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ABSTRACT 
This study shows results of the experimental investigation of regularly structured Composite Latent Heat Storages. 

Common solid-liquid Phase Change Materials used as latent heat storages have a low thermal conductivity, which 

leads to high temperature differences inside large PCM volumes. This drawback is compensated by the combination 

with specially designed frame-structures made of aluminum to enhance the transport of thermal energy inside the 

regularly structured Composite Latent Heat Storage. 

 

A prototype is investigated experimentally on a test rig, where the heat load and temperatures are measured while 

the phase change process is observed optically. The results are compared to a solid block PCM heat storage. 

 

Keywords: Latent heat storages, Phase Change Materials, Thermal conductivity. 

 

1. INTRODUCTION 
 

Latent heat storages are very reliable passive cooling systems. Due to their high latent heat of fusion, Phase Change 

Materials (PCM) can be used in light-weight heat storages (Dincer, 2002), e. g. for cooling applications in modern 

aircraft. Heat storages buffer waste heat peak loads and thus enable the designers to build smaller, lighter cooling 

systems or they provide back-up cooling functions in case of a failure in the active systems. 

 

However the low thermal conductivity of common PCMs, e.g. paraffins or salt hydrates, is a challenge in the design 

of such cooling systems. State-of-the-art is the combination with a random supporting structure of metal or carbon 

foams to improve the distribution of thermal energy inside latent heat storages. With the new manufacturing method 

of Selective Laser Sintering (SLS) it is possible to design the supporting structure in order to optimize the transport 

of waste heat from specific heat sources into the PCM. 

 

This paper gives an overview of the potential of regularly structured Composite Latent Heat Storages (CLHS) 

manufactured by SLS. Regularly structured CLHS prototypes are investigated experimentally at the Institute of 

Thermo-Fluid Dynamics and the results compared to plain solid block PCM heat storages. 

 

2. COMPOSITE LATENT HEAT STORAGES 
 

To improve the thermal conductivity of latent heat storages PCMs are combined with materials of high thermal 

conductivity. Frame structures made of aluminum are manufactured by SLS and filled with PCM resulting in 

regularly structured CLHS. 
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2.1 Thermodynamic Properties 
The most commonly used PCMs are paraffins and salt hydrates, with paraffins having the higher specific latent heat 

of fusion while being lighter (Mehling, 2008). For electronics cooling there are many PCMs with fusion 

temperatures between ambient and T = 100 °C. Typical values for the thermodynamic properties density ρ, specific 

heat capacity c and thermal conductivity k are given in table 1. It clearly shows the very low thermal conductivity (k  

< 1 W/(mK)) and the thermal diffusivity α. The table also gives the fusion temperature and the latent heat of fusion 

of the PCM PARAFOL 22-95
®

. 

 

Table 1: Material properties of aluminum (COMSOL, 2011) and PCM PARAFOL
®

 22-95 (Sasol, 2010). 

 

Property Aluminum AlSi12 PARAFOL
®
 22-95 

Density ρ in kg/m³ 2700 777 

Specific heat capacity c in J/kgK 900 3300 

Thermal conductivity k in W/mK 160 0,162 

Thermal diffusivity α in 10-6 m²/s 65,84 0,063 

Fusion temperature in °C - 41.6 

Latent heat of fusion in kJ/kg - 250 

 

PARAFOL 22-95
®

 produced by Sasol Olefins and Surfactants GmbH is a pure paraffin which has a very high latent 

heat of fusion and comparably high specific heat capacity (Sasol, 2010). The fusion temperature of Tf = 41.6 °C is 

not very high for electronics cooling but it is sufficient to show the concept of regularly structured CLHS. For a real 

application the PCM can be exchanged easily by one with a higher fusion temperature. 

 

For comparison the thermodynamic properties of aluminum AlSi12 are given in table 1 as well. It is the material that 

is used in manufacturing of the frame-structures and has a high thermal conductivity, especially compared to 

PARAFOL 22-95
®

. Additionally to the thermal conductivity the thermal diffusivity takes the density and specific 

heat capacity into account and shows clearly the difference in transport of inner energy inside a material between the 

PCM and the aluminum. 

 

2.2 Selective Laser Sintering 
Selective laser sintering is an additive manufacturing technique. The schematic is shown in figure 1. Raw material in 

pulverized condition is used to generate the final product. It is stored in the powder reservoir and supplied to the 

fabrication bed in thin layers by a delivery system. Once a layer is applied, a laser-scanner system is used to fuse the 

powder at the positions specified in a 3-D CAD-model. After one layer is finished the fabrication bed is lowered and 

new powder is applied. The laser now fuses the powder again creating the layer's geometry and connecting it to the 

layer below. 

 

The design of parts is only limited by material selection and the layer-wise generation, which requires a solid 

connection between all the layers. The layer thickness and the smallest diameter of the solid regions are determined 

by the laser focus of 60 µm to 90 µm resulting in melting region of about 200 µm. The material used for heat 

storage frame-structures is the aluminum alloy AlSi12, which provides high thermal conductivity. 
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Figure 1: Selective Laser Sintering (SLS) schematic. 

 

 

2.3 Regularly Structured Composite Latent Heat Storages 
The combination of PCM for high heat storage capacity and aluminum for the distribution of thermal energy leads to 

CLHS. The advantage of regular structures in comparison to irregular foams is the possibility to design the 

thermally conductive frame-structure for special cooling applications, where the waste heat of components is not 

uniform but depends on the geometric position. Integrated electronic components often have Hot-Spots, regions in 

which high thermal loads have to be removed, and a customized regularly structured CLHS provides improved 

cooling performance. 

 

However the basic regularly structured CLHS is a solution for homogeneous heat sources, which is investigated 

experimentally in this paper. The frame-structure used is a quadratic grid with 0.5 mm thick aluminum walls 

creating 225 PCM volumes (15x15). The PCM volumes have a cross-section of 3 mm x 3 mm and are 52 mm deep. 

 

3. TEST RIG 
 

A test rig at the Institute of Thermo-Fluid Dynamics is used to investigate the performance of a basic regularly 

structured CLHS as electronics cooling system in comparison to a plain solid block PCM heat storage. 

 

3.1 Set up 
The main parts of the test rig are the latent heat storage and the heat source, which are sufficiently insulated to the 

ambient. The heat source, shown in figure 2, is a solid aluminum cube with a base length of 50 mm. Two holes are 

applied at the bottom to insert electric cartridge heaters that produce heat, which is distributed in the heat block. Five 

type K thermocouples are soldered on the top of the heat block to measure the temperatures at the heat transfer 

interface. 

 

The heat storage is replaceable and mounted on top of the heat block. In this study two different heat storages are 

used. To improve the heat transfer between both solid surfaces a thermal interface material is applied. 

 

Figure 3 (left) shows the set up for the reference plain solid block PCM heat storage. The PCM is filled into a U-

shaped aluminum profile with a thickness of 4 mm and a base length of 50 mm. Two transparent walls create a cubic 

volume (resulting base length 42 mm) for the PCM inside the U-profile. The wall material is polycarbonate which 

has a similar thermal conductivity as the PCM and allows the optical observation of the phase change process. An 

air volume above the PCM compensates the density change from solid to liquid. From the open top of the heat 

storage optional thermocouples measure the temperatures inside the PCM and in the air above during the fusion 

process. However they change the fusion pattern due to their high thermal conductivity and are removed for direct 

comparison. 
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Figure 2: Heat block with holes for cartridge heaters and thermocouples soldered onto the heat transfer surface. 

 

Figure 3 (right) shows the set up with regularly structured CLHS. The prototype is shown in figure 4. It has a 

transparent wall as well through which the PCM and the frame-structure are visible. In this heat storage no 

thermocouples are placed inside the PCM. 

 

  
 

Figure 3: Test rig set up: heat block, heat storage and insulation; left: U-profile heat storage with optional 

thermocouples in the PCM; right: Regularly structured CLHS prototype with quadratic frame-structure. 
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Figure 4: Frame-structure Quad: regularly structured CLHS prototype with transparent wall. 

 

3.2 Measurement Equipment and Test Plan 

A National Instruments data acquisition (DAQ) system is used to monitor the tests and save the measurement data 

with LabVIEW. The controller for the electric heating cartridges has an energy meter, which measures the voltage 

and current applied. The resulting heat load is transferred into a current signal of I = 4...20 mA and logged by the 

DAQ system. The temperatures at the heat block are measured by type K thermocouples (accuracy: +/- 1.5 K) while 

type T thermocouples (accuracy: +/- 0.5 K) are used for the measurements inside the PCM. Cold junction 

compensation is integrated in the DAQ system. The camera used to observe the phase change process has a 

resolution of 240x320 pixels. Every 10 s all measurement data as well as the pictures are stored. 

 

At the beginning of a test the insulation is fixed around the test devices and the camera is adjusted and focused on 

the heat storage's transparent wall. Then a heat load is set at the controller. It is kept constant over the whole testing 

time. All data and the camera pictures are stored, while the heat block and storage temperatures rise. When the total 

PCM is liquid or when the measured temperatures reach T = 150 °C the heat load is switched off. The regeneration 

of the heat storage is observed as well, however this process will not be discussed in this paper. 

 

The maximum heat load for the electric cartridge heaters is         . However experiments with useable 

measurement data are conducted with smaller heat loads up to         . In this study three different heat loads 

          ,            and              are compared. 

 

4. EXPERIMENTAL RESULTS 
In this section the temperature measurements and the pictures during the fusion process are presented and discussed 

for the solid block PCM heat storage as a reference and the regularly structured CLHS prototype with quadratic 

frame-structure. 

 

4.1 Solid block PCM heat storage 

The five temperatures on the top of the heat source are almost equal, thus figure 5 shows only one temperature plot 

for each applied heat load. According to the test plan three different heat loads are applied with the electric cartridge 

heaters. 
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Figure 5: Thermal interface temperatures with U-profile for three different heat loads. 

 

Not surprisingly the temperature rises faster for higher heat loads, however the behavior is not as it would be 

expected for a combination of sensible and latent heat storage. The fusion process in the PCM starts around T = 40 
°C PCM temperature. Considering the thermal interface between heat block and heat storage and the aluminum wall 

of the storage itself a gradient change due to latent heat storage is expected at temperatures above T = 40 °C heat 

storage temperature. On the contrary the onset of fusion cannot be determined from the plots, as there is not 

significant change measured in the gradient. The reason for this observation is the low thermal conductivity of the 

PCM, as described in the introduction. 

 

Nevertheless the experiments show the end of fusion with a gradient change in the temperature plots and are used to 

assess the thermal performance of the regularly structured CLHS prototype. 

 

As described in the test rig set up a camera is used to observe the fusion process. Figure 6 shows four characteristic 

pictures during the fusion process. The aluminum U-profile is clearly visible as well as the screws used for assembly 

(Figure 6, left). The solid PCM is represented white while the liquid PCM gets transparent and is black in all 

pictures because of the black background. 

 

 
Figure 6: Phase change process in U-profile heat storage; from left to right: solid PCM; fusion starts; fusion 

continues; Last solid PCM. 

 

The PCM starts to fuse at the bottom of the storage next to the heat source. The melting region grows quickly along 

the two vertical aluminum walls, as the waste heat is distributed by the high thermal conductivity of the walls 

(Figure 6, middle left). 

 

With time the liquid PCM region grows and natural circulation begins. It is visible during the experiments, as small 

bubbles move through the liquid PCM. By this natural circulation hot, liquid PCM is moved from the bottom to the 
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top and increases the fusion process in the upper corners of the storage (Figure 6, middle right). The solid PCM in 

the middle of the storage stays solid and unmoved. With all walls made of aluminum the fusion process would be 

different, but in this case the solid parts are kept in their position by the polycarbonate walls with low thermal 

conductivity. 

 

The liquid PCM regions on the top of the storage grow due to the natural circulation of the liquid PCM until they 

unite in the middle and the solid PCM  left in the middle of the storage (Figure 6, right). Now this remaining solid 

PCM is fused at last, as the overheated liquid PCM transports thermal energy to the middle. After all PCM is liquid 

the temperature gradient in figure 5 rises due to the continued  one-phase thermal energy storage. 

 

With the optional thermocouples inside the PCM the described effects are observed as well. Figure 7 shows the heat 

block temperature as a dotted, black line for a heat load of           . The solid, blue line shows the temperature 

of the PCM near the bottom of the heat storage. Here the gradient changes and the onset and the end of fusion are 

both visible at t = 250 s  and t = 800 s. Afterward the temperature rises up to T = 60 °C where it stays constant for 

a while due to the natural convection. The temperature in the middle of the PCM is the dashed, green line which 

shows the fusion process from about t = 1000 s to t = 1300 s. Then the temperature rises with a steep gradient. At 

T = 80 °C it joins the temperature at the bottom and both rise with the same gradient, as the heat is stored sensibly in 

the whole storage. The air temperature above the PCM is always the lowest shown with the dash-dotted, red line. 

 
Figure 7: Thermal interface and PCM temperatures with U-profile for a heat load of           . 

 

4.2 Regularly structured CLHS 

As described for the solid block PCM heat storage, the five surface temperatures are equal and just one temperature 

is plotted in figure 8. Additionally to the measured temperatures the thin straight lines show a reference temperature 

to simplify the assessment for mobile applications. 

 

The thicker lines in the figure show the measured temperatures for the three different heat loads. The solid, blue line 

for a heat load of            demonstrates the behavior best, as the temperature rise is the slowest. Contrary to 

the solid block measurements the phase change process is visible with both, onset and end of fusion. The 

temperature rises linearly up to almost T = 50 °C as the heat block and the CLHS store the waste heat sensibly. 

Around T = 50 °C the fusion starts and the gradient changes as expected for latent heat storages. During the whole 

fusion process the temperature gradient is constant, as the waste heat ist transported by the aluminum frame-

structure and the PCM fuses with constant speed. Convection inside the small PCM volumes is not observed can be 

neglected. At t = 1400 s the fusion is completed and all PCM turned liquid. Thus the gradient changes again, as 

more waste heat is stored sensibly. 
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Figure 8: Thermal interface temperatures with frame-structure Quad for three different heat loads. 

 

The temperature behavior for the other heat loads is qualitatively the same, however the gradient changes are not so 

clear any more as the temperatures rise faster and the fusion period is shorter. 

 

For the assessment in mobile applications as e.g. civil aircraft the system weight is often a very important issue. 

Thus the thermal performance is compared to a solid aluminum heat storage with the same weight. The resulting 

reference temperature is calculated assuming ideal heat storage with a homogeneous temperature and plotted as the 

straight thin lines in figure 8. This shows how much longer electronic components can be used until they reach their 

operation temperature limit. For            and a limit temperature of Tmax = 100 °C the regularly structured 

CLHS enhances the operation time by a factor of almost 3. 

 

The optical observation of the phase change process shows the positive impact of the frame-structure as well. Again 

four characteristic pictures are selected and shown in figure 9. With the frame-structure the fusion pattern changes 

significantly. The dark shades at the edges are part of the seal and are ignored. 

 

 
Figure 9: Phase change process in regularly structured CLHS prototype with quadratic frame-structure; from left to 

right: fusion starts at the bottom; phase change boundary moves upwards; fusion continues; all PCM liquid. 

 

In the first picture the PCM at the bottom starts to fuse. Up to this time there is no difference compared to the solid 

block PCM heat storage (Figure 9, left). 

 

However in the following the phase change boundary stays almost horizontally and moves upwards slowly (Figure 

9, middle). This is a significant difference. The last picture shows the end of the fusion process, where all PCM is 

liquid and only the quadratic grid of the frame-structure is visible (Figure 9, right). 
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These optical observations of the phase change process confirm the often used simplification of neglecting natural 

convection in the modeling of PCMs, as e. g. proposed by Lamberg (2003) and Groulx and Ogoh (2009). 

 

4.3 Comparison 

A complete comparison of both heat storages is difficult, as the composition of the heat storage varies, i.e. the PCM 

and aluminum fractions are not the same. However there are large differences qualitatively. In the first place this is 

shown in the transient temperature behavior, which is plotted for a heat load of            in figure 10. As 

described above for the regularly structured CLHS the latent heat storage is clearly visible (solid, blue line), while 

the solid block PCM heat storage only shows the end of fusion (dashed, red line). Thus the frame-structure helps to 

distribute the waste heat in the storage comparably well. 

 
Figure 10: Temperatures of solid block PCM heat storage and regularly structured CLHS with quadratic frame-

structure for a heat load of           . 

 

On the other hand the optical observation of the phase change process shows significant differences. In the solid 

block PCM heat storage the low thermal conductivity leads to a slow phase change. This allows the liquid PCM to 

superheat and thus actuate natural convection, which improves the fusion process. The experiments clearly show 

that natural convection has to be considered in larger PCM volumes. Opposed to these results the frame-structure in 

the regularly structured CLHS increases the thermal conductivity and at the same time hinders natural convection. 

The PCM volumes are small enough, that the effect of natural convection can be neglected. However the fusion 

process and the advancing of the phase change boundary follow the expected pattern with the fusion starting at the 

heated surface at the bottom and slowly continuing upwards. 

 

5. OUTLOOK 
 

The experimental results are used to verify a simulation model presented in Lohse and Schmitz (2012). Together 

with the simulation model the experiments are used to develop cooling solutions for different applications. 

Manufacturing by SLS allows various frame-structure designs and the customization of regularly structured CLHS 

for special heat sources, such as electronic components like computers or actuators in aircraft systems. These high 

performance heat storages can be operated as back-up cooling systems in emergency cases or enable special 

operating conditions, e. g. longer operating times. 

 

6. CONCLUSION 
 

The work presented in this paper shows the drawback of low thermal conductivity of Phase Change Materials 

(PCM) and a new approach to improve the transport of thermal energy inside PCM heat storages. With a frame-
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structure made of aluminum by Selective Laser Sintering (SLS), the PCM is combined to regularly structured 

Composite Latent Heat Storages (CLHS). These high performance heat storages can be used in aircraft cooling 

systems, where the system weight is crucial. 

 

A prototype regularly structured CLHS is investigated experimentally on a test rig and the results are compared to a 

solid block PCM heat storage. While for the solid block PCM heat storage the phase change process is not 

detectable in the temperature behavior, there is a significant change of the temperature gradient for the CLHS. The 

phase change pattern is completely different for both prototypes as well. In the solid block PCM heat storage the 

transport of thermal energy is driven by natural convection due to superheated liquid PCM at the heat transfer 

surface. Opposed to this the natural convection is suppressed by the small structures in the CLHS and the thermal 

energy is transported mainly by conduction in the aluminum frame-structure. 

 

The experiments clearly show the advantages of the combination of PCM and aluminum and the potential of 

manufacturing customized frame-structures designed for special cooling applications. 

 

 

NOMENCLATURE 

 
α thermal diffusivity (m²/s) Subscripts 

c specific heat capacity (J/(kgK)) f fusion 

h specific enthalpy (J/kg) high high heat load 

k thermal conductivity (W/(mK)) low low heat load 

   heat load (W) max maximum 

ρ density (kg/m³) mid intermediate 

T temperature (K, °C)   heat load 

t time (s) 

 

Abbreviations 

CLHS Composite Latent Heat Storage DAQ Data Acquisition System 

PCM Phase Change Material  SLS Selective Laser Sintering 
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