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Abstract Many environmental problems are linked to multiphase flows encompassing

ecological issues, chemical processes and mixing or diffusion, with applications in different

engineering fields. The transition from a supercritical flow to a subcritical motion constitutes a

hydraulic jump. This flow regime is characterised by strong interactions between turbulence,

free surface and air–water mixing. Although a hydraulic jump contributes to some dissipation

of the flow kinetic energy, it is also associated with increases of turbulent shear stresses and

the development of turbulent eddies with implications in terms of scour, erosion and sedi-

ment transport. Despite a number of experimental, theoretical and numerical studies, there

is a lack of knowledge concerning the physical mechanisms involved in the diffusion and

air–water mixing processes within hydraulic jumps, as well as on the interaction between the

free-surface and turbulence. New experimental investigations were undertaken in hydraulic

jumps with Froude numbers up to Fr = 8.3. Two-phase flow measurements were performed

with phase-detection conductivity probes. Basic results related to the distributions of void

fraction, bubble frequency and mean bubble chord length are presented. New developments

are discussed for the interfacial bubble velocities and their fluctuations, characterizing the

turbulence level and integral time scales of turbulence representing a “lifetime” of the lon-

gitudinal bubbly flow structures. The analyses show good agreement with previous studies

in terms of the vertical profiles of void fraction, bubble frequency and mean bubble chord

length. The dimensionless distributions of interfacial velocities compared favourably with

wall-jet equations. Measurements showed high turbulence levels. Turbulence time scales

were found to be dependent on the distance downstream of the toe as well as on the distance
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to the bottom showing the importance of the lower (channel bed) and upper (free surface)

boundary conditions on the turbulence structure.

Keywords Hydraulic jump · Froude number · Two-phase flow · Void fraction · Bubble

frequency · Mean bubble chord length · Interfacial velocity · Turbulence level · Turbulence

time scale

Notations

C Void fraction defined as the volume of air per unit volume of mixture

Cmax Maximum void fraction in the air bubble diffusion layer

Dt Turbulent diffusivity (m2/s) of air bubbles in air–water flow

D∗ Dimensionless turbulent diffusivity: D∗ = Dt/(U1d1)

dmbcl Mean bubble chord size (m)

d1 Upstream flow depth (m)

F Bubble count rate (Hz) or bubble frequency

Fmax Maximum bubble count rate (Hz) at a given cross-section

Fr Upstream Froude number

g Acceleration of gravity: g=9.80 m/s2 in Brisbane (Australia)

hc Channel height (m)

Lc Channel length (m)

lc Channel width (m)

Nab Number of air bubbles per record

Q Water discharge (m3/s)

Re Reynolds number (Re = ρU1d1/µ)

Rxx Normalised auto-correlation function (reference probe)

Rxz Normalised cross-correlation function between two probes output signals

(Rxz)max Maximum cross-correlation coefficient between two probes output signals

Tu Measure of the turbulence level in the air–water flow

Txx Auto-correlation integral time scale (s)

T0.5 Characteristic time lag for which Rxx = 0.5 (s)

U1 Depth-averaged flow velocity upstream of the hydraulic jump

V Interfacial velocity (m/s)

Vmax Maximum velocity measured in a cross-section (m/s)

x Longitudinal distance from the upstream gate (m)

x1 Longitudinal distance from the gate to the jump toe (m)

y Distance measured normal to the bed channel (m)

y* Distance measured normal to the channel bed corresponding to the boundary

between the turbulent shear layer and the mixing layer

yCmax Distance normal to the jet support where C = Cmax

yFmax Distance normal to the jet support where F = Fmax

z Transverse distance from the channel centreline

Greek symbols

δ Boundary layer thickness (m)

µ Dynamic viscosity of water (Pa s)

ρ Density of water (kg/m3)

�x Longitudinal distance between probe sensors (m)

τ0.5 Characteristic time lag for which Rxz = 0.5(Rxz)max
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Subscript

1 Upstream flow conditions

1 Introduction

A hydraulic jump is the sudden transition from a supercritical open-channel flow regime to

a subcritical regime. It is characterised by a highly turbulent flow with an air–water shear

layer and a recirculating area. Macro-scale vortices develop in the roller region and interact

with the free surface. Beyond the region of turbulence production next to the impingement

point, significant kinetic energy dissipation takes place. In terms of environmental aspects,

this property is used, for instance, with low impact structures for river restoration. Hydraulic

jumps are aimed to maximise energy dissipation and to minimize flood damages. In the two-

phase flow region, the strong interactions between turbulence and the free surface lead to

splashes and droplet ejections. Figure 1 shows a sketch of a hydraulic jump with the relevant

notations. Figure 2 presents typical vertical void fraction and bubble frequency profiles in the

jump roller.

The main parameter which characterises a hydraulic jump is its Froude number (Fr) defined

as:

Fr =
U1

√

gd1

(1)

where U1 is the inflow velocity (m/s), d1 is the inflow water depth (m) and g is the gravity

acceleration (m/s2). For a hydraulic jump, the Froude number is always greater than unity.

Previous studies showed that air entrainment starts for 1<Fr<1.3 [3,20,24]. The mixing

of air and water is caused by the strong interactions between turbulence and the free surface

which generates disturbances of the air–water interface and vortex formation. An understan-

ding of the basic physical mechanisms is critical because they govern the mixing, diffusion

and transfer processes with applications in river restoration design tools, oxygen transfer and

air/sea exchanges (hydraulic jumps may be considered as a steady spilling breaker). They

Fig. 1 Definition sketch of a hydraulic jump
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Fig. 2 Vertical distributions of void fraction (C) and bubble count rate (F) in a hydraulic jump

also influence the rate of energy dissipation [5]. Studies of hydraulic jumps have a broad

range of applications and results may be helpful for studies on wall-jet flows (similitude of

velocity profiles), and self-aerating flows (in terms of experimental technique improvements

for instance) with direct applications for coastal, river and chemical engineering purposes.

Void fraction measurements in hydraulic jumps were first conducted by Rajaratnam [26].

Ten years later, Resch and Leutheusser [28] performed hot-film probe measurements in the

bubbly flow region showing the effects of the upstream flow conditions. In the last decade,

a number of researchers studied the air/water properties (void fraction, bubble frequency,

bubble size etc) and the free surface behaviour (length and time scales, frequency range).

Recently, turbulence properties inside the water column were also studied. The most signi-

ficant contributions included [2,19,10], and [24,25]. These studies highlighted important

features:

A. The importance of the maximum void fraction (Cmax) in the turbulent shear layer in

hydraulic jumps with partially developed inflow conditions [2];

B. The decay of this maximum of void fraction (Cmax) with increasing downstream

distance from the jump toe [10];

C. The distinction in two regions of the vertical void fraction profiles measured in the roller

(Fig. 3). The first one extends from the bottom of the channel to a well-defined position

y = y∗. On this region, the void fraction profile satisfies a diffusion equation [3]. This

was experimentally verified by Chanson and Brattberg [10] and Murzyn et al. [24]. This

region is called the turbulent shear layer. The second region extends from y∗ up to the

free surface. In this part, the air content is strongly dominated by interfacial aeration

and large amplitude of the free surface motion. [24] suggested that, in this upper part,

void fraction profiles are best fitted by a Gaussian error function;

D. The strong turbulence levels in the turbulent shear flow. Rouse et al. [30], Resch and

Leutheusser [28,29], Chanson and Brattberg [9,10], Liu et al. [18], Mouazé et al. [20,

21], Chanson [6,7], Kucukali and Chanson [17], Murzyn and Chanson [23] gave import-

ant contributions on turbulence levels, air–water turbulence length and time scales deve-

loping at the free surface. [21] identified some turbulent length scales associated with

the free surface fluctuations along the hydraulic jumps using wire gages and video ana-

lysis for low Froude numbers (2<Fr<4.8) while the study of Chanson and Brattber

[10] covered larger Froude numbers (Fr = 6.3 and Fr = 8.5);

123



Environ Fluid Mech (2009) 9:143–159 147

C

y
/d

1

1E-5 2E-5 5E-50.0001 0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.3 0.5 1
0

1

2

3

Data (Murzyn et al, 2005)

Fit (y/d1<y*/d1)

Fit (y/d1>y*/d1)

Fig. 3 Typical vertical void fraction profile in hydraulic jump (from [24])

E. The importance of dynamic similarity (Froude) and scale effects between models and

prototypes that must be taken into account for an accurate description of two-phase

flow properties in hydraulic jumps [6,8].

This paper aims to present new developments on turbulence characterisation in hydraulic

jumps with relatively large inflow Froude numbers (5.1≤Fr≤8.3), with a special interest on

air–water flow properties, interfacial velocities and turbulence properties. Table 1 summarises

the flow conditions of some relevant earlier studies and the present one. The experimental

facility is presented in part 2 with the instrumentation, data analysis techniques and flow

conditions. Part 3 describes the results. The last part of the present paper discusses some con-

clusions in the context of “multiphase flows in environmental problems”. A brief description

of future works is also proposed.

2 Experimental set-up and flow conditions

2.1 Experimental set-up

The present experiments were undertaken in a horizontal rectangular flume at the Gordon

McKAY Hydraulics Laboratory of the University of Queensland (UQ). The channel width

was lc = 0.50 m, its length was Lc = 3.20 m and its height is hc = 0.45 m. The sidewalls

were made of glass and the bed was made of PVC. The water discharge was measured with

a Venturi meter located in the supply line which was calibrated on-site with a large V-notch

weir (accuracy: ±2%). A vertical gate with a rounded shape allowed the formation of the

hydraulic jump (Figs. 1 and 4). Further details on the experimental facility were reported in

Murzyn and Chanson [23].

A dual-tip conductivity probe manufactured at the University of Queensland was used to

record the air–water flow properties (Fig. 5a). It was a phase detection intrusive probe designed
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Table 1 Experimental conditions of previous and present investigations in hydraulic jumps with partially

developed inflow conditions

References (1) Fr (2) Re (3) d1 (m) (4) x1 (m) (5) Measurement

technique (s) (6)

[9,10] 6.33–8.48 33,000–44,000 0.014 0.50 Double-tip conductivity probe

0.025 mm inner electrode

8 mm tip spacing

[24] 2.0–4.8 46,000–88,000 0.021–0.05 Double-tip optical fiber probe

0.010 mm diameter

1mm tip spacing

[6] 5–8.6 25,000–98,000 0.013–0.029 0.5–1.0 Two single-tip conductivity

probes

0.35 mm inner electrode

[17] 4.7–8.5 50,000–100,000 0.024 1.0 Conductivity probes

+ single tip probe,

0.35 mm inner electrode

+ double-tip probe, 0.25 mm

inner electrode, 7.0 mm tip

spacing

Ultrasonic displacement

meters

Present study 5.1–8.3 38,550–64,100 0.018 0.75 Double-tip conductivity probe

0.25 mm inner electrode

7.0mm tip spacing

Fig. 4 Hydraulic jump in the experimental facility at the University of Queensland (flow from right to left,

Fr = 5.1)

to pierce the bubbles and its principle was based on the difference between electrical resistance

of air and water [4,12]. The streamwise distance between probe sensors was �x = 7 mm

(Fig. 5b). The response time of this sensor was <10µs. The signal output was scanned for

45 s at 20,000 Hz per sensor. The sampling rate and sampling duration were chosen according

to the quality control procedure developed by [31] and [6,8] The data accuracy was on the

void fraction �C = 2%, on the bubble frequency �F/F = 0.5%, on the mean bubble chord
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Fig. 5 Dual-tip conductivity probe (a) Probe in operation, flow from bottom left to top right (b) Definition

sketch

length �dmbcl = 0.2 mm and on the interfacial velocity �V/V = 5% (if 0.05< C < 0.95)

or 10% (if C < 0.05 or C > 0.95). Depending on the upstream Froude number, three to four

vertical profiles were recorded at different cross-sections downstream of the jump toe. Each

profile contained at least 30 points. The step between 2 points ranges from 3 mm (closed

to the bottom) to 10 mm in the upper part of the flow. Figure 6 presents a typical voltage

output of the conductivity probe leading sensor. The high voltage level corresponds to water

whereas the lower level is relative to air. The distinction between both phases was performed

using a single threshold technique [31].

The main properties of the air–water flow were calculated. These included the void frac-

tion (C), bubble count rate (F), mean bubble chord length (dmbcl), interfacial velocity (V),

turbulence levels (Tu) and turbulence time scales (Txx), defined as:
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Fig. 6 Voltage output from conductivity probe

V =
�x

T
(2)

Tu = 0.851

√

τ 2
0.5 − T2

0.5

T
(3)

Txx =

τ=τ(Rxx=0)
∫

τ=0

Rxxdτ (4)

where �x is the longitudinal distance between probe sensors, T is the average air–water

interfacial travel time between the two sensors, τ0.5 is the time scale (s) for which the nor-

malised cross-correlation function is half of its maximum value such as Rxz(T + τ0.5) =

(Rxz)max/2, (Rxz)max is the maximum cross-correlation coefficient for τ = T, T0.5 is the

time (s) for which the normalised auto-correlation function equals 0.5, Rxx is the normalised

auto-correlation function of the probe signal.

The turbulence level Tu corresponds to the fluctuations of the air–water interfacial velocity

and Txx is an integral time scale representing the longitudinal bubbly flow structures [7,11].

2.2 Flow conditions

The experimental conditions are summarised in Table 2 where Q is the discharge (m3/s) and

Re is Reynolds number defined as Re = ρU1d1/µ, ρ and µ being respectively the density

(kg/m3) and the dynamic viscosity of water (Pas). For all conditions, the toe of the jump was

stable fixed at x1 = 0.75 m. The flume was relatively short and the flow was bounded by

the upstream vertical sluice gate and a downstream adjustable overflow sharp-crested gate.

This yielded small oscillations of the toe (±5 cm in amplitude) with fluctuation frequencies

from 1 to 3 Hz. The measured inflow depth was d1 = 0.018 m. The corresponding inflow

conditions were partially developed (δ/d1 < 1).
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Table 2 Experimental conditions for air–water flow measurements

Test Q (m3/s) U1 (m/s) Fr Re x−x1 (m) x−x1 (m) x−x1 (m) x−x1 (m)

1 0.019 2.12 5.1 38150 0.075 0.150 0.225 –

2 0.029 3.18 7.6 57250 0.225 0.300 0.450 –

3 0.031 3.47 8.3 62250 0.225 0.300 0.450 0.600

3 Results

3.1 Bubbly flow

The basic air/water flow properties are described herein. Figures 7–9 illustrate typical vertical

distributions of void fraction (C), bubble frequency (F) and mean bubble chord length dmbcl,

respectively.

Figure 7 shows some vertical profiles of void fraction at different longitudinal positions

(12.5< (x−x1)/d1 <33.3) downstream of the toe for one inflow Froude number (Fr=8.3).

In this figure, the dashed lines (“theory”) refer to the solution of the diffusion equation

presented by [3]:

C = Cmax exp

⎛

⎜

⎝
−

(y−yCmax

d1

)2

4D∗
(

x−x1

d1

)

⎞

⎟

⎠
(5)

where D∗ is the dimensionless turbulent diffusivity, Cmax is the maximum void fraction in the

shear layer measured at a distance yCmax above the bottom. The results (Fig. 7) highlighted

some similar shape for all positions as illustrated in Fig. 2 (left part). All profiles clearly

exhibited a marked peak in void fraction (Cmax) in the turbulent shear layer. The vertical
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Fig. 7 Vertical profile of air concentration for Fr = 8.3
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Fig. 9 Vertical profile of mean bubble chord length for Fr = 8.3

position of this maximum of void fraction (yCmax/d1) increased with increasing distance to

the jump toe. The present data compared favourably with the data of [9,10] and [17]. The

best data fit was given by:

yCmax

d1
= 1 + 0.11

x − x1

d1
(6)

This result is related to buoyancy effects which became predominant when the distance from

the toe increased. Further, the maximum void fraction (Cmax) decreased with increasing

distance from the toe and the data were best correlated by:

Cmax = 0.07 Fr exp

(

−0.064
x − x1

d1

)

(7)

Far from the toe, very small values of Cmax were observed and the vertical profile became

nearly flat. The same pattern was observed for all Froude numbers (Fr = 5.1, 7.6 and 8.3).
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Figure 8 presents four vertical profiles of bubble frequency (F) corresponding to four

longitudinal positions downstream of the toe (12.5 < (x−x1)/d1 < 33.3). The data denoted

a trend which was in good agreement with earlier investigations [7,9,10,17] and sketched

in Fig. 2 (right). At each cross section, the bubble frequency profiles showed two distinctive

maxima of bubble frequency. A major peak (Fmax) was located in the developing turbulent

shear layer while the second (minor peak) was found next to the upper free-surface. The

results showed that the largest bubble count rate data were found close to the jump toe. The

maximum bubble frequency decreases with increasing the distance to the toe. The result is

in agreement with the findings of Chanson and Brattberg [10]. All the data relative to the

dimensionless maximum bubble count rate data were accurately defined by the empirical

correlation:

Fmaxd1

U1
= 0.117 Fr exp

(

−0.0415
x − x1

d1

)

(8)

The vertical position of the maximum of bubble frequency (yFmax/d1) increased with incre-

asing the distance from the toe. A close comparison between Figs. 7 and 8 shows that the

position of the maximum of void fraction (yCmax/d1) was always above the position of maxi-

mum bubble frequency (yFmax/d1). That is: yFmax/d1 < yCmax/d1. This trend was observed

for all inflow Froude numbers and previously highlighted by Chanson and Brattberg [10].

The difference between the positions of the maxima in void fraction and bubble frequency

(yCmax/d1, yFmax/d1) characterised some double diffusion process. Based on previous works

[6,10], it is suggested that vorticity and air bubbles diffuse at a different rate and in a different

manner downstream of the impingement point. The asymmetry in the turbulent shear stress

across the bubbly flow region would influence the mean bubble chord length and hence the

number of bubbles for a given void fraction in the advective diffusion region.

Figure 9 shows some vertical profiles of mean bubble chord length (dmbcl) for Fr = 8.3 at

several distances from the toe (12.5 < (x − x1)/d1 < 33.3). The mean bubble chord length

was typically between 1 and 8 mm. The results implied that the smallest bubbles were found

in the lower part of the flow (y < yCmax). At a given position (x − x1)/d1 in the roller, the

trend was nearly linear for all Froude numbers. The range of mean bubble chord length was

also in good agreements with previous studies [7,24] for similar Froude numbers. The largest

bubbles are found close to the free surface where the shear is smaller. Flow visualizations

also confirm these results.

3.2 Interfacial velocities, turbulence levels and time scales

The distributions of dimensionless interfacial velocity, turbulence level and integral turbu-

lent time scale in the hydraulic jump are presented in Figs. 10–12. The data analysis was

based upon a cross-correlation technique between the two conductivity probes according to

Eqs. 2–4. The turbulence level corresponded to the fluctuations of the interfacial velocity

[1,4,11].

Figure 10 presents the dimensionless distributions of the interfacial velocity V/Vmax for

Fr = 8.3 and 12.5 < (x − x1)/d1 < 25. These results are restricted to the region where the

velocity was positive and the probe sensors were aligned with the flow streamlines. In the

upper part of the flow, data were meaningless because of the reverse flow associated with

negative velocities. It must be mentioned that our technique is intrusive and thus disturbs the

flow (weak effects). Nevertheless, in the lower part of the flow, velocities were large enough

(V>1 m/s) and the dimensions of the sensors were small enough compared to the scales of

the flow (Table 1) to ensure the accuracy and the quality of the results. All vertical profiles
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Fig. 10 Dimensionless distributions of interfacial velocity V/Vmax in hydraulic jump for Fr = 8.3

indicated the presence of a boundary layer close to the bottom characterized by a rapid

increase in the dimensionless interfacial velocity until a maximum velocity at y = yVmax.

Above this position, a gradual decrease in velocity was observed with increasing distance

from the bed. Similar shapes were found regardless of the position (x−x1)/d1. These results

tended to confirm that the velocity profiles were close to those observed in wall-jet flows

[10,27]:

V

Vmax
=

(

y

yVmax

)1/N

, for y < yVmax (9a)

V

Vmax
= exp

(

−
1

2

[

1.765

(

y − yVmax

y0.5

)]2
)

, for yVmax < y < 4yVmax (9b)

where Vmax is the maximum velocity measured at y = yVmax, y0.5 is the vertical elevation

where V = 0.5 Vmax and N is nearly constant (N ∼ 6). The trends given by Eq. 9 were

clearly identified despite some data scatter caused by the unsteady and fluctuating nature of

the flow. Far downstream (of the roller), vertical velocity profiles recovered typical shapes

corresponding to free surface open channel flows.

Figure 11a–c show large turbulence levels in the hydraulic jumps up to 400% which

increased with increasing distance from the bed. Tu increased also with increasing Froude

number at a given position downstream of the toe. In the roller, at a given position (x−x1)/d1,

the maximum turbulence level was found to be close to the free surface showing that the

dynamics of the free surface strongly affected the fluctuations of the interfacial velocity and

thus the dynamics of the flow. This point is particularly known in wavy free surface flows [22].

In hydraulic jumps, the same pattern was found. The free surface interacted with the flow as

large air packets were entrapped from above, leading to higher levels of turbulence below the

free surface. For all experiments, the turbulence level profile became nearly uniform at the

largest distance to the toe. This was expected as the flow recovered lower fluctuating levels.
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Fig. 11 Vertical profiles of turbulence intensity in hydraulic jumps (a) Fr = 5.1 (b) Fr = 7.6 (c) Fr = 8.3
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Fig. 12 Vertical profiles of

integral time scale of turbulence

in hydraulic jumps (a) Fr = 5.1

(b) Fr = 7.6 (c) Fr = 8.3
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Another relevant property was the integral time scale of turbulence which characteri-

sed some “lifetime” of the longitudinal bubbly flow structures. Figures 12a–c present some

vertical profiles of dimensionless time scale TxxU1/d1. The vertical profiles became nearly

uniform at the largest distances to the jump toe. The smallest time scales were found close to

the channel bed suggesting that the bottom imposed some boundary condition which blocked

the vortex development and stretching. Previous results showed that the free surface could

play a similar role, although with a lesser influence [22]. Hence at a given position (x−x1)/d1,

the longest “lifetimes” were found close to the free surface. This indicated that the largest

structures developed in the turbulent shear layer and above.

4 Summary and conclusions

The present study investigated the air/water flow and turbulence properties in hydraulic

jumps. The measurements were performed in the experimental facility of the University

of Queensland. The Froude number ranged from 5.1 to 8.3. The present study brings new

important information for hydraulic researchers and highlights the complex nature of the

flow. The main outcomes can be summarised as:

– The vertical void fraction profiles may be separated in two regions: the turbulent shear

layer and an upper part strongly influenced by the free surface. The finding was in good

agreement with previous studies;

– The maxima of void fraction (Cmax) and bubble frequency (Fmax) were found in the

developing shear region at two different vertical distances above the bed (yFmax/d1 <

yCmax/d1) indicating two competitive turbulent processes. This was also in good agreement

with previous studies;

– New interesting developments were related to the distributions of interfacial velocity and

turbulence levels (fluctuation of the interfacial velocity). Vertical interfacial velocity pro-

files were found to be similar to those obtained in wall-jet flows depicting a boundary

layer close to the bottom. Turbulence levels up to 400% were reached, and they decayed

with increasing distance from the jump toe. At a given cross-section, the smallest turbulent

levels were observed close to the bed whereas the largest values were observed close to

the free surface. This was likely caused by the boundary conditions indicating the strong

influence of the free surface on the turbulent structure of the flow;

– Lastly, some turbulence time scales were documented showing larger time scales far from

the bed and shorter lifetime when the distance from the toe increased.

These results, not available in the literature prior to this study, bring new interesting infor-

mation in many applications in terms of environmental flows. They should contribute to a

better knowledge of the complex phenomena occuring in such flows. For instance, in terms

of turbulence and bubble chords, they give new insights into the microscopic structure of the

flow as well as on turbulence-bubbles interactions.

The air–water flow is associated with turbulence which can also lead to sediment trans-

port. Note that the turbulence may be strongly affected by bubble dynamics. Physically,

the mechanisms involved in these processes are complex (mixing of sediments, air and

water). Careful attention must be devoted to scour and sediment transport that can occur

with the hydraulic jump formation, which leads to some increase in turbulence level and

in bed shear stresses. In these flows, turbulent eddies also develop, grow and propagate.

Thus, the threshold of the sediment transport (bed or suspended-load motion) can be locally

reached with unexpected consequences (scour, damage, embankment safety etc). Solid par-
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ticles and materials can be advected over a large distance with potential consequences for

the environment. This justifies the need for further studies of the flow dynamics in hydrau-

lic jumps to improve basic knowledge, to validate numerical models and thus to develop

remedial solutions against flood damages and for river restoration and beach management.

A better knowledge would help engineers to design new hydraulic structures that maxi-

mise energy dissipation [14] and to anticipate any damages that could affect the river

and the surrounding landscape characteristics (dam overtopping, flood events etc). It is

especially important to identify the most influencing parameters such as the turbulence

properties (time and length scales), the Froude number, the Reynolds number, the water

depth or the bottom roughness. Note that the boundary conditions (at the bottom and at

the air/water interface) are relevant parameters as well. Many numerical and experimen-

tal studies actually focus on this turbulence/bubble interaction. For instance, previous stu-

dies suggested that some kinetic energy dissipation can be transferred to the entrained

air bubbles in the form of some transfer of potential energy [13,15,16]. This experimen-

tal work was also relevant to discuss the influence of the free surface on the turbulence

properties.

It is well-known that further developments are needed with larger Froude numbers and/or

different boundary conditions. An interesting point could also consist in a numerical model-

ling of the flow, and the present data sets may be a valuable validation test. Some measure-

ments could concern the effect of bottom roughness on the turbulent properties. Comparisons

and analysis with previous measurements would also be interesting to assess scale effects

between laboratory and field measurements.
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