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 It is well known that many operations in quantum information processing depend largely on a 

special kind of quantum correlation, that is, entanglement. However, there are also quantum 

tasks that display the quantum advantage without entanglement. Distinguishing classical 

and quantum correlations in quantum systems is therefore of both fundamental and practical 

importance. In consideration of the unavoidable interaction between correlated systems and 

the environment, understanding the dynamics of correlations would stimulate great interest. 

In this study, we investigate the dynamics of different kinds of bipartite correlations in an all-

optical experimental setup. The sudden change in behaviour in the decay rates of correlations 

and their immunity against certain decoherences are shown. Moreover, quantum correlation 

is observed to be larger than classical correlation, which disproves the early conjecture that 

classical correlation is always greater than quantum correlation. Our observations may be 

important for quantum information processing.       
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 C
orrelations, including classical and quantum parts, are  crucial 
in science and technology. Although many operations in 
quantum information processing depend largely on a spe-

cial kind of quantum correlation, that is, entanglement 1 , there are 
quantum tasks that display the quantum advantage without entan-
glement 2 – 4 , and some of these have been verifi ed experimentally 5 . 
Distinguishing classical and quantum correlations is therefore of 
both fundamental and practical importance. Many theoretical stud-
ies have been conducted in this direction 6 – 14 . Among them, quanti-
fying the quantumness of correlations with quantum discord 7  has 
received great attention 4,5,15 – 26 . 

 In the fi eld of quantum information, for a bipartite system   ρ    AB  , it is 
widely accepted that quantum mutual information measures its total 
correlations 12,27  defi ned as  I (  ρ    AB  )    =     S (  ρ    A  )    +     S (  ρ    B  )    −     S (  ρ    AB  ) 28 , where   ρ    A   
and   ρ    B   are the reduced-density matrices of   ρ    AB  .  S (  ρ  )    =        −    tr  ρ  log 2   ρ   in 
the von Neumann entropy. Depending on the maximal information 
gained for   ρ    AB   with measurement on one of the subsystems, classical 
correlation ( C ) 6  is defi ned as   C S q SAB B B A j j A

j

j j
( ) max [ ( ) ( )],r r r≡ −† Σ    

where  B   j   
  †      B   j   is a positive-operator-valued measure performed on 

the subsystem  B  and  q   j      =    tr  AB  ( B   j    ρ    AB   B   j   
   †      ).   r rA

j
B j AB j jB B q= tr ( )/†    is the 

postmeasurement state of  A  aft er obtaining outcome  j  on particle  B . 
Quantum correlation is therefore given by  Q (  ρ    AB  )    =     I (  ρ    AB  )    −     C (  ρ    AB  ). 
In such a case,  Q  is just identical to quantum discord with a defi ni-
tion based on the distinction between classical information theory 
and quantum information theory 7 , which can be further distributed 
into entanglement and the additional quantum correlation (non-
entanglement quantum correlation) 29 . 

 Because of the unavoidable interaction between a quantum sys-
tem and its environment, understanding the dynamics of diff erent 
kinds of correlations has stimulated great interest. Some studies 
have focused on the comparison between the dynamics of quan-
tum discord and entanglement under both Markovian 19  and non-
Markovian 21,22  environments. Th eir behaviours have been shown to 
be very diff erent, and the quantum discord is more robust against 
decoherence than entanglement in the Markovian evolution 19 . 
Recently, several peculiar properties in the dynamics of classical 
and quantum correlations have also been shown with the presence 
of Markovian noise 23,24 , in which the decay rates of correlations may 
exhibit sudden changes in behaviour 23  and the bipartite quantum 
correlation may completely disappear without being transferred to 
the environment 24 . 

 In this study, we experimentally investigate the dynamics of clas-
sical and quantum correlations between biqubit systems in a one-
sided phase-damping channel. Th e sudden changes in behaviours in 
the decay rates of classical and quantum correlations are shown in an 
all-optical experimental setup, in which the dephasing environment 
is simulated by birefringent quartz plates. Classical and quantum 
correlations are observed to remain unaff ected under certain deco-
herence areas. Moreover, quantum correlation is shown to be larger 
than classical correlation during the dynamics of a special input 
state, which contradicts the early conjecture that classical correla-
tion is always greater than quantum correlation 30 . Our observations 
may have important roles in quantum information processing.  

 Results  
  Th eoretical schemes   .   Consider a two-level quantum system  S  with 
lower and upper states |0 〉   S   and |1 〉   S   under the action of a phase-
damping environment  E (|0 〉   E   is the initial state). Th e interaction 
quantum map can be written as 31  
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 Under such a uniquely quantum mechanical noise process, the 
system  S  remains in the initial state with the probability  p  of scat-
tering the environment to its excited state |1 〉   E  , if  S  is in state |0 〉   S  , 

(1)(1)

and to |2 〉   E  , if  S  is in state |1 〉   S  . It physically describes, for instance, 
the case when a photon scatters randomly in a fi bre. Th e coher-
ence of  S  degrades exponentially, and  p     =    1    −    exp(    −     Γ  t ), where  Γ  
is the decay rate. When it extends to the case of bipartite systems 
coupling with this environment, the decoherence-free states 32  
and the phenomenon of entanglement collapse and revival 33  have 
been shown. 

 When an initial Bell-diagonal state   rAB a b= 〉〈 ++ +| |Φ Φ    
b c d〉〈 + 〉〈 + 〉〈− − + + − −| | | | | |Φ Φ Ψ Ψ Ψ Ψ , with   | / ( )Φ± 〉 = ±1 2 00 11    
and   | / ( )Ψ± 〉 = ±1 2 01 10    representing the four Bell states and 
 a     +     b     +     c     +     d     =    1 evolves in the phase-damping channel given by  equa-
tion (1) , its off -diagonal elements decay exponentially according to 
the previous analysis. Because  S (  ρ    A  )    =     S (  ρ    B  )    =    1, the total  correlation 
is calculated as 

  
I AB j j

j

( ) log ,r l l= +
=
∑2 2

1

4

  

where  λ   j   are the four eigenvalues of the fi nal density matrix. 
To calculate the classical correlation 6 , the state in mode  B  is pro-
jected into | l  〉     =    cos  θ |0  〉     +    sin  θ e   i φ   |1 〉  to get the minimal conditional 
entropy of subsystem  A , where 0 ≤   θ   ≤  π  and 0 ≤   φ   ≤ 2  π  . In the biqubit 
case, the projective measurement is the positive-operator-valued 
measure to maximize  C (  ρ    AB  ) 34 , which is expressed as 23  
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  S A
l( )r    represents the conditional entropy of  A  with projecting  B  in 

| l  〉  and   η      =    max{|  α  |,|  β  |,|  γ  |} with   α      =    (1    −     p )( a     −     b     +     c     −     d ),   β      =    (1    −     p )
( c     −     d     −     a     +     b ) and   γ      =     a     +     b     −     c     −     d . Th e quantum correlation is there-
fore given by 

  Q CAB j j

j

AB( ) log ( )r l l r= + −
=
∑2 2

1

4

     .

  Experimental demonstration of the dynamics of correlations   . 
  Photon qubits with polarization encoded as the information carri-
ers have been widely used to implement diff erent quantum informa-
tion processing procedures 1 . Th e coupling between photon polari-
zation and frequency modes in a birefringent environment leads to 
dephase by a trace-over frequency 35 , which simulates the decoher-
ence eff ect in  equation (1) . Here, we encode the horizontal ( H ) and 
vertical ( V ) polarizations of a photon as |0 〉   S   and |1 〉   S   of a qubit and 
pass the polarization-entangled photons through one-sided con-
trollable quartz plates to investigate the dynamics of diff erent kinds 
of correlations. 

  Figure 1  shows our experimental setup. Ultraviolet pulses are 
 frequency doubled from a mode-locked Ti:sapphire laser with 
 wavelength centred at 780   nm, with a 130   fs pulse width and a 
76   MHz repetition rate. Th ey are distributed into two paths by an 
ultraviolet polarization beam splitter, which transmits 45 °   linearly 
polarized photons (  1 2/ ( )H V+   ) and refl ects     −    45 °  linearly 
 polarized photons (  1 2/ ( )H V−   ). Th e relative power between these 
two paths can be changed easily by a half-wave plate (HWP1), and 
the time diff erence between them is about 6   ns. Th ey then combine 
again by a beam splitter, and both pump two identically cut type-
I  β -barium borate crystals, with their optic axes aligned in mutu-
ally perpendicular planes, to produce polarization-entangled pho-
ton pairs 36 . Aft er compensating the birefringence eff ect between  H  
and  V  with quartz plates (CP), the short pump beam produces 
the maximally entangled state | Φ      +      〉 , whereas the long pump beam 
produces | Φ      −      〉 . 

 Two HWPs (HWP2 and HWP4), with the optic axes set to 
22.5 ° , can change  H  into   1 2/ ( )H V+    and  V  into   1 2/ ( )H V−   . Th e 
HWP (HWP3) with the optic axis set as horizontal in mode  A  is 
used to introduce the   π  -phase between  H  and  V . As our detec-
tion traces over the time diff erence between these two produc-

(2)(2)

(3)(3)

(4)(4)
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tion processes, as has been shown earlier 37,38 , the prepared state 
becomes 

  

rAB b d= 〉〈 + 〉〈− − − −| | | |,Φ Φ Ψ Ψ
  

where  b  is determined by the relative power between these two pump 
beams and  b     +     d     =    1. Th ereaft er, the photon in mode  A  with frequency 
distribution  f (  ω  ) passes through the dephasing channel, which is 
simulated by quartz plates ( Q ), with the optic axis set to be horizon-
tal and with a thickness of  L . Th erefore, the decoherence parameter   
k w tw w= ∫ f i( )exp( )d    imposes on the off -diagonal elements of  equa-
tion (5) , where   τ      =     L  Δ  n  /  c , with  c  representing the vacuum velocity of 
the photon and  Δ  n  is the diff erence between the indices of refraction 
of  H  and  V . In this case, we obtain  p     =    1    −    |  κ  | in  equation (1) . 

 An unbalanced Mach – Zehnder device in the dotted pane, 
which further separates the photon into long and short paths, is 
inserted into mode  B  to prepare another input state. Th e long path 
in the dotted pane contains a HWP with the optic axis set at 45 °  and 
another HWP with the optic axis set as horizontal. Th e time diff er-
ence between these two paths is much larger than the coherent time 
of the photon and less than the coincidence window of the logic 
circuit (at about 3   ns). As a result, the prepared state becomes 

    

where  R  is the eff ective total refl ectivity of the two partial refl ect-
ing mirrors in the dotted pane. Th e photon in mode  A  then further 
passes through the dephasing channel. Finally, the evolved state 
is reconstructed by tomography. Quarter-wave plates, HWPs and 
polarization beam splitters are used in each mode to set the usual 
16 measurement bases 39 . Th ese two photons are detected by single-
photon detectors equipped with 3   nm (full width at half maximum) 
interference fi lters. 

  Figure 2  shows the correlation dynamics of input state (5) with 
 b     =    0.75 in the phase-damping channel. Th eoretically, the minimum 

(5)(5)

(6)(6) of conditional entropy   S A
l( )r    in mode  A  is obtained by projecting 

the photon in mode  B  onto | l  〉     =    cos  θ  | H  〉     +    sin  θ e   i φ   | V  〉 , with optimiza-
tion over the angles   θ   and   φ  . In our experiment, we measured   S A

l( )r    
as a function of   θ   with   φ     =    0  in diff erent thicknesses of quartz plates, 
as shown in  Fig. 2a . We found that the minimum value of   S A

l( )r    is 
obtained with   θ      =    45 °  at about  L     <    138  λ   0  and   θ      =    0 °  at about  L  � 138 λ  0  
(  λ   0     =    0.78     μ  m is the central wavelength of the photon), which agree 
well with theoretical predictions (solid lines) 23 . Th is implies that 
there is a sudden change in behaviour in the decay rate of  C  accord-
ing to  equation (3) . Th e dynamics of total correlation ( I ), classical 
correlation ( C ) and quantum correlation ( Q ) are shown in  Fig. 2b . 
We fi nd that  C  (black squares) decays monotonically at  L     <    138 λ  0  
and then remains constant at  L  � 138  λ   0 , which agrees with  Fig. 2a . 
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   Figure 1    |         Experimental setup. Ultraviolet (UV) pulses are divided into two 

parts by the ultraviolet polarization beam splitter (UV PBS). The relative 

power between them can be changed by a half-wave plate (HWP1). Entangled 

photon pairs are prepared by spontaneous parametric down conversion by 

pumping the two adjacent crystals ( β -barium borate, BBO). Quartz plates 

(CP) are used to compensate the birefringence of down conversion photons, 

both of which then pass through half-wave plates (HWP2 and HWP4) with 

the optic axes set at 22.5 ° . The photon in mode  A  further passes through a 

half-wave plate (HWP3) with the optic axis set as horizontal to prepare the 

required mixed state. The dephasing environment is simulated by quartz 

plates ( Q ) with thickness  L . An unbalanced Mach – Zehnder device in the 

dotted pane with the refl ective part further passing through two half-wave 

plates (HWP) is inserted into mode  B  to prepare another initial mixed state. 

Quarter-wave plates (QWP), half-wave plates (HWP) and polarization 

beam splitters (PBS) are used in each mode to set the detecting bases for 

implementing state tomography. Single-photon detectors equipped with 

interference fi lters (IF) are used to detect the photons.  

        Figure 2    |         The correlation dynamics of input state (5) with  b     =    0.75. 
( a ) The values of conditional entropy  S (  ρ    l    A  ), with photons evolving in 

different thicknesses of quartz plates ( L ), as a function of the measurement 

angle   θ   in mode  B . ( b ) The dynamics of correlations. Green upward-

pointing triangles, black squares, red dots, blue stars and magenta 

downward-pointing triangles represent experimental results of  I ,  C ,  Q , 

 En  and Rn, with the green solid line, black solid line, red dashed line, blue 

dotted line and magenta dotted line representing the corresponding 

theoretical predictions. Non-entanglement quantum correlation ( D ) 

is further compared with  C  in the inset (the  x  axis represents the total 

thickness of quartz plates and the  y  axis denotes different kinds of 

correlations). Purple dots represent the experimental results of  D  and the 

purple dotted line is the corresponding theoretical prediction. Error bars 

correspond to counting statistics.  λ  0     =    0.78     μ  m.  

r = 〉〈 + − 〉〈 + 〉〈+ + − − + +dR b R bR| | ( ) | | | |Φ Φ Φ Φ Ψ Ψ1

+ − 〉〈− −d R( ) | |Ψ Ψ1
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Such immunity of classical correlation against decoherence implies 
an operational way to compute classical and quantum correlations 23 . 
In contrast,  Q  (red dots) behaves in the opposite manner; it remains 
constant at  L     <    138  λ   0  and decays monotonically at  L  � 138  λ   0 .  C  and 
 Q  overlap at the specifi c thickness of about  L     =    138  λ   0 . It is interest-
ing to observe the  ‘ decoherence-free ’  area of quantum correlation, 
which is due to the equal decay rate of  I  and  C . Th is phenomenon 
is later shown explicitly in theory by Mazzola  et al.  40 . It may have 
important applications for those quantum information protocols 
using only quantum correlation. We can see that  I  (green upward-
pointing triangles) decays exponentially all the time, which is con-
sistent with the continuous dynamics of quantum mutual informa-
tion according to  equation (2) . Th e green solid line, black solid line 
and red dashed line are the corresponding theoretical predictions of 
the total, classical and quantum correlations. Error bars correspond 
to counting statistics. 

 Th e dynamics of entanglement is also shown in  Fig. 2b , which 
is characterized by both the entanglement of formation (En) 41  and 
the relative entropy of entanglement (Rn) 42  (the analytical expres-
sions of both characterizations in our case are given in Methods). 
Th e blue stars in  Fig. 2b  are the experimental results of En and the 
blue dotted line is the corresponding theoretical prediction. Th e 
value of entanglement is set to 0 at a thickness of about  L     =    173  λ   0 , 
which shows the phenomenon of entanglement sudden death 43 , 
whereas the magenta downward-pointing triangles are the experi-
mental results of Rn. Because the fi nal state in our experiment can be 
transformed into a Bell-diagonal form, with a local unitary operation 
that does not change its entanglement, the analytical expressions 
of Rn (see Methods) are used to give the theoretical prediction, 
which is represented by the magenta dotted line. Although the 
En is larger than the relative Rn at the beginning of evolution, they 

suff er from sudden death at the same thickness, thereby  confi rming 
their self-consistence. We can see that quantum correlation can be 
smaller or larger than the En during evolution. Specifi cally, quan-
tum correlation decays exponentially, whereas entanglement disap-
pears completely at the thickness of  L     >    173  λ   0 . Th is confi rms the 
earlier prediction that quantum discord is more robust against 
decoherence than entanglement 19,20 . Because the relative Rn is on 
an equal footing with other measures of correlations in the form 
of entropy 29 , it is not always larger than quantum correlation, as 
verifi ed by our experimental results. Th e inset in  Fig. 2b  further 
compares non-entanglement quantum correlation defi ned as 
 D     =     Q     −    Rn 29  with classical correlation. Purple dots are the experi-
mental results of  D , with the purple dotted line representing theo-
retical prediction. Because of the sudden change in behaviour of  Q , 
the decay rate of  D  also suff ers from sudden changes and we fi nd 
that  D     <     C . 

 Another kind of correlation dynamics is shown in  Fig. 3 , in which 
the sudden change behaviour disappears. Th e input state is given 
by  equation (5)  with  b     =    0.5 (the separated state,  Fig. 3,  top panel) 
and  b     =    1 (the maximally entangled state,  Fig. 3,  bottom panel). Th e 
minimum of   S A

l( )r    is obtained with   θ      =    45 °  in  Fig. 3  (top panel) and 
  θ      =    0 °  in  Fig. 3  (bottom panel) (  φ      =    0) 23 . Th e green upward-point-
ing triangles, black squares and red dots represent the experimental 
results of  I ,  C  and  Q , respectively. Th e quantum correlation in  Fig. 
3  (top panel) remains at 0 and the total correlation is equal to the 
classical correlation, both of which decay monotonically.  Figure 3  
(bottom panel) shows another case in which classical correlation 
remains at 1 and quantum correlation decays exponentially. Com-
pared with the dynamics of entanglement En (blue stars), we fi nd 
that entanglement also remains at 0, as shown in  Fig. 3  (top panel) 
(experimental results not shown), which is equal to  Q  there, whereas 
it is larger than the  Q  during evolution, as shown in  Fig. 3  (bottom 
panel). Orange diamonds represent the value of  �  (if  �     �    0, it repre-
sents the quantity of concurrence 44 ; see Methods), which also decays 
exponentially. Th e value of En is set to 0 when  �     <    0 according to its 
defi nition. Th e relative Rn (magenta downward-pointing triangles) 
is also shown in  Fig. 3 . It remains constant at 0, as shown in  Fig. 3  
(top panel) (experimental results not shown) and then decays expo-
nentially, as shown in  Fig. 3  (bottom panel). Rn completely overlaps 
with quantum correlation in both cases, and the non-entanglement 
quantum correlation reads at 0. Th e experimental results agree well 
with the corresponding theoretical predictions. 

 We further show an interesting case in which  Q  can be larger than 
 C . In this case, the dotted pane is inserted into mode  B , as shown 
in  Fig. 1  and the initial input state is given by  equation (6) . We set 
 b     =    0.9 and  R     =    0.9 to maximize the value of  Q     −     C .  Fig. 4  shows our 
experimental results. Th e total correlation (green upward-pointing 
triangles) decays exponentially, whereas the classical (black squares) 
and quantum (red dots) correlations exhibit sudden changes in 
behaviour in their decay rates at about  L     =    78 λ  0 . Aft er this special 
thickness, the classical correlation remains constant and the quan-
tum correlation decays exponentially with a higher decay rate. Dur-
ing evolution,  Q  is observed to be larger than  C  at the thickness 
interval from about 50  λ   0  to 90  λ   0 , within the error bars. Such an 
observation contradicts the early conjecture that  C     �     Q  30 , and is 
consistent with previous theoretical predictions 23,25,26 . Th e dynamics 
of entanglement, which are characterized by both En (blue stars) 
and Rn (magenta downward-pointing triangles), are also shown in 
 Fig. 4 . Both characterizations suff er from sudden death at the same 
thickness of about  L     =    202 λ  0 , and the entanglement is set to 0 in the 
subsequent evolution. Th e value of the non-entanglement quantum 
correlation  D  (purple dots), which also exhibits a sudden change 
in the decay rate, is compared with the classical correlation in the 
inset. We fi nd that entanglement and non-entanglement quantum 
correlations are always less than the classical correlation in our 
experiment.    

             Figure 3    |         The correlation dynamics of input state (5) with  b     =    0.5 (top 
panel) and  b     =    1 (bottom panel). Green upward-pointing triangles, black 

squares and red dots represent the experimental results of  I ,  C  and  Q , 

respectively. The green solid line, black solid line and red dashed line are 

the corresponding theoretical predictions. En (blue stars) is shown for 

comparison, with the blue dotted line representing the corresponding 

theoretical prediction. Orange diamonds represent the experimental results 

of   �   and the orange dotted line is the theoretical prediction.   �     <     0 in  a  and 

En is set to 0 (blue stars are not shown). Rn (magenta downward-pointing 

triangles) is also shown in  b , with the magenta dotted line representing 

the corresponding theoretical prediction, which completely overlaps with 

quantum correlation. Error bars correspond to counting statistics.  
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 Discussion 
 Th e classical and quantum correlations considered in this experi-
ment are defi ned by the one-partition measurement of a bipartite 
system 6,7 . In such cases, analytical solutions for classical and quan-
tum correlations have been obtained for some kinds of states with a 
high symmetry 18,23,25 . Although classical and quantum correlations 
may be generally asymmetric according to the choice of partition to 
be measured, for states with maximally mixed marginals, they are 
symmetric under the interchange of the measured side 24 . Th ere is 
also a quantifi er of classical correlation with measurement over both 
partitions of a bipartite system, which is defi ned as the maximum 
classical mutual information 9,10 . For states with maximally mixed 
marginals, the defi nitions of classical and quantum correlations are 
numerically verifi ed to be equal to that defi ned with one-sided meas-
urement 24 . A thermodynamic approach is also developed to quan-
tify correlations 8,11 . In particular, the quantum information defi cit is 
defi ned to characterize the diff erence between the information that 
can be localized with Closed Local Operations and Classical Com-
munications and the total information of the state, and it quantifi es 
the quantumness of correlations 11 . We fi nd that the quantum-infor-
mation defi cit is equal to quantum discord for Bell-diagonal states. 
On the basis of the idea that classical states can be measured with-
out disturbance, Luo 13  uses the measurement-induced disturbance 
to characterize classical and quantum correlations. Because of the 
symmetric property of Bell-diagonal states, these defi nitions of cor-
relations used in our experiment also coincide with that defi ned by 
Luo ’ s method 14 . Recently, a method to quantify quantum and classi-
cal correlations on an equal footing with relative entropy has been 
proposed 14 , and it is applicable to multiparticle systems of arbitrary 
dimensions. In our case, considering the dynamics of Bell-diago-
nal states, the one-sided defi nitions of classical and quantum cor-
relations 6,7  are consistent with those defi ned by the equal footing 
method 14 . As a result, for the Bell-diagonal states used in our experi-
ment, all of the above separation methods for classical and quantum 
correlations are coincident. 

 Th rough measuring classical and quantum correlations in mul-
tipartite systems, Bennett  et al.  45  recently introduced three postu-
lates that should be satisfi ed by any measure or indicator of genuine 
multipartite correlations. Th ey found that the concept of covariance 
proposed by Kaszlikowski  et al.  46  to identify the existence of genuine 
multipartite correlations does not satisfy two postulates, and they 
concluded that it cannot be an indicator of genuine multipartite 
classical correlations 45 . Because the equal footing method men-
tioned above can be directly applied to multipartite systems with a 
unifi ed view of quantum and classical correlations 14 , it may inspire 
insight into current debates. 

 Th e relationship between the En and quantum correlation is also 
interesting. In our experiment, the En is observed to be even larger 
than quantum correlation in certain areas of evolution. For bipar-
tite systems, it has also been shown that quantum mutual infor-
mation considered as the measurement of total correlation can be 
smaller than the En 47,48 , which may occur in the case of particles 
with dimensions larger than fi ve 48 . Such a contradiction is due to 
the diff erent frameworks of their defi nitions. In our case, we can 
choose the relative Rn to measure entanglement, so as to make it 
on an equal footing with other measures of correlations in the form 
of entropy 29 . 

 In conclusion, we have shown the sudden change in behaviour in 
the decay rates of diff erent kinds of correlations in the two-photon 
system. Our results show that classical and quantum correlations 
can remain unaff ected under certain decoherence areas, which will 
have important roles in distinguishing correlations 23  and design-
ing robust quantum protocols based only on quantum correlation. 
Th e early conjecture that  C  �  Q  30  is disproved by our experimental 
results. On the other hand, classical correlation is always found to 
be larger than the entanglement and non-entanglement quantum 
correlation in the experiment.   

 Methods  
  Analytical expressions of the En and the relative Rn   .   For biqubit systems, the 
En can be given by the analytical formula 44  

  En( )r = + −⎛

⎝
⎜

⎞

⎠
⎟H

1 1

2

2ϒ
  ,

where  H ( x )    =        −     x log 2  x     −    (1    −     x )log 2 (1    −     x ),  ϒ  is the concurrence given by  ϒ     =    
max{0,  � }, where   Λ = − − −c c c c1 2 3 4    and  X   j   are the eigenvalues in 
decreasing order of the matrix   ρ  (  σ   2  �   σ   2 )  ρ   * (  σ   2  �   σ   2 ), with   σ   2  denoting the second 
Pauli matrix and   ρ   *  corresponding to the complex conjugate of   ρ   in the canonical 
basis {| HH  〉 ,| HV  〉 ,| VH  〉 ,| VV  〉 }. In addition, the relative Rn is defi ned as the minimal 
distance between   ρ   and a disentangled state 42 . For the Bell-diagonal state, if the 
four eigenvalues of the density matrix are   l j= ∈1

4 0 1 2[ , / ]  , the relative Rn is given by 42 

Rn(  ρ  )  =  0,

whereas for any   λ    j   ≥ 1 / 2, we obtain 

  
Rn( ) log ( )log ( ) .r l l l l= + − − +j j j j2 21 1 1
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