping

model, proposed by Den Hartog [25], Hong and Liu

[26,27] and other authors [16,28–32], allow the inves-

tigation of the dynamic behaviour of such a system.

Particularly, Den Hartog determined analytically a con-

dition for identifying the motion regime (continuous

or stick-slip) and the amplitude and phase angle of

mass non-sticking response. Den Hartog’s solution has

recently been extended by Marino et al. [1] to two

classes of base motion problems, where friction contact

is achieved between the mass and either a ground-fixed

(Fig. 1a) or base-fixed (Fig. 1b) wall. In the second case,

indicated as joined base-wall motion, the behaviour of

the system exhibits significative differences compared

to typical forced vibration cases, highlighting a more

complex behaviour in terms of motion regimes and an

inversion of the friction damping effect on the response

amplitude when the exciting frequency is larger than

1.5 times the natural frequency of the system. This

phenomenon introduces an interesting physical simi-

larity with viscous single-degree-of-freedom (SDoF)

systems (see reference [33]).

Experimental investigation of these SDoF systems

with a Coulomb friction contact has received little

attention [16,34]. These experiments focus on the

dynamic response in the time domain, mainly refer-

ring to stick-slip regime; to the best of the authors’

knowledge, only Marui and Kato [16] introduced the

displacement transmissibility among their results but

only for quasi-static motion. Furthermore, forced vibra-

tion testing has been performed exploiting base exci-

tation but no experiments have been led for the joined

base-wall motion case.

This paper presents an experimental investigation

of a SDoF system under base and joined base-wall har-

monic motion. The main goals of this contribution are:

– the development of an experimental framework

suitable for reproducing a SDoF system;

– the validation of the analytical and numerical find-

ings presented in [1];

– the investigation of continuous and stick-slip

motions in the time and frequency domains, and

their comparison with results found with a numer-

ical approach.

Analytical results from [1] are reviewed in Sect. 2

and a numerical approach is also described; Sect. 3 is

dedicated to the description of the experimental frame-

work and of the testing procedure, as well as to the esti-

mation of the parameters related to the SDoF model of

the set-up; an overview of the experimental results is

presented in Sect. 4, while Sect. 5 shows a detailed com-

parison between experimental and numerical results in

time and frequency domains.

2 Mathematical models

In reference [1], Marino et al. introduced analytical

and numerical approaches for the investigation of the

dynamic behaviour of a SDoF system with Coulomb

damping under harmonic base motion (Fig. 1a) or

joined base-wall motion (Fig. 1b). This section recalls

the main analytical findings presented in [1] and

describes a numerical approach.

2.1 Summary of analytical developments

The analytical approach proposed by Den Hartog in

reference [25] is able to address forced vibration in a

SDoF system with Coulomb damping, represented in

Fig. 1c. The equation of motion of a system with mass

m, stiffness k, subject to a normal force N acting on
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Fig. 1 SDoF mass–spring

systems with a Coulomb

friction contact

(a) Base motion
     (with fixed wall)

(b) Joined base-wall motion (c) Forced vibration

the friction contact and a harmonic force of magnitude

F0 and frequency ωb applied to the mass can be written

as:

mẍ + kx + µNsgn(ẋ) = F0 cos(ωbt) (1)

where µ is the friction coefficient between the mass and

the wall. In the assumptions of a periodic and steady

mass motion, Den Hartog determined:

– an analytical boundary condition for continuous

non-sticking motion;

– for a continuous motion, analytical expressions

of the mass steady response amplitude and phase

angle.

The base motion problems in Fig. 1a, b are described,

respectively, by the following governing equations:

mẍ + kx + µNsgn(ẋ) = kY cos(ωbt) (2)

mz̈ + kz + µNsgn(ż) = kYr2 cos(ωbt) (3)

where Y is the amplitude of the base motion and

z = x − y is the relative motion between mass and

wall. As explained in [1,16], it is possible to describe

the dynamic behaviour of these systems referring to

two dimensionless groups only. These groups are the

frequency ratio:

r = ωb

ωn
(4)

i.e. the ratio between the driving frequency and the

natural frequency ωn =
√

k/m, and the force ratio:

β = µN

kY
(5)

that is the ratio between the amplitudes of friction and

exciting forces.

Comparing Eqs. (1) and (2), the base motion prob-

lem represented in Fig. 1a is equivalent to the forced

vibration problem described by Den Hartog by posing

F0 = kY . In particular, it can be found [1] that a steady

motion is always possible if β < 1 and the mass will

exhibit a non-stop motion if:

β <

√

√

√

√

√

√

V 2

(

S

r2

)2

+ U 2

(6)

where:

U (r) = sin(π/r)

r [1 + cos(π/r)] (7)

V (r) = 1

1 − r2
(8)

S(r) = max
τn∈[0, π

r
]

{

r sin(τn) + Ur2[cos(rτn) − cos(τn)]
sin(rτn)

}

(9)

where:

τn = ωnt (10)

is the dimensionless time. Displacement transmissibil-

ity and phase angle between response and excitation

can be evaluated as [1]:

|X |
|Y | =

√

V 2 −
(

Uβ
)2

(11)

φxy = arccos

(

1

V

|X |
|Y |

)

(12)
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Den Hartog’s solution can be extended to joined

base-wall motion case (Fig. 1b), since Eq. (3) has the

same form as Eq. (1) with F0 = kYr2. The amplitude of

the excitation is here dependent on the frequency ratio

and this implies a more complex scenario in terms of

motion regimes, which can be described as follows [1]:

⎧

⎪

⎨

⎪

⎩

continuous motion, if β < βlim (13a)

stick-slip motion, if βlim ≤ β < r2 (13b)

no steady motion, if β ≥ r2 (13c)

where:

βlim = r2

√

√

√

√

√

√

V 2

(

S

r2

)2

+ U 2

(14)

While Den Hartog’s solution can be applied only to rel-

ative mass–wall motion, mass absolute motion is also

addressed in [1], so that displacement transmissibility

and phase angle can be written as:

|X |
|Y | = max

τn∈[0, π
r
]

∣

∣

∣

∣

√

V 2 −
(

Uβ

r2

)2

cos(rτn)

+β[1 − cos(τn)] − Uβ

r2
[r3 sin(τn) − sin(rτn)]

∣

∣

∣

∣

(15)

φxy = arccos

[

1

V

√

V 2 −
(

Uβ

r2

)2]

+ rτn,max − π

(16)

where τn,max is the dimensionless time where the max-

imum absolute response occurs during a steady motion

cycle.

2.2 Numerical procedure

The analytical results summarised in Sect. 2.1 can be

used to investigate the displacement transmissibility

and the phase angle for continuously sliding motions

but a numerical approach is required to describe the

full dynamic response of the system, including stick-

slip solutions.

Due to the non-smooth nature of the system, spe-

cialised numerical solvers (stiff solvers) can be imple-

mented in order to improve both the accuracy and

the computational efficiency when stick-slip motion

occurs. Alternatively, it is possible to use standard

integration methods by setting explicit conditions to

account for the transition between different regimes.

The latter approach is implemented here.

The governing equations Eqs. (2), (3) are written in

a non-dimensional form:

r2 x̄ ′′ + x̄ + βsgn(x̄ ′) = cos(τb) (17)

for the base motion case and:

r2 z̄′′ + z̄ + βsgn(z̄′) = r2 cos(τb) (18)

for the joined base-wall motion case, so that the numer-

ical response can be evaluated for different pairs of the

parameters r and β, without need to specify any other

system parameters. In the above equations, the dimen-

sionless time:

τb = ωbt (19)

and the dimensionless displacements:

x̄ = x

Y
z̄ = z

Y
(20)

are introduced and •′ = d • /dτb. It is worth noting

that, in this formulation, the duration of an excitation

cycle is always equal to 2π . Therefore, the final time

of the integration can be expressed as:

τb,f = 2π Ncycles (21)

and the user can choose directly the number of cycles

(Ncycles) to be included in the simulation.

In this paper, Eqs. (17), (18) are numerically inte-

grated by using a variable-step Runge–Kutta (4,5)

method, implemented in MATLAB by the function

ode45 [35]. The integration is performed until the

condition for which mass sticking occurs is verified

with an absolute tolerance of 10−6. In such a way, the

governing equation are solved numerically only when

the motion is smooth. Specifically, the stop condition

occurs in mass motion when [32]:

{

ẋ(t) = 0 (22a)

k|y(t) − x(t)| ≤ µN (22b)

Eq. (22b) can be also written as:

| cos(τb) − x̄(τb)| ≤ β (23)
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Fig. 2 Pictures of the test rig. A rotor is connected to the base plate of a single-storey building through a Scotch yoke mechanism. A

counterweight pinned to the external frame (a) or to the base plate (b) applies a normal force on the top plate

The condition (22a) is clearly verified for the whole

duration of the stop, so mass sticking will last as long

as the condition (23) holds. Therefore, the transition

from sticking to slipping phase will occur when:

| cos(τb) − x̄(τb)| − β = 0 (24)

The value of τb for which Eq. (24) is satisfied is deter-

mined by using the MATLAB function fzero [35]

with an absolute tolerance of 10−6. Starting from this

time instant, Eqs. (17), (18) will be solved again with

ode45, considering the latest values of x̄ and x̄ ′ as

initial conditions. The described procedure is repeated

until τb = τb,f .

The evaluation of the frequency spectrum of the

response and, in general, of frequency related quantites,

requires the interpolation of the numerical responses on

a fixed-step time vector. The length of such a step will

be the inverse of the sampling frequency, which can be

specified by the user. The corresponding time step has

also been added to ode45 as a maximum step condi-

tion.

The displacement transmissibility and the phase

angle are determined by comparing peak values in the

frequency spectrum of the base and mass motions, as

Table 1 Properties of the single-storey building components

Component Size (mm) Mass (kg) Material

Top plate 300 × 153 × 9.72 3.372 Steel

Base plate 300 × 255 × 12.7 2.862 Aluminium

Bars 410 × 25.5 × 1.60 0.130 Steel

explained in detail in Sect. 3.2.3 for the experimental

signals. The results obtained from this numerical pro-

cedure are presented in Sect. 4, 5.

3 Experimental approach

3.1 Apparatus

The test rig is a single-storey building composed by

two metal plates connected through four metal bars, as

shown in Fig. 2a, b. Each stanchion is doubly bolted to

both the floors. The main properties of these compo-

nents are reported in Table 1.

A friction force is applied to the system by means

of a brass disc resting on the top plate producing a line

metal-to-metal contact. The disc is mounted on a bar
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equipped with a counterweight system, so that the nor-

mal force, and therefore the friction force, applied on

the plate can be modified by adjusting the position of

the weights along the bar.

Two test configurations are considered by changing

the location of the counterweight system. When the

counterweight is pinned to the external frame (as shown

in Fig. 2a), the fixed wall configuration is obtained. The

joined base-wall configuration (shown in Fig. 2b) is

instead achieved by pinning the counterweight system

to a post bolted to the base plate. A schematic repre-

sentation of the test rig is reported in Fig. 3.

The single-storey building is dynamically excited

through the motion of the base plate. In particular, this

motion is imposed by using an electric motor (DKM-

9PBK) with an inverter motor speed regulator (RS Pro

RS510) and a Scotch yoke mechanism in order to con-

vert the rotating motion into a harmonic reciprocat-

ing motion. The frequency of the base motion can be

controlled by changing the input speed of the inverter,

while the amplitude can be set by pinning the Scotch

yoke to different points of the rotor.

During the test, the displacements of the base and

top plates were recorded with two separate laser dis-

placement sensors (optoNCDT 1420, with a measuring

range of 50 mm [36]). The sensors were clamped to the

external frame.

3.2 Test procedure

3.2.1 Parameter estimation and setting

The single-storey building can be modelled as a SDoF

mass–spring system equivalent to those shown in

Fig. 1a, b. In a first approximation, the top plate cor-

responds to the mass m of the SDoF, while the four

stanchions can be modelled with an equivalent spring

of stiffness k. The last statement requires two important

assumptions:

– the stiffness of the plates, compared to the flexu-

ral stiffness of the stanchions, is large enough to

consider them as infinitely rigid;

– the driving frequencies investigated during the test

are such that only the first bending mode of the

stanchions can be excited.

Both assumptions are satisfied with the present experi-

mental set-up. The approximate mass and the stiffness

of the SDoF system can be calculated as follows:

Fig. 3 Schematic representation of the base motion test rig in

the ground-fixed wall configuration

– the equivalent stiffness of the system is the overall

stiffness provided by the four stanchions. The stiff-

ness of each stanchion can be therefore calculated,

in a first approximation, as the stiffness of a beam

clamped to both the plates;

– because of their deformed shape during vibration,

a fraction of the mass of the stanchions will partic-

ipate to the mass motion. Therefore, this contribu-

tion should be added to the mass of the top plate for

estimating the equivalent mass of the SDoF system.

However, as shown in Eqs. (17), (18), the dynamic

response of the system, both to base and to joined base-

wall harmonic excitations, is a function of the dimen-

sionless parameters r and β; these parameters can be

directly estimated experimentally as follows.

The frequency ratio r requires the evaluation of ωb

and ωn. The driving frequency is specified by chang-

ing the input frequency of the inverter and it can be

visualised from the frequency spectrum of the excita-

tion, which will exhibit a peak at f = ωb/2π . The

natural frequency has been estimated by running mul-

tiple tests at different driving frequencies up to 8 Hz in

the absence of friction, i.e. removing the counterweight

from the set-up. A least square method was used to find

the value of ωn for which the difference between the

experimental transmissibility and the analytical trans-

missibility [32]

|X |
|Y | = 1

|1 − r2| (25)

is minimum.
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Fig. 4 Undamped displacement transmissibility: experimental

(markers) versus analytical (continuous line)

It is possible to observe in Fig. 4 a very good agree-

ment between experimental and analytical results when

the natural frequency is set to 3.086 Hz. The transmis-

sibility results shown in Fig. 4 also highlight how the

experimental apparatus is suitable for the representa-

tion of a SDoF system.

The force ratio can be adjusted by choosing a con-

figuration of the counterweight masses producing the

desired normal force on the top plate. The friction force

acting between the disc and the top plate cannot be

directly measured during the forced vibration test. Nev-

ertheless, the coefficient µ can be estimated by using

a linear decrement approach. A free vibration is gen-

erated in the building by pulling and releasing the top

mass and, in accordance with the Coulomb model for

free vibration, the peaks of each cycle of the measured

freely decaying vibration have an approximately linear

slope (Fig. 5). Therefore, the friction coefficient can be

evaluated as [32]:

µ = k(x1 − x2)

4N
(26)

where x1 and x2 are the displacements of two sub-

sequent peaks. A better estimate can be obtained by

averaging the coefficient estimated for every pairs of

subsequent peaks of the signal.

Unlike the friction coefficient, the force ratio can be

directly estimated from linear decrement once the base
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M
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n
t 
(m

m
)

Fig. 5 Experimental measurement of top plate free decay. The

measured peaks show an approximately linear slope (dashed line)

motion amplitude Y has been selected. In fact, recalling

Eq. 5 and writing the normal force as N = Mg, where

M is the effective mass produced by the counterweight

system on the contact line, the force ratio can be written

as:

β = µMg

kY
(27)

and, from Eqs. 26 and 27:

β = x1 − x2

4Y
(28)

It is worth noting that the expression for the force

ratio is only valid under the assumption of a Coulomb

friction model. Therefore, efforts have been made to

reduce and control non-Coulomb phenomena which

may occur during the test campaign. In particular,

the set-up allows the modification of the contact line

between the disc and upper plate when significant wear

has occurred; in fact, the brass disc can be rotated or

shifted. Furthermore, debris was removed after each

test by thoroughly cleaning the surfaces in contact.

3.2.2 Further considerations on the force ratio

estimation

In order to verify the theoretical results presented in

[1] two response metrics need to be considered: the

displacement transmissibility and the phase lag.
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Fig. 6 Counterweight system pinned to the external frame (a)

and to the base-fixed post (b)

For a fixed frequency ratio, the force ratio estimated

from the linear decrement can be initially used. How-

ever, during the test campaign the friction force might

vary. This can be due to variations in the normal force

[37] and/or in the friction coefficient. Particularly, it is

worth observing that the latter is an empirical param-

eter and its variation can be due to several underlying

physical agents, as stated in Sect. 1.

The normal force variation can be related to an

imperfect pin connection between the counterweight

bar and either the external frame (base motion case,

see Fig. 6a) or the base-fixed post (joined base-wall

motion case, shown in Fig. 6b). In fact, this constraint

should allow a free rotation around the pinning axis,

preventing at the same time any horizontal or vertical

displacement of the counterweight bar. Washers have

been located on both sides of the pinning disc of the

counterweight system in order to aid the rotation. Even

so, pinning these components too tightly may partially

prevent this free rotation, producing a reaction moment

in the constraint, which would eventually alter the nor-

mal force applied on the plate. On the other hand, an

excessively loose tightening would allow an unaccept-

able horizontal displacement of the counterweight bar.

Consequently, in order to limit both effects, care was

taken when tightening.

The friction coefficient displayed only small varia-

tions from test to test under the same conditions. How-

ever, some differences were observed when varying the

driving frequency. The focus of this study is not to quan-

tify this variation but, as stated at the beginning of this

section, to validate general results in terms of dimen-

sionless groups.

Therefore, the force ratio estimated from the linear

decrement is verified, and possibly refined, to compen-

sate for friction force variations, to yield simultane-

ously a good agreement with both displacement trans-

missibility and phase angle theoretical results. This is

achieved by controlling the normal force applied with

the counterweight. It is worth noting that since it is pos-

sible to reproduce not only the magnitude but also the

phase shift of the response, and therefore the main har-

monic component of the mass motion, the force ratio

fine tuning considered is not affecting the validation

provided by the experiment.

3.2.3 Signal processing for response metrics

evaluation

The signals acquired during the test have to be pro-

cessed in order to evaluate accurately the driving fre-

quency, and therefore the frequency ratio. In particu-

lar, the signals from the laser sensors are recorded for

60 s with a sampling frequency of 2 kHz. This choice of

duration for the recording window represents a compro-

mise between obtaining an acceptable frequency reso-

lution and avoiding significant changes in the friction

force due to wear and debris formation during a single

test.

Signals were processed by applying a Hanning win-

dow and then zero-padding in order to reduce leak-

age [38] and allow a more accurate resolution of the

main peaks in the frequency spectrum by increasing

the frequency resolution. Figures 7, 8 show how post-

processing affects a pair of recorded signals (with

parameters specified in the figure caption) both in time

and frequency domains, respectively. It is worth not-

ing that the frequency domain signal displays not only

a peak at the main driving frequency, but also smaller

peaks at other frequencies. This is because the set-up is

generating mainly a mono-harmonic base motion but

also other harmonics are excited, as inevitable when

using a Scotch yoke mechanism. Nevertheless, these

additional frequency contents are typically more than

20 dB below the fundamental peak so they do not

affect the evaluation of the response metrics, which
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Fig. 7 Time domain evolution of base and mass displacements for a Coulomb damped SDoF system under harmonic base motion at

(r = 0.85, β = 0.2) before and after signal post-processing
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Fig. 8 Frequency spectra of base and mass displacements for a Coulomb damped SDoF system under harmonic base motion at

(r = 0.85, β = 0.2) before and after signal post-processing

are always referred to the main driving frequency, as

detailed in what follows. The displacement transmissi-

bility is evaluated as:

Trr,β = |X̂r,β( fb)|
|Ŷr ( fb)|

(29)

where X̂r,β( f ) and Ŷr ( f ) are, respectively, the fre-

quency spectra of the processed mass and base dis-

placements for a specific couple of frequency and force

ratios. The phase shift between excitation and response

can be calculated as:

φr,β = arg{X̂r,β( fb)} − arg{Ŷr ( fb)} (30)

4 Transmissibility and phase angle results

4.1 Base motion with fixed wall

The base motion case was investigated using the rig

shown in Fig. 2a. In addition to the two laser sensors

introduced in Sect. 3.1, the set-up was equipped with

a third laser sensor clamped to the external frame to

measure the motion of the disc and ensure that it was

negligible. For every test performed, it was verified that

the amplitude of the disc motion was at least two orders

of magnitude smaller than top plate vibration.

The parameter space investigated was r = 0.025 :
2.5 and β = [0.2, 0.4, 0.6]. Overall results from the

experimental campaign on the base motion case are
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Fig. 9 Displacement transmissibility of a Coulomb damped

SDoF system under harmonic base motion for varying force

ratios: analytical (dotted line), numerical (circles) and experi-

mental (crosses). Analytical mass motion is continuous above

Den Hartog’s boundary (continuous line) while stick-slip motion

occurs below it

reported in Figs. 9, 10, 11, 12 and 13. The displacement

transmissibility as a function of the frequency ratio is

shown in Fig. 9. The experimental results are compared

with the analytical and numerical results showing an

excellent agreement when the motion is continuous.

Den Hartog’s analytical boundary between continuous

and stick-slip motion [25] is reported in the same figure.

The numerical results for the displacement trans-

missibility have been obtained by using the approach

described in Sect. 2.2. In particular, since the decay

rate of the transient response may be slow due to the

absence of viscous damping, the duration of the overall

simulation was varied for each numerical analysis. The

overall duration was set so that, after reaching a steady-

state condition within a base motion cycle, additional

100 steady-state response cycles were considered. The

transmissibility evaluation was then performed on these

100 cycles, disregarding the initial transient.

The results obtained for the three different β val-

ues are shown in Fig. 10. The low-frequency-ratio

region where stick-slip motion occurs is represented

in Fig. 11, where a comparison between experimental

and numerical results shows an overall good agreement.

Particularly, it can be observed that for low values of

β the experimental results are better matched by the

numerical solution. The main disagreement is found

in the range r = 0.3 : 0.6, where the experimental

results appear to be overlapped rather than showing the

123



Experimental investigation of a single-degree-of-freedom 1791

0 0.5 1 1.5 2 2.5

Frequency ratio

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
D

is
p

la
c
e

m
e

n
t 
tr

a
n

s
m

is
s
ib

ili
ty

0

0.2

0.4

0.6

Analytical

Boundary

  Force ratio  

0.6

0.4

0.2

0

0

0.6

0.4

0.2

Fig. 10 Displacement transmissibility of a Coulomb damped
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is continuous above Den Hartog’s boundary (dotted line) while

stick-slip motion occurs below it
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Fig. 11 Displacement transmissibility of a Coulomb damped

SDoF system under harmonic base motion in the low-frequency-

ratio region: experimental (markers) versus numerical (continu-

ous lines)

increase of the displacement transmissibility forecast

by the numerical solution.

In Fig. 12, the phase angle between base and mass

motion is shown as a function of the inverse frequency

ratio. The agreement between analytical and experi-

mental results is also very good. In Fig. 13, it is shown

that, similarly to what observed for the transmissibil-
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Fig. 12 Phase angle of a Coulomb damped SDoF system under

harmonic base motion: experimental (markers) versus analytical

(continuous lines)
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Fig. 13 Phase angle of a Coulomb damped SDoF system under

harmonic base motion in low-frequency-ratio region: experimen-

tal (markers) versus numerical (continuous lines)

ity, the agreement between experimental and numerical

phase angles is acceptable but less accurate in the low-

frequency-ratio region when the force ratio increases.

It is possible to observe that the phase angle is more

sensitive than the displacement transmissibility to the

force ratio variations; so it appears to be a more suit-

able metric for the force ratio detection in experimental

measurements.
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Fig. 14 Displacement transmissibility of a Coulomb damped

SDoF system under harmonic joined base-wall motion for vary-

ing force ratios: analytical (dotted line), numerical (circles) and

experimental (crosses). Three different motion regimes are iden-

tified analytically by Eqs. (13a, b, c): no steady motion (dark-grey

region), relative mass–wall stick-slip motion (light-grey region)

and continuous motion (white region)
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Fig. 15 Displacement transmissibility of a Coulomb damped SDoF system under harmonic joined base-wall motion: experimental

(markers) versus analytical (continuous lines) (a) and detail of the inversion (b)

Moreover, it is worth noting that, according to the-

ory [1], stick-slip motion at high frequency ratios would

occur only for β = 0.6 among the investigated cases.

This has been verified experimentally. In Figs. 9c and

12, it can be observed how the transmissibility and the

phase angle trends change suddenly after the intersec-

tion with Den Hartog’s boundary.

4.2 Joined base-wall motion

The joined base-wall motion case was investigated on

the set-up shown in Fig. 2b. An additional laser sen-

sor clamped to the external frame was used to mea-

sure the displacement of the disc to ensure that the

“wall”was providing the same motion as the base. It

was observed that the disc motion was characterised

by a negligible phase shift with respect to the base

motion and a very low percentage increase in the level

of noise.

The parameters space investigated was such that

β = [0.5, 0.75, 1, 1.5, 2], while values for r ranged

up to 2.5. The results of this experimental campaign

are presented in Figs. 14, 15 and 16. In Fig.14, the dis-

placement transmissibility is illustrated as a function

of r , showing an excellent agreement among experi-

mental, analytical and numerical results. According to

the theoretical boundaries introduced in Sect. 2, three

motion regimes can be distinguished for every value of

β: no steady motion (dark-grey region), relative mass–

wall stick-slip motion (light-grey region) and continu-

ous motion (white region). The experimental transmis-

sibilities obtained for the different values of β inves-

tigated are compared in Fig. 15a. The experimental

results confirmed the existence of a point of inversion

across the transmissibility curves. This demonstrated

that the resulting amplitude of the mass response is

amplified by increasing the force ratio, which corre-

sponds to increasing friction damping, above r ∼= 1.5

[1]. The inversion point is shown in detail in Fig. 15b,

where it is possible to observe that the experimental

results obtained immediately to the left and to the right

of r = 1.5 display an inverted trend with varying

β. It can also be noted that, despite the overall very

good agreement, in the frequency ratio range repre-

sented in Fig. 15b there is a visible difference between

experimental and analytical transmissibilities. Due to

the low sensitivity to force ratio variation exhibited

by the transmissibility in this range, it would not be

possible to obtain an accurate force ratio identifica-

tion.

In Fig. 16, the phase angle between base and mass

motion is plotted versus the inverse frequency ratio,

showing a very good agreement between analytical

and experimental results. For β = 2, it is possible to

observe that, in relative stick-slip conditions, the phase
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Fig. 17 Experimental time response at (r = 1.15, β = 0.7),

highlighting a mass–disc sticking occurrence at t = 54.8s

angle changes suddenly, showing increasing values for

lower frequency ratios.

4.3 Limitations on the applicability of the set-up

The results presented in the previous subsections

for base and joined base-wall motion cases have

shown that the SDoF Coulomb friction system can

be investigated with the proposed experimental set-

up.

However, during the test campaign, it was observed

that for some particular conditions the top plate and

the disc became stuck during the test. For example,

in Fig. 17, it is shown a case for which the mass and

disc coupling affects the mass motion to the point of

reaching a no-motion condition after about 55s. It is

worth noting that a steady-state condition is apparently

reached in a first stage but this is followed by a varia-

tion in set-up conditions which leads to a new transient

ending with the sticking condition. In order to investi-

gate the stop occurrence, the test was repeated under the

same conditions. It was found that the duration of the

motion length was changing in every test; furthermore,

this event might occur outside the duration of the test

(60 s). It was not possible to determine the causes of

this phenomenon, which might include: (1) initial con-

ditions variation; (2) contact properties variation; (3)

temperature variation; (4) debris formation; (5) set-up

imperfections; (6) transient chaotic behaviour (see ref-

erence [40]). Moreover, it is worth noting that, starting

a new test directly from the stuck condition, no mass

motion was observed.

The particular test conditions for which this phe-

nomenon was observed are discussed in what follows.

In the base motion with fixed wall case, it occurred

for values above β ∼= 0.7, independent of the fre-

quency ratio. As for the joined base-wall motion case,

mass–disc sticking may occur for any force ratio for

certain values of r . Introducing an equivalent force

ratio:

βBW = µN

kYr2
= β

r2
(31)

as the ratio between the amplitudes of the friction

force and of the equivalent force applied on the mass,

the no-motion phenomenon was observed again above

βBW
∼= 0.7.

It is also worth noting that, because of the mass–

disc sticking during the test, it is difficult to achieve an

accurate experimental evaluation of the response met-

rics within the stick-slip region shown in Fig. 14. In

particular, the lowest frequency ratio for which con-

tinuous or stick-slip motion was observed at least for

60 s for a given value of β is shown in the frequency

ratio-force ratio plane represented in Fig. 18. It can

be observed that stick-slip motion was experimentally

investigated only for β = 2.

In conclusion, this set-up cannot be used to inves-

tigate with sufficient accuracy the displacement trans-

missibility and phase angle when β ≥ 0.7 in the base

motion configuration and βBW ≥ 0.7 in the joined

base-wall motion case.
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5 Mass motion analysis in the time and frequency

domains

In this section, the experimental results obtained for

fixed pairs of the parameters r and β are compared to

the system response yielded by the numerical approach

in different motion regimes. Particularly, the mass

stick-slip motion is investigated in the time and fre-

quency domains in order to account for features such

as the number of stops per cycle and their duration,

as well as the multi-harmonic content, which can-

not be captured by the response metrics presented in

Sect. 4.

During the test, the signals were recorded for 60 s

only after a steady-state condition was reached. For this

reason, the experimental response in the time domain

was shifted to match the first zero crossing of the

numerical steady-state response.

The comparison between the experimental and

numerical mass motions for fixed wall configuration

is shown in Figs. 19, 20 and 21 for different values

of r at β = 0.2. A comparison in the time domain

is shown in Fig. 19 for a small number of cycles in

order to investigate the agreement in terms of num-

ber and duration of the stops, and the causes of the

amplitude mismatches highlighted in the displacement

transmissibility in Fig. 11b. It is possible to observe
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(b) One stop stick-slip motion (r = 0.5)
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(c) Two stops stick-slip motion ( r = 0.35)
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(d) Four stops stick-slip motion (r = 0.175)
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(e) Multiple stops stick-slip motion (r = 0.05)

Fig. 19 Time mass steady-state response for β = 0.2 (short

duration): experimental (black line) versus numerical (red line).

(Color figure online)

that the experimental mass responses are well repro-

duced by the numerical simulations, even in the com-

plex case of a multiple stops stick-slip regime. The

comparison between the same signals for longer dura-

tions is reported in Fig. 20. This allows the assess-

ment of their overall agreement. The experimental mass

motion shows the presence of a low-frequency vari-

ation not accounted by the numerical simulations. It
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(b) One stop stick-slip motion (r = 0.5)

0 5 10 15 20 25 30

Time (s)

-2

-1

0

1

2

M
a

s
s
 d

is
p

la
c
e

m
e

n
t 
(m

m
)

(c) Two stops stick-slip motion ( r = 0.35)
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(d) Four stops stick-slip motion (r = 0.175)
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(e) Multiple stops stick-slip motion ( r = 0.05)

Fig. 20 Time mass steady-state response for β = 0.2 (long

duration): experimental (black line) versus numerical (red line).

(Color figure online)

is worth noting that an asymmetric mass motion with

one stop per cycle is shown in Figs. 19b, 20b. This

peculiar case of stick-slip motion was discussed in

references [32,40]. Particularly, an asymmetric solu-

tion is expected for r = 0.5 when β < 1/3 [32].

The numerical solutions presented in this paper con-

firm this result, which has also been observed exper-

imentally. However, it is worth mentioning that when
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(b) One stop stick-slip motion (r = 0.5)
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(c) Two stops stick-slip motion (r = 0.35)
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Fig. 21 Frequency spectra of mass steady-state response for

β = 0.2: experimental (black line) versus numerical (red line).

(Color figure online)

r = 0.5 (or, more generally, r = 1/n, n = 1, 2, . . .),

the numerical response exhibits a very long initial tran-

sient and it is possible that further changes may occur

in the motion after the numerical simulation is stopped

[32].

The comparison between experimental and numer-

ical frequency spectra is shown in Fig. 21. The exper-

imental noise level is below -40dB in all the reported
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cases and it allows a clear observation of the peaks.

A very good agreement is observed for the peaks

related to the first six odd harmonics. While these peaks

are due to the nonlinearity of the problem [39], the

peaks observed at the even harmonics in the exper-

imental spectra are caused by the non-ideal mono-

harmonic base motion, as discussed in Sect. 3.2.3. In

Fig. 21b, even peaks are observed also in the numeri-

cal response and they are clearly due to the asymmetry

in the mass motion. Finally, a difference in the low-

frequency content can be observed between experi-

mental and numerical signals, as shown in Fig. 21c–

e. This can be due to set-up imperfections, noise

from the instrumentation or variation in the test con-

ditions.

In conclusion, it has been shown that the experi-

mental set-up allows the investigation of the dynamic

behaviour of a Coulomb friction oscillator also in the

time and frequency domains. Particularly, the stick-

slip motion has been observed with a very good accu-

racy.

6 Concluding remarks

An experimental investigation of a Coulomb friction

oscillator under harmonic base excitation and joined

base-wall excitation has been presented in this paper

and validated with analytical and numerical results.

A single-storey building set-up with a metal-to-

metal contact, in two different configurations, has been

designed to apply simultaneously a harmonic base exci-

tation and a static normal force. The response metrics

considered were: (1) displacement transmissibility; (2)

phase shift angle; (3) time domain and (4) frequency

domain mass motion.

The analytical developments presented in reference

[1] have been validated for different values of the fre-

quency and force ratios. An excellent agreement with

analytical results for the continuous motion has been

found in terms of the response metrics (1) and (2). In

particular, it was confirmed that, in the joined base-

wall motion case, the transmissibility curves present

an inversion point at r ∼= 1.5.

A very good agreement between experimental

and numerical results was obtained in terms of the

four response metrics. In particular, it was shown

that the numerical approach and the experimental

set-up allow the observation of features such as the

number and the duration of the stops in stick-slip

regime, and the multi-harmonic content in the system

response.

The main limitations of the test set-up were dis-

cussed. In particular, the frequency ratio–force ratio

parameter space which can be investigated is limited

by the occurrence of a sticking between the surfaces

in contact when an equivalent force ratio (defined

differently for each set-up configuration) is above

0.7.

Overall, the experimental investigation presented in

this paper has shown that the theoretical approaches

proposed in [1] are suitable, in most conditions, for

describing the dynamic behaviour of a SDoF sys-

tem with a metal-to-metal contact. It has been shown

that by combining mathematical models with experi-

mental measurements, it is possible to determine the

force ratio and therefore the friction coefficient. Fur-

ther work will focus on investigating with the pro-

posed set-up different materials in contact, friction-

related effects not accounted by Coulomb model

and the transition between different stick-slip motion

regimes.
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