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SUMMARY: This paper presents results from a new approach to finite element modelling of 

notched damage in composite materials using interface elements to model intra- and inter-ply 

damage. The technique is used to examine and predict the failures observed in tensile, double 

edge notched specimens using four different layups made up from glass/epoxy prepreg. Due 

to the detailed modelling of the individual damage modes their interaction is well 

characterised. The analytical results obtained compare well with detailed test observations, 

capturing delamination and intra-ply splitting. By including the sub-critical damage that 

occurs at the notch tip in the model, the stress singularity is removed and failure criteria can 

be used to predict ultimate ply failures.  
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INTRODUCTION 

 

The subject of damage in notched composites is an area of extensive research. A highly 

detailed analysis is required to accurately predict stresses in the region of a notch tip
1,2

. For 

sharp notches finite element analysis shows a stress singularity at the notch tip. This results in 

arbitrary values, which are dependent on mesh size, being predicted for the maximum stress 

in the load bearing plies. In reality the stress levels at which ultimate failure occurs are 

modified by the presence of progressive damage, which develops in the specimen from 

relatively low levels of applied load. This takes the form of splitting within the plies in the 

loading direction at the notch tip, matrix cracking transverse to the load and delamination 

between the plies. An experimental investigation by Kortschot and Beaumont
3
 has provided a 

description of this damage and the failure patterns for cross-ply laminates. This has been 

extended to other layups by Hallett and Wisnom
4
 and other authors

5,6,7
.  

 

One approach to determine notched strength has been to use the point or average stress at a 

characteristic distance from the notch tip as proposed by Whitney and Nuismer
8
. Many 

variations of such failure criteria have been put forward but a general short coming of such 

approaches is that they require experimentally determined parameters that are layup specific. 

Kortschot and Beaumont
9
 have used finite element models with damage inserted at 

appropriate locations to obtain the relation between stress and damage and subsequently used 

this in expressions to predict how the damage will initiate and grow. An alternative approach 

is to include the damage prediction in the finite element model such as has been done by 

Chang and Chang
10

, using a set of interactive failure criteria followed by property degradation 

to predict progressive damage growth and residual strength in open hole tension tests. Coats 

and Harris
6
 have used a stress based progressive damage model to predict matrix cracking and 
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fibre failure. Delamination was not included and results were significantly mesh size 

dependant, however once this was calibrated against a single test result good predictions were 

obtained for residual strength of a centrally notched specimen over a range of specimen sizes 

and notch to width ratios. Methods such as these include the damage modelling in the 

continuum elements used to model the plies but do not explicitly take account of the splitting 

and delamination that occurs as sub-critical damage. Kwon and Craugh
11

 have included a thin 

“delamination layer” at the 0/90° interface of a notched cross-ply model that shows 

reasonable predictions for the shape of delamination. Iarve et al
12

 have compared analytical 

predictions and experimental observations of the strain field at an open hole with an 

associated intra-ply split. This has shown that modelling of the split by property degradation 

of elements does not give good results. The physical discontinuity due to the ply split needs to 

be included in the model in order accurately predict the strain distribution. 

 

The interface element approach is one method of inserting a discontinuity into a finite element 

model. This approach has been developed largely to model delamination in composites
13,14,15

. 

This technique has the advantage that it can be used to predict both the initiation and 

progression of the delamination. It does however require an a-priori knowledge of the 

potential failure sites and elements to be inserted along such a path. Good results can be 

achieved for single and mixed mode loading and analyses have been correlated for example 

with end notch flexure (ENF), double cantilever beam (DCB) or mixed mode bending (MMB) 

tests
16

. 

 

Previous work has used the interface element technique to predict both the delamination and 

splitting prior to ultimate failure
17

 in cross-ply laminates. Here this has been extended and 

applied to four different layups. The effect of inclusion of sub-critical damage in the model on 
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prediction of ultimate strength and failure mode by a simple strain based criterion has been 

examined. 

 

EXPERIMENTAL RESULTS 

 

Quasi-static tensile tests have been conducted using Hexcel E-glass/913 double edge-notched 

specimens. The results from these tests have been extensively reported in reference 4 and are 

only briefly summarised here. Scaled tests giving widths of 10, 20 and 40mm were performed 

for each lay-up. Of the available data, the 20mm wide specimens were chosen for comparison 

with the analytical results. The specimen geometry and layups tested are shown in Figure 1. 

 

The damage development was monitored from the start of loading and its growth was 

recorded using a digital video camera. Figure 2 shows some typical results from the 20mm 

wide specimens of all four lay-ups tested. The images shown are not taken at regular time 

intervals but have rather been chosen to best show the damage development.  

 

Damage initiates at the notch tips in the form of clearly visible splits within each ply, 

extending in the fibre direction. This occurs at a relatively low stress compared to the ultimate 

failure load. Additional intra-ply matrix cracks develop transverse to the applied load in the 

central section. Adjacent to the splits are areas of delamination, seen as darker areas in Figure 

2. The ultimate tensile strength of the specimen is controlled by fibre failure except in the 

case of the [45/90/-45]s laminate where smaller specimens failed by delamination and fibre 

pull-out only. 
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FINITE ELEMENT ANALYSIS 

 

Finite element analyses of the 20mm wide tests have been conducted using the explicit code 

LS-Dyna. The models were built up from stacked shell elements, with each ply within the 

laminate being modelled with a separate layer. Since each laminate is symmetric, only a half 

model through the thickness was used. To model delamination between the plies in the region 

of the notch, interface elements have been used, the formulation of which is described later in 

this paper. In order to connect the plies with interface elements it is required that adjacent 

plies have coincident nodes. It is therefore a quasi - two dimensional analysis which ignores 

through thickness tension and compression due to lack of offsets between the plies. This was 

felt to be an acceptable simplification since the delamination is primarily driven by shear. A 

linear elastic analysis has further been used to examine differences in fibre direction stresses 

between quasi-two dimensional shell and three dimensional brick models. Significant 

differences were not observed for thin laminates such as those examined here. Figure 3 shows 

a schematic view of a typical model ([+45/90/-45/0]s layup) and boundary conditions together 

with interface element locations. In addition to the delamination damage between plies, 

splitting within each ply has been modelled using interface elements. Again coincident nodes 

are required and these have been inserted in each ply in a line extending from the notch tip in 

the fibre direction. Experimental work has shown this to be the predominant site of split 

locations. Without the inclusion of this sub-critical damage, the stress state at the notch tip 

would form a singularity and hence the values obtained would be mesh dependent, making it 

difficult to incorporate failure criteria. The interface element approach overcomes this 

limitation and allows the detailed damage development to be included in the model using only 

elastic material properties, non-linear shear behaviour, GIc, GIIc and the matrix failure stress, 

all of which can be obtained experimentally.  
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Figure 4 shows experimental and numerical results of a 20mm wide cross-ply specimen all at 

200MPa applied far field stress. Figure 4b shows the splitting and delamination damage 

predicted by failure of interface elements and Figure 4c shows the 0° fibre direction stress 

distribution. By comparison the fibre direction stress distribution in a model that has no 

interface element failure (Figure 4d) shows a highly localised stress concentration with a 

maximum value in excess of the unidirectional fibre failure stress
18

. The sub-critical damage 

clearly has an effect of blunting the notch, cause a redistribution of stress. This is significant 

for predicting failure of the load bearing plies since if stress or strain based criteria (as are 

commonly implemented in finite element codes) are used, the model without any sub-critical 

damage will be predicted to fail at applied stress levels well below those observed in tests. 

 

The angle of the notch (θ) in the tests was 60°. Analysis showed no difference in results 

between a sharp notch (θ = 0° as modelled in reference 17) and an angled notch as tested, 

since the sub-critical damage modifies the stress field as soon as the split initiates. The angle 

of the notch in the modelling work presented here is for visualisation only and therefore 45° 

has been used in order to make it easier to preserve a regular mesh of 0.25 × 0.25mm in the 

area of interest. Since LS-Dyna is an explicit code it is better suited to modelling of dynamic 

events of very short duration. Quasi-static events can however be modelled if sufficient care 

is taken to ensure that dynamic effects are not significant. In order to ensure that the analysis 

completes in a reasonable time, a number of techniques are employed to reduce the CPU time 

taken. The analysis is run at a faster loading rate than the test, mass scaling is used to increase 

the timestep and damping is employed. The kinetic energy of the system is carefully 

monitored throughout to ensure that these changes have minimal effect. Additionally analyses 
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have been conducted at varying loading rates and levels of mass scaling to ensure results are 

not affected by these procedures. 

 

INTERFACE ELEMENTS AND SUB-CRITICAL DAMAGE 

 

The interface element is essentially a 3 degree of freedom non-linear spring with interaction 

between the degrees of freedom. The initial spring stiffness is calculated from an assumed 

resin rich layer 0.005mm thick, a nodal area calculated from the area of the shell elements 

attached to each node and a Young’s modulus of 4GPa which is typical for epoxy resin. For 

ease of calculation a uniform element size has been used in the area of delamination and 

splitting. For the elements representing the delamination damage, only shear failure needs be 

considered since through thickness effects and hence mode I type failure are ignored. The 

shear properties of the element are assumed to be uniform in every direction on the shear 

plane and equivalent to a mode II type failure. The response of the interface element to an 

applied displacement can be seen in Figure 5a. The equivalent force - relative displacement 

response remains linear until a maximum is reached after which the slope is reduced such that 

the area under the curve is equal to the mode II fracture energy for the element concerned. 

The element is assumed to have failed when the force reaches zero. Previous work
17

 used a 

perfectly plastic post yield behaviour instead of work softening. A study was done for both 

the work softening and perfectly plastic behaviour. Both analyses give similar results with the 

work softening behaviour leading to greater numerical stability since there is not a sudden 

reduction in force at each interface element failure. The maximum force for each element in 

the current analysis was calculated from a strength value of 75MPa
17

. 
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For a cross-ply lay-up loaded orthogonally to the fibre directions it is sufficient to use the 

same one dimensional interface element for the intra-ply splitting as for the delamination 

since there is only mode II loading
17

. In order to extend the analysis to lay-ups other than 

cross-ply, mixed mode behaviour was included in the interface element. Mode I and mode II 

energy components are combined using equation 1 and failure occurs when the left hand side 

is equal to 1.  

 

 Equation (1) 

 

The maximum force for the mixed mode case is based on the Von Mises yield criterion. The 

subject of mixed mode loading has been given much consideration in the literature with the 

majority of work being done on delamination. In the current model mixed mode loading 

occurs only in the splitting but this is thought to be very similar to delamination growth as 

both occur in the resin regions between fibres. After the Von Mises criterion is exceeded, the 

resultant force in the interface element is reduced such that equation 1 is satisfied. Figure 5b 

gives a graphical representation of the equivalent force - relative displacement behaviour of 

the interface element under mixed mode loading conditions. 

 

The mode ratio will not necessarily remain constant throughout the period of loading of a 

single interface element. If this changes, the area under the equivalent force - relative 

displacement curve (and hence the energy) is accounted for by adjusting the softening 

gradient. This allows for small changes in loading direction, ensuring the energy balance is 

maintained. It is not a completely general solution since once softening has initiated the force 

in the interface element cannot increase. It was felt to be adequate since large changes in 

mode ratio were not observed in individual interface elements. The mode ratio is of course 
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permitted to change as the split extends during damage development and different interface 

elements fail. 

 

Predicted damage has been compared to the test results in terms of split length and 

delamination location. Figure 6 shows that relatively good correlation has been achieved for 

growth of the 0° ply split in the cross-ply specimens. Correlation was found to be worst at the 

split initiation point. This may be due to residual stress from the curing process or machining 

defects from the cutting of the notch, which are not taken into account in the model. As the 

growth of the split progresses, the correlation improves. It can be seen that the analytical split 

growth rate is strongly dependent on the value of GIIc used. Due to previously discussed 

similarities in the damage process between splitting and delamination and difficulties in 

obtaining experimental data for the fracture energies is has been assumed sufficient to use the 

same data for both the splitting and delamination interface elements. Here two values taken 

from the literature have been used, 1.08N/mm (reference 19) and 0.9N/mm (using an average 

of the results presented for differing adjacent ply angles in reference 20), with the lower value 

giving better correlation for final split length. It is possible that using a single value for the 

fracture energy as the split grows is not sufficient and will cause a variation in correlation due 

to the R-curve effect. Wisnom and Chang
17

 found that it was necessary to include the non-

linear shear behaviour of the material in the model in order to achieve good correlation for the 

split growth. A piecewise linear curve fit to the data from reference 21 has been used here and 

is shown in Figure 7 together with a sub-set of the test data. GIC is not a critical value for the 

delamination or splitting in the cross-ply specimen but is required for splitting in the other 

laminates modelled. A value of 0.25N/mm
19

 was used. The ply elastic material properties are 

shown in Table 1. 
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Figure 8 shows the sub-critical damage results near to the mean experimental failure load 

from analyses for the different lay-ups that were tested. Photographs of a typical 20mm wide 

specimen are shown at the same scale from a representative test at the same applied stress. 

For the cross-ply lay-up a half model was used. For those lay-ups that contained ±45° fibres a 

full model was used since there is no true plane of symmetry due to the layup. It can be seen 

that there is generally good agreement in both the location and extent of delamination and 

splitting. Comparison with tests at exactly equivalent positions during loading is difficult due 

to the scatter in test data. In the experimental photographs it can be seen that in addition to the 

major splits starting from the notch tip there are a significant number of other matrix cracks in 

the laminates. Uniformly distributed matrix cracks have been reported as the site of 

delamination initiation
22

. Experimental evidence suggests that for the notched case the 

significant delamination grows from the intra-ply splits associated with the notch tip. The 

matrix cracks observed in the material in the region between the notch tips do not have a 

significant effect on this delamination growth. 

 

In all of the lay-ups damage initiated at the notch tip by splitting which agrees well with the 

experimental observations presented in reference 4. In order for the split to propagate in the 

fibre direction of each ply at least one of the delamination elements attached to the same 

nodes must also fail to allow relative displacement of the two split element nodes. Split 

growth rates in each of the 45, 90, -45 and 0° directions was not necessarily equal. Once the 

splits had started to propagate away from the notch tip into the specimen, triangular regions of 

delamination began to form between adjacent splits. These are shown in Figure 8 at the 

individual interfaces which when overlaid on top of each other combine to give the equivalent 

picture to that observed experimentally. 
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ULITIMATE FAILURE MODELLING 

 

The model described above was used to examine the final failure modes predicted when a ply 

failure criterion was introduced. Complete ply failure as a result of fibre failure was included 

by means of a quadratic criterion between fibre direction and shear response. This was 

implemented as a strain formulation (equation 2) in order to better take account of the non-

linear shear behaviour. Once this criterion is exceeded in a given element it is deleted from 

the analysis. 

 

  Equation (2) 

 

The fibre direction tensile failure strain (ε1C) was obtained from careful testing of UD 

specimens that were waisted in the thickness direction by dropping plies
23

. A mean value of 

3.5% was obtained for specimens with four and eight plies in the gauge length
18

. A value of 

5% was used for shear failure strain (γ12C) based on discussion in reference 21. 

 

It is arguable that the transverse matrix cracking as seen in Figure 2 will affect the formation 

of delamination and splitting but in the analyses conducted here it was not felt to be 

significant since initiation is controlled by the location of the notch tip. This was backed up 

by analyses in which the elastic transverse modulus was artificially reduced, no discernable 

difference in damage pattern could be observed. The stress distribution within each ply 

however was more strongly affected since its load bearing capacity is influenced by the 

development of the matrix cracks. The reduction factor was calculated from the observed 

matrix crack density of 30 cracks/cm in cross-ply tests
4
 and an analysis developed by 

Kashtalyan and Soutis
24

 which predicts a 15% reduction in laminate axial stiffness. This 
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requires approximately a 50% reduction in stiffness of the 90° plies from the value quoted in 

table 1. This reduced stiffness was not included in the previous analysis for sub-critical 

damage since it did not affect the extent of splitting and delamination but has been included in 

analyses for ply failure.  

 

Looking only at the maximum applied far field stress at failure for the 20mm wide specimens 

it can be seen that there is relatively good agreement between test and analysis for the first 

three layups (Figure 9). The final layup shows worse correlation to test and this is attributed 

to the different failure mode that was observed in this layup compared to the others. Each 

layup analysed warrants further discussion with respect to the failure mode and its 

comparison to test. 

 

Figure 10 shows the final failure for the test and analysis of the cross-ply layup. The finite 

element result shows only a close up of the 0° ply with the failed elements removed (using 

equation 2). The experimental result shows all plies with the damage highlighted using strong 

backlighting. Ultimate failure in both the test and analysis occurs across the width of the 

specimen starting at the notch tip with failure of the 0° fibres. This rapidly progresses across 

the width of the specimen. The fibre-failure observed in tests is not exclusively orthogonal to 

the loading direction as can be seen in Figure 10, but progresses at an angle away from the 

notch tip, indicating an influence of shear stress. This is accompanied by additional splitting 

and delamination similar to that seen before the fibre failure. The model does not have the 

capacity to capture these further splits and this may be the cause of the differences in the 

failure patterns observed. The model takes account of the direct and shear stress interaction 

through the relationship in equation 2 and it is this interaction that causes the path of failed 

elements to progress in the fibre direction rather than directly across the specimen width. The 
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direction of fibre failure is somewhat different to that observed in test where it is at 

approximately 45° to the notch tip. Further work is required to investigate the detailed nature 

of the stress interaction in order to improve correlation. 

 

The test results for the [+45/90/-45]s layup showed two possible failure modes. The first 

showed considerable amounts of delamination but the catastrophic failure of the specimen 

was due to failure of the fibres across the specimen width. The second mode was failure by 

delamination only and the plies pulling out from between each other without fibre failure. 

This can occur since there are no 0° plies in this layup. The first mode is captured well by the 

analysis and comparison with a test that exhibited this mode is shown in Figure 11.  

 

Tests on the [+45/90/-45/0]s layup show fibre failure to occur across the width of the 

specimen and also some fibre pull-out and some delamination back towards the specimen 

grips once the fibre failure has extended more than half way across the specimen width 

(Figure 12). The analysis predicts fibre failure in all plies in a band which closely 

approximates the area of failure observed. A slightly surprising result was the failure of the 

90° ply by fibre failure in the finite element model as well as splitting in the fibre direction by 

failure of the interface elements (a site of potential splitting has been modelled starting from 

the notch tip). This has been confirmed to occur in the tests by thermal de-ply of the failed 

specimens which does indeed show some of the 90° plies to have failed in a very similar 

manner, initially splitting and then fibre failure at an angle to the fibre direction
4
.  

 

Tests on the [+45/90/-45/02]s layup showed a different failure pattern to that observed in the 

other layups. Only the internal -45° plies failed at the point of maximum load. On 

continuation of loading the central 0° plies separated from the adjacent plies by splitting and 
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delamination and continued to carry load until they failed by distributed fibre failure that was 

not affected by the position of the notch (Figure 13). 

 

Figure 14 shows that the analysis predicts fibre failure in the –45° ply but also in all of the 

other plies. This is possibly due to the fact that there is no capacity in the analysis to capture 

the distributed fibre failure that was observed in the tests. Additionally the extensive 

delamination back to the specimen grips was not predicted by the analysis although the 

damage prediction at 70% of the mean test failure load was reasonable (Figure 8). Once the 

sub-critical damage has progressed a significant amount, the assumption of quasi-two 

dimensional behaviour may no longer be sufficient. Asymmetric sub-laminates will be formed 

by the existence of the delamination and significant out of plane forces may develop which 

will contribute to further extension of the delamination and ultimate separation of the 

specimen. The analysis will under predict the amount of delamination since is does not take 

account of mode I opening of the delamination. The ultimate failure stress prediction for this 

layup (Figure 9) is somewhat below the mean test value, a result of the under prediction of the 

“blunting” effect caused by splitting and delamination. Correct prediction of the delamination 

may prevent premature ply failure. Work is on-going to investigate the use of fully three 

dimensional models for the prediction of such delamination. 

 

MESH SENSITIVITY 

 

A significant problem with the modelling of material failure by finite element methods is that 

the resulting strength predictions can be dependent on the mesh size used. This makes the 

development of a general model that can be applied to different size specimens and different 

layups extremely difficult. A study was run on the [90/0]s layup in which the mesh size was 
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increased and decreased from the “base” analysis (0.25mm square mesh) to double and half 

its size. Examining only the ultimate failure stress it can be seen from Figure 15 that whilst 

there is some variation, all results are within 10% of the mean test result.  

 

However if the predicted sub-critical damage is examined at the same applied stress level, as 

has been shown in Figure 16, it can be seen that the “base” and “fine” meshes are in good 

agreement but the “coarse” mesh has a considerably reduced damage area. There is an upper 

limit on the mesh size that can be used for the interface elements beyond which the damage 

will not propagate due to the high forces required for modelling the softening behaviour. The 

area of each interface element and hence the maximum force increases with the mesh size. At 

large sizes there is no longer sufficient stress concentration to initiate softening. This impedes 

the growth of the damage in the coarse mesh. The fact that the ultimate failure stress is 

reduced from that of the base mesh is due to the reduced amount of splitting and hence notch 

blunting that occurs. The good agreement between the “base” and “fine” meshes in Figure 16 

indicates that once this threshold has been passed, mesh size dependencies are greatly reduced 

for the sub-critical damage prediction. Similar behaviour has been observed in other interface 

element studies
25

 with coarser meshes requiring greater applied loads for propagation due to 

the reduced number of elements in the cohesive zone. 

 

The reduction in ultimate failure stress from the base mesh to the fine mesh indicates that 

there is still a small mesh dependency in the ply failure prediction. This mesh dependency is 

however considerably less significant than if the sub-critical damage had not been included in 

the model. 
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DISCUSSION 

 

An analysis technique has been successfully developed that predicts the detailed development 

of sub-critical damage in notched laminates for layups that include ±45° plies. The effect of 

this damage on the stress distribution and final failure due to the inclusion of a ply failure 

criterion has been examined. The approach closely represents the physical mechanisms 

observed in the tests, and is able to predict failure of different layups from a single set of 

material properties that can be obtained from independent tests. The one layup that was an 

exception to this, [+45/90/-45/02]s, exceeds the quasi-two dimensional assumptions made and 

exhibited a failure mechanism which thus far has not been included in the model. Mesh size 

has been shown to not be a significant issue for failure of the interface elements below a 

critical mesh size. The inclusion of the sub-critical damage reduces the stress singularity at 

the notch tip and allows the use of a ply failure criterion but does not completely eliminate 

mesh size effects for the failure of the continuum elements. Examination of the final failure of 

the test specimens indicate that in some cases the analysis over predicts the amount of fibre 

failure. Whilst the assumption of mode II only delamination is sufficient when considering 

damage during its early stages of development it may not be adequate once the delamination 

has progressed sufficiently far such that the laminate is divided into two asymmetric sub-

laminates. This will cause a mode I contribution to the delamination. An additional failure 

mode which has not been considered is the further splitting in the plies once fibre failure has 

started to occur. This will have a similar effect to the initial notch blunting and inhibit the 

progression of fibre failure in the plies. Both of these mechanisms will have an effect on the 

ultimate failure modes and the fibre failure that is predicted. Whilst the current model 

adequately predicts the early stages of sub-critical damage development these mechanisms 
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may have to be included to increase the ability to predict a greater range of failures in more 

complex laminates and loading scenarios. 

 

CONCLUSION 

 

It can be seen that the model presented gives an accurate description of the main failure 

modes prior to fibre failure, i.e. delamination and ply splitting, for a number of different 

layups and good correlation to test is achieved. In the case of the fourth layup this is limited to 

early stages of loading prior to the major delamination extending back to the grips. The 

damage has been modelled using only measured elastic material properties and fracture 

energies. A site of potential splitting and delamination does have to be assumed and interface 

elements inserted but their failure is predictive in nature. The importance of being able to 

model this damage is in the effect it has on the stress concentrations in the material. The 

splitting has an effect of blunting the notch which in turn affects the ultimate load carrying 

capacity of the material. This gives an improved accuracy to the finite element model for 

predicting ply failure since without this effect, failure would be significantly under predicted. 

 

The main focus of this work has been the inclusion of the different damage modes that 

contribute to the ultimate failure. The final notched strength of an individual layup is 

dependent on the damage mechanisms that occur and their interaction, which have been 

modelled in detail. There is an equally complex interaction of stresses and the individual 

components have been predicted with greater accuracy due to the included damage.  

 

This work has been funded by the U.K. Engineering and Physical Sciences Research Council 

under grant no. GR/N22519. 
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Figure 15  Failure stress for [90/0]s layup for different mesh sizes 

Figure 16  Effect of varying the mesh size 
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TABLES 

 

E11 43.9 GPa 

E22 15.4 GPa 

G12 4.34 GPa 

υ12 0.3 

 

Table 1 Elastic material properties for e-glass/913  
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Figure  1 Specimen geometry  
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Figure  2 Typical results from the different layups tested 
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Figure  3 Schematic view of finite element model 
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Figure  4 (a) Experimental damage, (b) predicted damage, (c) 0° stress distribution with damage, and (d) stresses without damage 

modelling, all at 200MPa applied far field stress
11 

 



28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  5 Equivalent force - relative displacement response for interface elements (a) mode II (b) mixed mode  
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Figure  6 Split growth rate for cross-ply specimen 
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Figure  7 Test data from reference 21 and piecewise linear fit used in the analysis 
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Figure  8 Results for delamination and split location for different lay-ups tested and modelled 
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Figure  9 Ultimate failure stress for 20mm wide specimens test to analysis correlation 
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Figure  10 Failure of the 20mm wide cross-ply specimen 
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Figure  11 Failure of the 20mm wide [+45/90/-45]s specimen showing fibre failure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  12 20mm wide [+45/90/-45/0]s layup analysis and test failure mode comparison 
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Figure  13 Photograph of 40mm wide [+45/90/-45/02]s specimen showing distributed failure
4
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  14 Failure pattern for the [+45/90/-45/02]s layup  20mm wide specimen  
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Figure  15 Failure stress for [90/0]s layup for different mesh sizes 
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Figure  16 Effect of varying the mesh size 

 


