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Abstract The turbulent characteristics of the neutral boundary layer developing over rough
surfaces are not well predicted with operational weather-forecasting models. The problem is
attributed to inadequate mixing-length models, to the anisotropy of the flow and to a lack of
controlled experimental data against which to validate numerical studies. Therefore, in order
to address directly the modelling difficulties for the development of a neutral boundary layer
over rough surfaces, and to investigate the turbulent momentum transfer of such a layer, a set
of hydraulic flume experiments were carried out. In the experiments, the mean and turbulent
quantities were measured by a particle image velocimetry (PIV) technique. The measured
velocity variances and fluxes (u′

i u
′
j ) in longitudinal vertical planes allowed the vertical and

longitudinal gradients (∂/∂z and ∂/∂x) of the mean and turbulent quantities (fluxes, variances
and third-order moments) to be evaluated and the terms of the evolution equations for ∂e/∂t ,
∂u′2/∂t , ∂w′2/∂t and ∂u′w′/∂t to be quantified, where e is the turbulent kinetic energy. The
results show that the pressure-correlation terms allow the turbulent energy to be transferred

equitably from u′2 to w′2. It appears that the repartition between the constitutive terms of

the budget of e, u′2, w′2 and u′w′ is not significantly affected by the development of the
rough neutral boundary layer. For the whole evolution, the transfers of energy are governed
by the same terms that are also very similar to the smooth-wall case. The PIV measurements
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also allowed the spatial integral scales to be computed directly and to be compared with the
dissipative and mixing length scales, which were also computed from the data.

Keywords Functional lengths · Integral scales · Neutral boundary layer · Particle image
velocimetry measurements · Rough walls · Turbulent budgets

1 Introduction

Roughness effects on turbulent flow over surfaces have been studied since the mid-nineteenth
century. For the atmospheric boundary layer, roughness effects have also received particular
attention; see for example the review of Raupach et al. (1991). When the roughness elements
are high enough, the offset constant in the smooth-wall logarithmic law changes, as discussed
in most text books (e.g., Schlichting and Gersten 1979). The roughness effects are accounted
for in the logarithmic law via differently defined but equivalent roughness parameters: (i) the
roughness length, used mostly in the atmospheric context, (ii) the equivalent sand roughness,
or finally (iii) the roughness function (see Jiménez 2004). Yet an important and long-standing
question is whether the outer-layer flow (z+ = u∗z/ν > 50, where u∗ is the friction velocity,
z is height and ν is the kinematic viscosity) (e.g. Pope 2000) depends on the wall roughness.
Some studies, investigating the effect of roughness on the turbulence structure (Antonia and
Luxton 1971; Bandyopadhyay 1987; Raupach et al. 1991), conclude that there is an outer-
layer similarity over smooth and rough walls. In this context, Townsend (1976) similarity
hypothesis is often invoked as an implicit “wall-similarity” (Raupach et al. 1991) deduced
from the general Reynolds number similarity (Townsend 1976). The recent experimental
studies of Flack et al. (2005) and Schultz and Flack (2007) support the outer-layer similarity
of smooth- and rough-wall boundary layers in terms of both the mean flow and the Reynolds
stresses. Similarly, the combined experimental and numerical investigation of Krogstad et al.
(2005) suggests an outer layer that is little affected by the roughness elements. However, an
outer-layer structure unaffected by the wall condition is not always found. For example, the
experimental study of Krogstad et al. (1992) showed that the roughness at the wall influences
the mean velocity and the turbulent stresses in the outer layer.

In a recent review, Jiménez (2004) readdressed this issue, and stressed that, in addition
to the roughness Reynolds number usually considered, i.e. Re∗ = ksu∗/ν, where ks is the
equivalent sand roughness, care needs to be taken to account for the fact that the roughness
sublayer will increasingly affect a significant portion of the logarithmic zone for low block-
age ratios, δ/zh , where δ is the boundary-layer height and zh is the height of the roughness
elements. Jiménez (2004) estimated that to be free from direct roughness effects, δ/zh > 40.
Thus, in order to attain fully rough regimes, the roughness Reynolds number needs to be
greater than about 80. He concludes that the Reynolds number Reδ+ = δu∗/ν (also called
Kármán number δ+) should be greater than 4,000. These are conditions that are usually
satisfied in real atmospheric boundary-layer flows, with the possible exception of the urban
boundary layer.

Because of the development of remote sensing technologies, in-situ measurements have
become accurate enough to investigate turbulence in the atmospheric boundary layer (e.g.
Poulos et al. 2002; Drobinski et al. 2007; Kunkel and Marusic 2006). The experiments of
Kunkel and Marusic (2006) over the western Utah Great Salt Lake desert covered very high
Kármán numbers (δ+ ∼= 106) with very small relative roughness heights (ks/δ ∼= 10−4). The
results show good agreement with the similarity formulations (Marusic and Kunkel 2003)
based on Townsend’s attached eddy model (1976) and thus support Townsend’s outer-layer
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similarity. As the authors suggest, some of the observed outer-layer differences in comparison
with other studies might be attributed to blockage effects and/or low Reynolds numbers.

Yet, most boundary-layer studies, especially those concerned with roughness effects, only
consider the fully developed boundary layer at equilibrium. The development of boundary
layers is usually only considered in the context of a transition of a well-developed boundary
layer subject to a sudden change of wall roughness, also referred to as an internal boundary
layer, recent examples including those of Cheng and Castro (2002a,b) and Belcher et al.
(2003). One exception is the study of Castro (2007) who examined the boundary layer
developing in a wind tunnel over various roughnesses at relatively high Reynolds numbers.
However, he focused only on the mean flow and concluded that outer-layer flow similarity
holds even for surprisingly low blockage ratios, for δ/zh > 5, (i.e. significantly smaller than
the criterion suggested by Jiménez (2004)), but did not examine the turbulence structure nor
the functional and integral length scales.

A better knowledge of the turbulence structure, including the functional and integral length
scales, is necessary to validate and improve numerical simulations. This includes one-dimen-
sional (1D) boundary-layer prediction models that are computationally inexpensive but need
to be improved. For example, some 1D models still use simple expressions for the mix-
ing length in the neutral boundary layer, such as the Blackadar mixing length (Blackadar
1962) l = κzl0/(κz + l0) where l0 is an asymptotic value of the order of a few hundred
metres, which are not appropriate. This mixing length only depends on height, and not on
the flow (it is equal to κz near the ground and to l0 high above). The large values in the
free troposphere predicted by this model are not valid, however, because the stable strati-
fication tends to strongly limit the size of the eddies. Some mixing lengths tend to correct
this with stability modulating the mixing length (Bougeault and Lacarrère 1989), as in the
mesoscale meteorological model Meso-NH (Lafore et al. 1998) or the operational model
AROME (Bouttier 2003, 2007; Ducrocq et al. 2005; Seity et al. 2010). Unfortunately, such
a mixing length parametrization does not correctly take into account the neutral case, and
does not specify the presence of a thermal inversion above the boundary layer. Indeed, at
the top of the atmospheric boundary layer, there is usually a significant inversion that sep-
arates the boundary layer from the free troposphere above. This is the reason why mixing
lengths are often based on a criterion of stability: in stable conditions, vortices are locally
inhibited and mixing lengths are respectively small. In neutral or in unstable conditions, the
mixing lengths are relatively large based on the assumption that vortices reach the bound-
ary-layer top defined by the level of high stability. While this assumption is true in unstable
conditions, it is more questionable in neutral conditions where the turbulent structure is only
determined by the surface friction and not related to the temperature gradient. Consequently,
in a neutral boundary layer, models tend to overestimate the mixing length. Thus, since no
current formulation of the mixing length takes into account the specific features of the neutral
boundary layer and its streamwise vortices, except near the surface (Redelsperger et al. 2001;
Drobinski et al. 2007), there appears to be no formulation that satisfactorily predicts the com-
plete structure of the neutral boundary layer. This is, in part, due to the lack of observations
under known and controlled conditions. Hess and Garratt (2002) used in-situ observations to
evaluate the first-order models of Lettau (1962) and Blackadar (1962) and Blackadar (1965)
and the higher-order models of Freeman and Jacobson (2002) and Xu and Taylor (1997a,b)
in the neutral case. While the first-order models generally performed well, by fitting a free
parameter, the second-order models performed poorly. Hess and Garratt (2002) attribute
this behaviour to deviations from the idealised conditions that the higher-order models are
based upon. In summary, it can be concluded that there is a need for better experimental
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data verification under controlled conditions, with access to the turbulent structure of the
boundary layer.

For this purpose, it is proposed here to experimentally investigate the development of a
neutral boundary layer under a potential free-stream flow over a rough surface. The study
aims to provide an idealised and simple case for analysis and validation, for which no dataset
under controlled and known conditions is available. In order to attain high enough Rey-
nolds numbers, while retaining small enough relative roughness lengths (Jiménez 2004),
the flow was simulated in the large water flume of the French National Center of Meteoro-
logical Research Center in Toulouse. Vertical two-dimensional velocity fields, spanning the
development of the boundary layer, were measured via a particle image velocimetry (PIV)
technique. The resulting experimental data describe the inertial and outer layer, i.e. above the
surface layer, of a fully rough and developing neutral boundary layer, in terms of the mean
and turbulent quantities under known conditions with a high level of accuracy. The measured
velocity variances and fluxes (u′2, w′2 and u′w′) in a longitudinal vertical plane allow the
vertical and longitudinal gradients (∂/∂z and ∂/∂x) of the mean and turbulent quantities
(fluxes, variances and third-order moments) to be evaluated. They also enable the advection,
the dynamical production, the turbulent transport, the dissipation and pressure-correlation
terms of the ∂e/∂t , ∂u′2/∂t , ∂w′2/∂t and ∂u′w′/∂t evolution equations to be estimated.
Spatial correlation analysis permits the longitudinal and vertical integral lengths to be esti-
mated and to be compared to dissipation lengths and mixing lengths evaluated directly from
the data. The intent is to improve the parametrizations of functional lengths when equilib-
rium is reached. The data should also help assess LES simulations or other closure model
simulations of a developing atmospheric-type rough wall neutral boundary layer.

The experimental procedure is presented in Sect. 2 and the boundary-layer development
is discussed in Sect. 3. Then, the study focuses on the turbulent energy budgets and the
Reynolds stresses. The spatial integral scales as well as the dissipative and mixing lengths
are discussed and compared in Sect. 5, with main conclusions summarised and discussed in
Sect. 6.

2 Experimental Procedure

2.1 Boundary-Layer Flow Facility

The experiments were carried out in a large, wide and high hydraulic flume (22 m long, 3 m
wide and 1 m high) (Fig. 1a) to obtain high Reynolds numbers, to generate a two-dimen-
sional flow and to minimise other boundary effects. The flume was equipped with a series
of grids to reduce the incident turbulence intensity and homogenise the incident flow, such
that it can be considered uniform and potential. A 1-m long smooth surface behind the last
grid was installed to allow the uniform and potential flow with a small smooth and laminar
boundary layer to approach the roughness elements. A turbulent and rough boundary layer
was then allowed to develop over a 12.3 m long and 3 m wide horizontal rough surface. The
temperature of the water was maintained within ±0.2 K, ensuring neutral flow.

A laser Doppler velocimetry (LDV) technique was used for an initial estimation of the
rough-wall boundary-layer thickness and for the validation of the flume characteristics. Ver-
tical profiles of the mean velocity and turbulent intensity were obtained at locations (x =
[−0.16; 0.1; 6; 10.7; 12.4]m) for three transverse positions (y = [−0.5; 0; 0.5]m). For the
incident free-stream velocity magnitude chosen (U∞,0 = 0.35 m s−1), the turbulent intensity
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Fig. 1 (a) Sketch of the experimental set-up. (b) Typical element, LEGO©. (c) Arrangement of the roughness
elements

and the velocity profiles for the three y positions are essentially superimposed for each x
position. The mean deviation of these profiles is about 1% for both the mean velocity and
for the intensity suggesting that the mean flow is essentially two dimensional. This is later
confirmed by a very small residual of the divergence ∂U/∂x +∂W/∂z obtained from the PIV
results (about 0.001 s−1). Also, the LDV measurements reveal that the free-stream turbulence

intensity, defined by 1/2(
√

u′2/U +
√

w′2/W ), is less than 1%, such that freestream flow
can be regarded as potential.

2.2 Roughness Elements

The roughness elements comprised LEGO© blocks 31.7 mm long, 15.7 mm wide and 9.6 mm
high (Fig. 1b) to create a fully rough regime (Re∗ = u∗zh/ν ∼= 200). The arrangement
(Fig. 1c) was chosen to represent a medium roughness length, z0, the roughness parameter
usually used in the atmospheric context and defined by the logarithmic law:

U

u∗
= 1

κ
ln

(
z − zd

z0

)
(1)

where κ is the Von Kármán’s constant, fixed at 0.4, and zd the zero-plane displacement. The
roughness length is a hydrodynamic quantity related to the drag on the roughness elements,
which is usually estimated via purely geometrical parameters in terms of the plane area den-
sity (λp = Ap/At ) and the frontal area density (λ f = A f /At ) (e.g. Raupach et al. 1980;
Coceal and Belcher 2004). Here, At is the area of the reference domain (here Dx × Dy), Ap is
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Table 1 Dimensions of the reference domain (streamwise Dx and crosswise Dy ), the spacing between the
roughness elements contained in the domain (streamwise Wx and crosswise Wy ), the dimensions of the rough-
ness elements (height zh , length Lt and width Ls ), the different areas (the area of the reference domain At , the
plane area of the obstacles viewed from above and contained in the domain of reference A p , and the frontal
area of each obstacle exposed to the wind A f ) and densities (the plane area density λp and the frontal area
density λ f ) (all units in mm)

Domain Spacings Obstacles Areas Densities

Dx Dy Wx Wy zh Lt Ls At A p A f λp λ f

32 61.3 8 8 10 32 16 1.962 1.024 480 0.5 0.2

Table 2 Roughness parameters zd and z0 and the ratios zd/zh and z0/zh obtained from the predictions based
on analytical theories

Lettau (1969) Kondo and Yamazawa (1986) Bottema (1995, 1997) Macdonald et al. (1998)

z0 ( mm) 1.1 1.2 0.01 0.25

z0/zh 0.11 0.12 0.001 0.025

zd ( mm) NA NA 6 7

zd/zh NA NA 0.66 0.76

the plane area of the obstacles viewed from above and contained in the domain of reference,
and A f is the frontal area of each obstacle exposed to the flow (see Fig. 1b,c and Table 1 for
the dimensions).

For later comparison with the measurements and for the initial design of the surface layout,
several models to estimate the roughness length z0, as well as the displacement length zd ,
based on the above mentioned geometrical densities, were evaluated. The results, based on the
models of Kondo and Yamazawa (1986), Bottema (1995, 1997), Lettau (1969) and Macdonald
et al. (1998), are given in Table 2. The estimations of zd , proposed by Bottema (1995, 1997)
and Macdonald et al. (1998), where an empirical drag coefficient is also taken into account,
are similar. The purely geometrical methods, developed by Kondo and Yamazawa (1986)
and Lettau (1969) seem to overestimate the modelling of z0 in comparison with the methods
of Bottema (1995, 1997) and Macdonald et al. (1998). The latter values of z0 are close to the
desired value of z0/δ for a medium roughness surface.

2.3 PIV Measurements

The PIV experiments were performed at a free-stream flowspeed, incident on the roughness
element, U∞,0, of 0.35 m s−1. In order to characterise the upstream flow and the boundary-
layer development over the rough surface, measurements were performed at six x positions.
The flow fields, 0.5 m high and 0.6 m wide in order to capture and exceed the maximum
boundary-layer depth, were centered at x = [0.2, 1, 3, 6, 8, 11]m with Rex = U∞x/ν =
[5 × 104, 3 × 105, 1 × 106, 2 × 106, 3 × 106, 4 × 106], respectively. The images were taken
in the centre of the channel (y = 0) with a X-STREAM VISION 10 bit CMOS camera with
a 1260 × 1024 pixel resolution and equipped with a NIKKOR camera lens with a 50- mm
focal length. Image acquisition was controlled by a frequency generator that allowed the
acquisition of N pairs of images at 1 Hz. A typical time interval between the two images of
a pair, �t , was about 0.017 s. A high number of pairs was chosen to ensure convergence of
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the turbulent statistics (N = 999). The water was seeded with 60µm polyamide particles
(Orgasol© 2000) illuminated with a laser light sheet 5 mm thick, created with an oscillating
mirror and a 25 W Spectra Physics Beamlok argon-ion laser.

The PIV images were processed with the algorithms and interface developed by Fincham
and Spedding (1997) and Fincham and Delerce (2000), which permits the effective elimina-
tion of the peak-locking bias errors. A resolution of 2 pix mm−1 with a correlation box size
of 20 pixels and a grid spacing of 10 pixels in the x direction, and a correlation box size of 15
pixels and a grid spacing of 8 pixels in z-direction, yields a longitudinal resolution of about
5 mm and a vertical resolution of 4 mm, respectively. This resolution is roughly equivalent to
the laser light thickness, thus giving an essentially isotropic measurement resolution [without
significant loss of out-of-plane moving particles, estimated at less than 10%, well below the
limit of 30% suggested by Fincham and Spedding (1997)].

Longitudinal spatial averaging of the measured velocity fields at a given x position was
performed to further increase statistical convergence. It is, however, only justified for the fur-
ther downstream x positions (x > 3 m). At the beginning of the rough surface (x = 0.2 m),
the velocity field is sub-divided into three parts (smooth, transition, rough) and x-averaged
for each one. The fluctuations (u′

i ) in each case are the difference between the raw field (ui )
and the spatially- and temporally-averaged field (Ui ), which is given by:

Ui (z) ≡ 1

N

N∑

p=1

[
1

nx

nx∑

q=1
ui (q, z, p)

]
, (2)

where N is the number of computed velocity fields (N = 999) and nx is the number of velocity
vector columns used (nx = 90, for a complete field).

The integral time scale can be estimated to be larger than the advection time (i.e., Taylor’s
hypothesis with u′/U � 1 where advection dominates). Therefore, a conservative estimate
based on the maximum advection time and the sampling frequency of 1 Hz yields a roughly
50% overlap of the large scales between consecutive instantaneous velocity fields, or about
2,000 independent samples at large scales. This is larger than the 1,000 large scales sug-
gested by Tennekes and Lumley (1972), for example, to ensure statistical convergence. This
sampling is higher than the direct numerical simulations (DNS) of Coceal et al. (2006) who
averaged over only 400 large scales. It should also be noted that the increased spatial dis-
persion, as the top of the roughness elements is approached (i.e. the roughness sublayer),
prevents representative mean statistics being evaluated with single vertical plane measure-
ments. If meaningful statistics in the roughness sublayer were desired, several vertical planes
across a typical roughness area would need to be measured to allow spatial (double-) averag-
ing in all horizontal planes (x , y). This was not the objective of our study, so the measurements
and statistical evaluations were limited to above the roughness layer (taken as z > 2zh , e.g.
Macdonald 2000).

3 Boundary-Layer Development

3.1 Mean Velocity Field

In this section, the mean velocity fields as the boundary layer develops over the rough sur-
face are presented. The logarithmic law scaling parameters used to normalise the velocity
and length quantities are also determined.
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Fig. 2 Mean velocity fields at position A (x = 0), near the commencement of the roughness bed (a) U (x, z)
and (b) W (x, z)

Figure 2a and b shows the temporally-averaged longitudinal and vertical velocity fields,
U (x, z) and W (x, z), respectively, around the beginning of the rough bed (x = 0). In the
longitudinal velocity field U (x, z) for x > 0, the development of the rough boundary layer
can be seen, as can the incident smooth boundary layer, which is relatively thin, as desired,
and of depth of the order of the roughness elements (δsmooth/zh ∼= 1). The ensuing flow can
thus be considered as a new boundary layer that starts to develop over the roughness ele-
ments under a potential and uniform free stream, as opposed to beneath an existing boundary
layer. The effect of the surface roughness discontinuity, at x = 0, can clearly be seen in
the strong W perturbation centred around x = 0, with a strong positive increase in W from
effectively zero to about 0.03 m s−1. This rise is symmetric with respect to the discontinuity
at x = 0 m, with a radius of influence of about 0.18 m or about 10zh . Also, since around the
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Fig. 3 Mean longitudinal velocity profiles U (z) at all measurement x positions (A–F)

discontinuity the flow over the obstacles must first accelerate when deviated, an initial accel-
eration of U (∂U/∂x > 0) occurs with an accompanying boundary-layer height decrease, as
is indeed observed in Fig. 2a. Further downstream (x > 0.03 m), the new boundary-layer
growth dominates due to the drag exerted, and ∂U/∂x < 0 while ∂δ/∂x > 0.

Figure 3 shows the mean longitudinal velocity profiles obtained via time and spatial
averaging at each measurement station (A–F). Because of the finite depth of the water in
the flume, the boundary-layer growth is associated with a slight increase in the free-stream
velocity (U∞) to balance the flow rate due to the increasing displacement thickness in the
boundary layer. This increase in U∞ is small, about 5 % over all measurement stations, and
in agreement with the preliminary LDV measurements (Sect. 2.1).

The mean streamwise velocity profile in the log-law region given by Eq. 1 can be used to
determine the roughness length z0 and the friction velocity u∗. To evaluate the displacement
height zd independently, we chose Macdonald (2000) semi-empirical relation,

zd = [
1 + α−λp (λp − 1)

]
zh (3)

where α is an empirical coefficient, Cd is the drag coefficient fixed at 1.2 with a correc-
tive factor β. For cubical and staggered obstacles, Macdonald et al. (1998) give α = 4.43 and
β = 1, which yields zd = 0.76zh . Macdonald (2000) has verified the results of Raupach et al.
(1980) and concluded that the log-law region, characterised by Eq. 1, is valid from z = 2.3zh

to z = 3.5zh . Thus, by linear regression in the region 2.3zh < z < 3.5zh , for x = [6, 8,
11] m, u∗ and z0 were obtained (Table 3). The roughness length z0 and the friction velocity
u∗ for all values of x > 6 m were found to be approximately constant: 0.25±0.05 mm and
0.02±0.001 m s−1, respectively. The value of z0 agrees with the semi-empirical prediction
established by Macdonald et al. (1998) reported earlier in Table 2. For all values of x < 6 m
(positions A to C), estimating u∗ and z0 with the log law is not expected to be valid since the
log-law region is too small for a relatively large zh/δ, as discussed earlier.

Another way of determining u∗, independent of the log law, is by assuming u∗2 =
−u′w′

z=zd . To evaluate the Reynolds stress in the canopy at z = zd , which was not measured
at this height, we can either extrapolate the linear stress variation in the outer layer or the
essentially constant-stress part below (z/δ < 0.2), as shown in a typical Reynolds stress
profile in Fig. 4a. Here, we chose to take an average of the obtained minimum and maximum
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Table 3 Estimation of the parameters z0 and u∗, based on linear regression of the logarithmic law in the
region 2.3zh < z < 3.5zh and for x > 6 m with zd = 7.6 mm, for U∞,0 = 0.35 m s−1

x (m)

6 8 11

u∗ (m s−1) 0.020 0.021 0.019

z0 ( mm) 0.253 0.346 0.223

u
(m

  s
   

 )

 x (m)

(b)z
(a)

*
-1

zd

 u
*max

2 u
*min

20 u’w’-

Fig. 4 (a) Method used to estimate the friction velocity u∗2 = −u′w′z=zd from the u′w′ profiles: the min-
imum value is obtained by averaging the first points of the profile (for z/δ < 0.2) and the maximum value is
given by the intersection between the extrapolation of the linear regression of u′w′ for 0.5 < z/δ < 0.9 and
z = zd . (b) Squares symbols friction velocity u∗ estimated by method (a) with u∗ = (u∗max + u∗max )/2 via
−u′w′ shear–stress profiles, and triangle symbols friction velocity u∗ estimated via the logarithmic law fits in
the region 2.3zh < z < 3.5zh (see Table 3)

u∗ values, shown in Fig. 4b (squares) with those obtained from the log law (triangles). It can
be seen that the friction velocity decreases with fetch until an equilibrium value is reached,
as already observed by Rao et al. (1974) for a boundary layer over a change of surface rough-
ness. In the case of a newly developing boundary layer under a free-stream flow, a detailed
discussion of the evolution of u∗ is given in Castro (2007). It can be noted that the flow is fully
rough as desired, since z+ = z0u∗

ν
≥ 2, or equivalently k+

s = ks u∗
ν

≥ 70 with ks = z0/0.033
(e.g. Jiménez 2004).

3.2 Vertical Development of the Boundary Layer

The boundary-layer height, δ(x), has been determined via two methods: firstly, as the height
where U reaches 99% of the free-stream velocity magnitude (U∞), and secondly as the
height where the flux −u′w′ decreases to 5% of its maximum value. The boundary-layer
height based on these two definitions and normalised by z0 is shown in Fig. 5; values can be
seen to be in close agreement although the height based on the mean velocity is consistently
higher than the height based on the turbulent flux, a sign of both the robustness and the
arbitrary nature of both criteria. This led to the use of the average of both criteria to fit the
evolution of the boundary-layer height, yielding:

δ

z0

(
x

z0

)
= 0.18

(
x

z0

)0.79

− 203. (4)
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δ

Fig. 5 Boundary-layer height evolution (δ) normalized by the roughness length (z0), the square symbols 5%
of u′w′

max criterion; the X symbols 99% for the U∞ criterion; the triangle symbols average of δ
u′w′

5%
and

δU99%
; the solid line the best fit of the average of both criteria

As expected, this law differs from the classic smooth-surface turbulent boundary-layer growth
rate that predicts a power-law exponent of 0.85 and a coefficient of about 0.08 (White 1991).
Our power-law exponent is close to the well-known 4/5th power law, however, starting with
Elliot’s model (1958), to predict the growth of an internal boundary layer developing after
a sudden change of roughness. Numerous experimental studies of the developing internal
boundary layer (e.g. Antonia and Luxton 1971; Pendergrass and Arya 1984) as well as numer-
ical studies (e.g. Lin et al. 1997) have yielded exponents close to 0.8. Townsend’s (1966)
theoretical analysis shows that, for a large change in friction velocity, from a very smooth to a
very rough surface, the flow behaves essentially as that of a boundary layer developing below
a uniform free-stream velocity, i.e. the situation studied here. However, the coefficient and
depth of the boundary layer measured is less than those predicted by Elliot’s theory (1958),
which is valid for small changes in friction velocity. Indeed, our measured coefficient of 0.18
is less than the value of 0.68 predicted by Elliot with an estimated smooth-surface roughness
length of z01 of 3×10−5 m (Perrier and Butet 1988). In addition, our coefficient is still smaller
than the 0.35 predicted by Pendergrass and Arya (1984) for a roughness change parameter

M = ln
(

z01
z02

)
= −2.3 which is close to our value M = −2.1.

3.3 Turbulent Quantities

We now turn our attention to the evolution of the turbulent quantities. Figure 6a–c shows
the profiles of u′2/u2∗, w′2/u2∗ and −u′w′/u2∗, respectively, as a function of z/δ where δ is
the local mean value of the boundary-layer height (Fig. 5) and u∗ is the local value obtained
from the Reynolds stress profile, for all measured x positions. The normalised values of these
variances and covariances, at last initially, increase with x . According to the study of Antonia
and Luxton (1971), again for internal boundary-layer growth, the increase of u′2/u2∗ is linked
to the intensification of the vertical gradient of U , which is accompanied by an increase of
dynamical production. Here, the growth in the stresses with x tends to decrease until an equi-
librium is reached where the profiles overlap. This equilibrium is reached between x = 3 m
and x = 6 m (Rex = 1 × 106 and 2 × 106) for all three stresses.
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Fig. 6 Locally normalised

profiles of (a) u′2/u2∗, (b) w′2/u2∗
and (c) u′w′/u2∗ as a function of
z/δ for all measured x positions
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Both u′2/u2∗ and −u′w′/u2∗ are maximum near the top of roughness elements. This feature
can be related to the existence of turbulent structures that are generated by the roughness
elements (Kim et al. 1987; Castro et al. 2006). The existence of these structures is sup-
ported by the experimental work of Hommema and Adrian (2003). From these maxima,
u′2/u2∗ decreases linearly up to the top of the outer layer, while the decrease of −u′w′/u2∗ is
quasi-linear, as expected for a pressure driven flow. Yet near the rough wall, the shear stress
remains roughly constant as is usually observed for rough surface, neutral boundary-layer

123



Experimental Investigation of Turbulent Momentum Transfer 397

measurements (Cheng and Castro 2002a,b; Chow et al. 2005; Drobinski et al. 2007). This
could be attributed, as the roughness elements are approached, to a lack of sufficient spatial
resolution in this high intensity region and also to possible remaining spatial dispersion not
accounted for in single plane measurements as the roughness layer is approached.

Figure 6b shows that the w′2/u2∗ profiles in equilibrium (for x > 6 m) have a maximum
near z/δ ∼= 0.3 but vary very weakly between 0 < z/δ < 0.5 around a value of about 1. The
quasi-constancy of w′2/u2∗ until 0.5δ agrees with the profiles observed by Panofsky (1974),
Yaglom (1991) and Castro et al. (2006) and simulated by Drobinski et al. (2007) and Coceal
et al. (2006). Near the surface, (z/δ ∼= 0.1), the normalised variances lie between 4 and 4.5

for u′2/u∗2 and around 0.8 for w′2/u∗2. These values are slightly lower than those deduced
from the in-situ measurements and the LES results of Drobinski et al. (2007), which lie

between 5 and 6 for u′2/u∗2 and 1–2 for w′2/u∗2. Figure 6a and b reveals that w′2/u2∗ is

about four times smaller than u′2/u2∗, i.e. the flow is strongly anisotropic, at large scales. It is
also the ratio established by Moeng and Sullivan (1994), and by the observations of Nicholls

and Readings (1979) and Grant (1986), who found u′2/w′2 ∼= 4.
It can be concluded that our experiment captures the turbulent structure of a developing

rough surface neutral boundary layer, which reaches equilibrium between Rex ∼= 1 × 106

and 2 × 106 (3 < x < 6 m). In order to investigate the transfer processes governing such a

developing boundary layer, the budgets of the turbulent kinetic energy e, u′2, w′2 and u′w′
are discussed below.

4 Normalised Budgets of the Second-Order Turbulent Quantities

We examine the budgets of the second-order turbulent transport equations to help evaluate
the numerical models and characterise the transfers between the turbulent quantities. The
Reynolds-stress transport equation is given below, where Coriolis and thermal production
effects are not considered,

∂

∂t
(u′

i u
′
j ) = −Uk

∂u′
i u

′
j

∂xk︸ ︷︷ ︸
ADV

−
(

u′
ku′

i
∂U j

∂xk
+ u′

ku′
j
∂Ui

∂xk

)

︸ ︷︷ ︸
D P

− 1

ρ0

(

u′
i
∂p′
∂x j

+ u′
j
∂p′
∂xi

)

︸ ︷︷ ︸
PC

−2ν

(
∂u′

i

∂xk

∂u′
j

∂xk

)

︸ ︷︷ ︸
DI SS

−∂u′
ku′

i u
′
j

∂xk︸ ︷︷ ︸
T R

+ν
∂2u′

i u
′
j

∂xk∂xk︸ ︷︷ ︸
DI F F

. (5)

The index k ranges from 1 to 3 and refers, respectively, to the longitudinal, transverse and
vertical components. The terms on the right-hand side represent: advection (ADV ), dynam-
ical production (D P), pressure-correlation (PC), dissipation (DI SS), turbulent transport
(T R) and molecular diffusion(DI F F). It may be noted that, what is often referred to as the
dissipation in Eq. 5, is in fact the pseudo-dissipation, ε̃, defined by:

ε̃ = ν
∂u′

i

∂x j

∂u′
i

∂x j
, (6)
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which can be related to the true dissipation, ε by

ε = ε̃ + ν
∂2u′

i u
′
j

∂xi∂x j
. (7)

The diffusion term can be neglected since it is the product of the viscosity (10−6 m2 s−2)
and second-order derivatives. As discussed in Sect. 2.1, under the present two-dimensional
conditions, the transverse gradients (∂/∂y) of the time-averaged quantities and the transverse
mean velocity (V ) can also be neglected. Also, for x stations at 1 m and further, the vertical
mean velocity (W ) is negligible as discussed in Sect. 3.1. Finally, since the flow is statistically
stationary, ∂u′

i u
′
j/∂t = 0.

4.1 Turbulent Kinetic Energy Evolution Equation

In addition to the above general approximations, in the budget of the turbulent kinetic energy
(e = u′

i u
′
i/2), the pressure-correlation term (PC) can be neglected as it is expected to be a

relatively weak transport term for the smooth boundary layer (Pope 2000). This implies:

PC
u′2 + PC

v′2 + PC
w′2 ∼= 0. (8)

Eq. 5 applied to e, thus reduces to

0 = −U
∂e

∂x︸ ︷︷ ︸
ADV

−u′2 ∂U

∂x
− u′w′ ∂U

∂z︸ ︷︷ ︸
D P

−ε̃︸︷︷︸
DI SS

−∂u′e
∂x

− ∂w′e
∂z︸ ︷︷ ︸

T R

. (9)

Here, ε̃ cannot be estimated directly from the measurements, at least with reasonably accu-
racy, firstly, because the transverse gradients have not been measured and secondly, because
the spatial resolution of 5 mm is too large. It is estimated to be about 16 dissipation scales (η)
via the turbulence intensities in Fig. 6 and the later integral-scale computations (Sect. 5.1).
This is not sufficiently small to include the peak of the dissipation spectrum at about 24η

(Pope 2000). However, since ε̃ is the only unknown quantity in the measured budget (Eq. 9)
it can be estimated via the residual.

Also, for evaluating the turbulent kinetic energy, e, an assumption needs to be made for
v′2. The measurements of Cheng and Castro (2002b) and Macdonald et al. (2002), as well
as the simulations of Castro et al. (2006), show that v′2 ∼= 0.5(u′2 + w′2), while the in-situ
experiments of Drobinski et al. (2004, 2007) and the simulations of Moeng and Sullivan
(1994) suggest that the coefficient is closer to 0.4. Here, the coefficient of 0.5 is retained
since the studies that support this approximation have a configuration close to our experi-
ment, notably for the characteristics of the canopy (z0/zh and u∗/U∞). It can also be noted
that this uncertainty in v′2 affects the estimation of the turbulent transport and the advection
terms by a factor of 7 %, and the pseudo-dissipation term by about 4%.

The turbulent kinetic energy budget is shown in Fig. 7a. Above z/δ ≥ 0.1, advection is a
minor term, even smaller than the minor vertical turbulent transport term. However, the ver-
tical turbulent transport is not negligible at the top of the boundary layer, for 0.6 < z/δ < 1.
Indeed, above z/δ > 0.6, although weak compared to the dissipation and the dynamical pro-
duction in the lower layer, it becomes the only significant source here. Advection also grows
in importance, becoming a minor sink term peaking near z/δ ∼= 0.8. This balance between
the turbulent transport and the advection agrees with the simulations of Mason and Thomson
(1987) of the neutral boundary layer. In the outer layer, but below z/δ ∼= 0.6, the dynamical

123



Experimental Investigation of Turbulent Momentum Transfer 399

(a)
z 

/ δ
(b)

z 
/ δ

(c)

z 
/ δ

*

(d)

z 
/ δ

(e)

z 
/ δ

(f)

z 
/ δ

(g)

z 
/ δ

(h)

z 
/ δ

Fig. 7 Locally normalised budget of e (a), u′2 (c), w′2 (e) and u′w′ (g) as a function of z/δ for the D position
(x = 6 m). Dominant source terms of each budget: the dynamical production term (D P) for the budget of e

(b), u′2 (d), u′w′2 (h) (which equals the D P for the budget of e) and the pressure-correlation term (PC) for

the budget of w′2 as a function of z/δ for all x positions
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production essentially balances the dissipation as observed by Glendening and Lin (2002)
in large-eddy simulation of an internal boundary layer. The preponderant contribution of the
dynamical production has also been assessed by Drobinski et al. (2004) and more recently by
Castro et al. (2006) and Burattini et al. (2008), and is the classic assumption that stipulates
that the production rate equals the dissipation. This also supports the outer-layer similarity
hypothesis, the budgets being very similar as in the case of the smooth boundary layer (Pope
2000). Figure 7b shows the longitudinal evolution of the dynamical production term of e, the
most significant term of the budget of e measured directly. It can be seen that for x = 1 m
and x = 3 m (positions B and C) the dynamical production is higher than for the further x
positions in the range 0.3 < z/δ < 0.7. This source “surplus” is balanced by an increase
in the sink of the vertical turbulent transport of e (not shown), which decays by x = 6 m. By
x = 6 m at the latest, all the profiles have converged (including the other terms, not shown)
in accordance with the observation with regard to the turbulent stresses (Fig. 6a–c) that
equilibrium is reached in the region 3 m< x <6 m.

4.2 u′2 Evolution Equation

For stationary and two-dimensional flows, Eq. 5 applied to u′2 reduces to

0 = −U
∂u′2
∂x︸ ︷︷ ︸

ADV

−2

(

u′2 ∂U

∂x
+ u′w′ ∂U

∂z

)

︸ ︷︷ ︸
D P

− 2

ρ0
u′ ∂p′

∂x
︸ ︷︷ ︸

PC

−2ν

((
∂u′
∂x

)2

+
(

∂u′
∂z

)2
)

︸ ︷︷ ︸
ε′2

u

−∂u′3

∂x
− ∂w′u′2

∂z︸ ︷︷ ︸
T R

. (10)

The dissipation term (ε′2
u ) and the pressure-correlation (PC) term are the two unknown

terms in the budget. Thus, in order to balance the budget, an additional hypothesis needs to
be made. Pope (2000), based on DNS data of Spalart (1988) of a boundary layer over a flat
smooth plate, shows that close to the wall, the anisotropy in the dissipation rate (εu′

i u′
j
) of

the Reynolds stresses, u′
i u

′
j , is clearly large. However, for z/δ > 0.1, there is approximate

isotropy. The small level of anisotropy in εu′
i u′

j
for z/δ > 0.1 can be attributed to the relatively

low Reynolds number of the DNS of Spalart (1988). For a rough-wall boundary layer, the
experiments of Saddoughi and Veeravalli (1994) and Saddoughi (1997) confirm that at this
altitude there is also local isotropy of εu′

i u′
j

at high Reynolds numbers. Some studies even
conclude that the roughness increases the degree of isotropy closer to the wall and this impact
is greater with three-dimensional roughness (Castro et al. 2006). Therefore, as the present
experiment was performed at high Reynolds number (Reδ+ = δu∗/ν > 3 × 103 at x = 6 m)
and with three-dimensional roughness, the dissipation rate (εu′

i u′
j
) of u′

i u
′
j can reasonably be

expressed as

εu′
i u′

j
= 2

3
ε̃δi j , (11)

where δi j is the Kronecker function. Thus, taking ε′2
u = 2/3ε̃, with ε̃ obtained from Eq. 9,

the pressure-correlation is the only residual term of the budget of u′2. The estimation of ε′2
u
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and consequently of the pressure-correlation term is thus again essentially affected by the
uncertainty in v′2 by no more than 4%.

The budget of u′2 (Fig. 7c) shows, as expected, that the intensity of all the terms decreases
as z/δ increases. The turbulence acts principally in the lower part of the outer layer, and above
the surface layer, the dynamical production is the only significant source, as shown by Pope
(2000) for a smooth-surface boundary layer. The advection by the mean wind or turbulent
transport are not really important for the evolution of u′2, except at the top of the outer layer
where the advection peaks near z/δ ∼= 0.8 and where the turbulent transport becomes the
dominant source, as for the budget of e. The pressure-correlation term is significant through-
out, and is the main sink for u′2 above the surface layer. Similarly to the boundary layer over
a smooth surface (Spalart 1988), the pressure fluctuations appear to distribute the energy
between the different components: from u′2 to v′2 and w′2 (see below). Figure 7d shows
that the equilibrium of the most significant term in the u′2 budget, the dynamical production
term, is reached between x = 3 m and x = 6 m, as for the budget of e and in agreement with
the longitudinal evolution of u′/u2∗ (Sect. 3.3).

4.3 w′2 Evolution Equation

For stationary and two-dimensional flows, Eq. 5 applied to w′2 reduces to

0 = −U
∂w′2
∂x︸ ︷︷ ︸

ADV

− 2

ρ0
w′ ∂p′

∂z
︸ ︷︷ ︸

PC

−2ν

(
(
∂w′
∂x

)2 + (
∂w′
∂z

)2

)

︸ ︷︷ ︸
ε
w′2

−∂u′w′2
∂x

− ∂w′3

∂z︸ ︷︷ ︸
T R

. (12)

where the dynamical production term depends on W and can thus be neglected. Also, as with
εu′2 for the u′2 budget, εw′2 is estimated by Eq. 11. The pressure-correlation term (PC) is

then again the only residual term of the measured budget of w′2.
The w′2 budget (Fig. 7e) shows that the turbulent transport term (T R) is again weak, peak-

ing near z/δ ∼= 0.8 as a source (similar to u′2 and e) but smaller in magnitude. The advection,
also weak, peaks near z/δ ∼= 0.8 as a sink and similar to u′2 and e. The main balance below
z/δ ∼= 0.8 is between the pressure-correlation and the dissipation terms. In the outer layer,
around z/δ = 0.8, the main source for w′2 is thus the pressure-correlation term, as seen in
the recent computations of Ashrafian and Andersson (2006). This observation confirms the
previous hypothesis: the pressure fluctuations redistribute the energy from u′2 to w′2. It can
also be observed that the w′2 pressure-correlation term attains half the absolute value of the
u′2 pressure-correlation term, suggesting that the energy is equally partitioned between w′2
and v′2. This is confirmed by considering that the sum of the pressure-correlation terms of u′2,
v′2 and w′2 is zero (Eq. 8) since the pressure-correlation term of e is assumed to be zero (see
Sect. 4.1), which allows PC

v′2 to be evaluated. Yet, it is important to insist on the fact that the

pressure-correlation terms for u′2 and w′2 are individually and independently estimated: each
one is the residual of their respective budgets for the five downstream x positions. Finally,

123



402 S. Tomas et al.

PC 

z 
 / 

δ

terms /  u   δ* 3 -1

- PC

  PC

  PC

2

2

2

u ’

w ’

v ’

z 
 / 

δ

- PC 2u ’
/ PC 2w ’

for 0 <  z / δ < 0.8:
the average of the
ratio is 2

(a) (b)

Fig. 8 (a) Locally normalised magnitude of the pressure-correlation terms PC of the budget of u′2, w′2 and

v′2 as a function of z/δ for the D position (x = 6 m). (b) Ratio of the normalised the pressure-correlation terms
−PC

u′2/PC
w′2 as a function of z/δ for the D position (x = 6 m)

Fig. 7f shows the longitudinal evolution of the PC
w′2 term, and in agreement with all other

terms it can be seen that equilibrium is reached for x > 3 m.
Figure 8a shows all three pressure-correlation terms at x = 6 m while Fig. 8b shows the

ratio −PC
u′2/PC

w′2 , and it can be seen in Fig. 8a that PC
v′2 and PC

w′2 are close for
all z/δ. The mean value of the ratio −PC

u′2/PC
w′2 in Fig. 8b reveals a ratio close to 2

for 0 < z/δ < 0.8, and for z/δ > 0.8, the ratio surprisingly decreases close to 1, but
the magnitude of the terms is probably too small to obtain a significant estimate of the ratio.
Awaiting more precise measurements for z/δ > 0.8, it can thus be concluded that the pressure
fluctuations equitably distribute the energy contained in the longitudinal fluctuations to the
transverse and vertical fluctuations:

PC
v′2 ∼= PC

w′2 ∼= − 1
2 PC

u′2 . (13)

This redistribution, observed for all x positions, is essentially the same as has been observed
over a smooth-surface boundary layer (Pope 2000), suggesting that the turbulent structure in
the outer layer is not influenced by the roughness elements.

4.4 The u′w′ Evolution Equation

For u′w′, under the stationarity and 2D assumptions, Eq. 5 reduces to

0 = −U
∂u′w′
∂x︸ ︷︷ ︸

ADV

−
(

u′2 ∂U

∂x
+ u′w′ ∂U

∂z

)

︸ ︷︷ ︸
D P

− 1

ρ0

(

u′ ∂p′
∂z

+ w′ ∂p′
∂x

)

︸ ︷︷ ︸
PC

−∂u′2w′
∂x

− ∂u′w′2
∂z︸ ︷︷ ︸

T R

, (14)

where the dissipation term εu′w′ has been neglected (see Eq. 11), and the pressure-correlation
term is thus the residual term here. The budget of u′w′ is presented in Fig. 7g, which shows that
the advection and turbulent transport terms are again relatively weak but with reversed signs

compared to u′2, w′2 and e, and still peak near z/δ ∼= 0.8. Below, the main balance is between
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the dynamical production (source) and the pressure-correlation (sink), similar to the budget

of u′2 where dissipation contributes as a sink. This result agrees with the measurements of
Wyngaard (1992) and the simulations of Ashrafian and Andersson (2006). Wyngaard (1992)
showed that the turbulent transport is negligible and that the pressure-correlation acts as a
sink term that locally balances the dynamical production term. This repartition of energy was
also observed by Mulhearn (1978) in wind-tunnel modelling of a rough-to-smooth bound-
ary-layer transition. In conclusion, all budgets reach equilibrium between stations at x = 3 m
and x = 6 m while the distribution of the budget terms is very similar to a smooth-surface
turbulent boundary layer and to an internal boundary layer.

5 Length Scales

Here we investigate the dissipative length scale lε and the mixing length lm based on the
observed statistics, as well as the integral length scales based on spatial correlations. Both
lε ∼= u3/ε and lm ∼= (K/(∂U/∂z))1/2 are functional length scales, based on the ratio of
statistical properties of the flow (Hunt et al. 1989), the former often being used to esti-
mate the latter, which involves the sought-after Reynolds stress. Here, u is a characteristic
turbulent velocity, and K is the turbulent eddy viscosity or exchange coefficient given by
K = −u′w′/(∂U/∂z) for horizontally homogeneous flow. First-order models are based on
the so-called Prandtl–Kolomogorov relation, which assumes K ∼= ul, where u is most often
taken as e1/2 and l is a length scale of the energy containing eddies, well described by the
integral scale, but usually taken from a functional length scale. Our aim here is to characterise
the turbulent scales of a neutral boundary-layer flow and to improve the parametrization of
the functional length scales.

5.1 Integral Length Scales

Integral length scales can be obtained directly from spatial correlations with the present PIV
measurements, without relying on the often necessary Taylor hypothesis. In particular, the
spatial correlation function in the (x , z) plane,

Ru′
i u′

j
(	r , 	δr) = u′

i (	r)u′
j (	r + 	δr)

u′
i (	r)u′

j (	r)
, (15)

can be estimated directly, where 	r = x	i + z	k is the reference position and 	δr , taken as either
δx	i or δz	k, is the displacement, which is either positive or negative. The correlation functions
are computed in each of the N = 999 fluctuating (x , z) velocity fields with 	r for all measured
points in the velocity fields. The resulting correlation functions are then averaged over all N
for convergence.

The integral length scales at each reference x position are then computed via the integral
of the correlation functions (Eq. 15):

Lu′
i u′

j ,δ	r (	r) =
∞∫

0

Ru′
i u′

j
(	r , 	δr)d 	δr . (16)

To ensure systematic convergence, the integration for large r was terminated when the cor-
relation function reached 0.1. The measurements permit 16 different integral scales to be
obtained, i.e. for the four stresses (u′2, w′2, u′w′ and w′u′), each in two directions (δx	i and
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Fig. 9 Normalised minimum vertical and longitudinal integral length scale L
u′

i u′
j ,δz

(z), in the left column

and L
u′

i u′
j ,δx

(z), in the right column, for all x positions for u′2 (a and b), w′2 (c and d), u′w′ (e and f) and

w′u′ (g and h)

δz	k), with δx and δz either positive or negative. As expected, it was observed that δx either
positive or negative does not affect Lu′

i u′
j ,δx (	r), emphasising that the flow is homogenous

in x , at least at the scale of the measurement fields. However, for Lu′
i u′

j ,δz(	r), the results

revealed a general tendency for larger integral scales in the top half of the boundary layer for
negative δz displacements than for positive ones, and vice versa for the bottom half. Since
Carlotti and Drobinski (2004) argued that the smallest vertical integral scales should be close
to the mixing length, the minimum integral-scale value between the positive and negative
δz displacements at each z level (for all four stresses) was chosen. The resulting integral
scales are regrouped in Fig. 9a–h for all x positions, and it can be seen that equilibrium of
the integral scales is also reached between 3m < x < 6 m, as for the turbulent statistics
and budgets. Nevertheless, the first x positions (x = 0.2 m and x = 1 m) exhibit the same
tendencies except for L

u′2,δx
. It can also be noted that L

u′2,δx
and Lu′w′,δx reveal a greater

gap between x = 3 m and x = 6 m, illustrating that u′ is more affected by the growth of the
boundary layer than w′, which is more associated with the local turbulence. Also, it can be
observed that L

u′2,δx
dominates all other length scales, as expected; this dominance of L

u′2,δx
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s = 0.05, p = 2.4 and B = 0.24

is due to the existence of coherent structures that are elongated in the longitudinal direction
(e.g. Drobinski et al. 2007). These structures are localised in the bottom part of the boundary
layer with a maximum at z/δ = 0.2, which can also be observed in the Lu′w′,δx(z) profiles.

For 1D modelling purposes, it is more appropriate to consider the vertical scales, given by
δz displacements. As seen in the left column of Fig. 9, all the vertical integral scales increase
linearly until a maximum value is reached around Lu′

i u′
j ,δz/δ = 0.4, in the range of 0.3 <

z/δ < 0.6. Above, the vertical integral scales decrease to L
w′2,δz

/δ = 0.2, Lu′w′,δz/δ = 0.2
and L

w′u′,δz/δ = 0.1 at z/δ = 1. Only L
u′2,δz

increases again above z/δ = 0.9, which under-
lines the fact that significant exchanges of longitudinal structures occur between the boundary
layer and the free stream. The vertical velocity fluctuation scales L

w′2,δz
and L

w′2,δx
are very

close, however, suggesting that the length scales of w′2 are essentially isotropic.
Figure 10a compares directly the profiles of the resulting vertical integral scales of the four

stresses. Here, it can be seen more clearly that the vertical integral length scales essentially
have the same shape and intensity, increasing in the bottom half of the boundary layer and
decreasing above. More precisely, below z/δ ≤ 0.2 in the inertial sublayer, all profiles col-
lapse very well, but above there are differences. Also, as expected due to the inhomogeneity
in the z-direction, the integral scales of the u′w′ and w′u′ fluxes are unequal, with a marked
shift in the maximum scale.

To compare the integral length scales with lm and lε used in 1D prediction models at
equilibrium, a representative integral length scale (Lz) was taken as the average of the four
vertical length scales in Fig. 10a. This mean integral length scale (Lz), shown in Fig. 10b, is
linear in the lower part of the outer layer, as expected. Above, Lz tends to be hyperbolic, and
the maximum value of the integral scale is Lz/δ ∼= 0.3 at z/δ = 0.5. A function of the form
az/(b + zk) is thus expected to be adapted, as the dashed line in Fig. 10b shows. The fitted
normalised relation is:

Lz

δ
= A

( z−zh
δ

− s
)

B + ( z−zh
δ

− s
)p , (17)

with A = 0.26, s = 0.05, p = 2.4 and B = 0.24.
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Fig. 11 (a) Ratio of the integral length scale and the dissipative length scale (lε/Lz ) at the developed x

positions as a function of z/δ. (b) Ratio of the integral lengthscale and the mixing length (lmC1/2
m /Lz ) at

developed x positions as a function of z/δ

5.2 Dissipative Length Scales

In the following sections, we consider only the region where the flow has reached equilibrium,
i.e. for x > 6 m. Taylor (1935) first suggested that ε̃ ∼= u3/ l, usually written as:

ε̃ = Cε

e3/2

lε
, (18)

where Cε is a constant ≈ 0.85 (Schmidt and Schumman 1989; Cuijpers and Duynkerke 1993;
Canuto et al. 2001; Cheng et al. 2002). Using the dissipation rate obtained from the budget
of e (Eq. 9), lε can thus be determined via Eq. 18. Figure 11a shows the resulting vertical
profile of lε normalised by the experimental integral length Lz of Fig. 10b. Clearly, except
between 0.3 < z/δ < 0.7, where lε ∼= 2.4Lz , lε/Lz is not constant, which is not surprising
since the two scales should only be proportional in homogeneous turbulence.

5.3 Mixing Length

The mixing length model,

u′w′ = −Cm l2
m

∣
∣
∣
∣
∣
∂U

∂z

∣
∣
∣
∣
∣
∂U

∂z
, (19)

where Cm is a constant, is used to model the Reynolds stress when one length scale dominates.
It can be used here to deduce the mixing length lm from the measured mean velocity gradient
and Reynolds stress profile, also for x > 6 m. Figure 11b shows the resulting normalised
profile lmC1/2

m /Lz . In comparison with the dissipative length scale ratio, lε/Lz , the mixing
length lm matches Lz better. Neglecting the strong nonlinearities near the surface for z ≤ 0.1δ,
the scales are approximately proportional over a wider range, between 0.3 < z/δ < 0.9,
with a ratio of proportionality (lmC1/2

m /Lz) of about 0.37. The standard mixing length in the
logarithmic layer,

lm = κ(z − zd), (20)

in combination with lmC1/2
m determined from Eq. 19, permits Cm to be determined in the

log-law region via linear regression, yielding an average Cm = 0.51 for the three latest x
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Fig. 12 Measured mixing length lm/δ deduced from Eq. 19 (symbols) at developed x positions as a function
of z/δ, compared to Eq. 20, dashed line, lm = κ(z − d), and Eq. 21, solid line lm = l0

κz
κz+l0

(Blackadar
1962)

stations. Thus, the ratio of proportionality lm/Lz for 0.3 ≤ z/δ ≤ 0.9 is about 0.52. Fig-
ure 12 shows lm/δ with Cm = 0.51 as well as the standard mixing length in the logarithmic
layer (Eq. 20). The formulation of Blackadar (1962),

lm = l0
κz

κz+l0
, (21)

is also shown in Fig. 12, by determining l0 from a least squares fit of lm for the last three x sta-
tions. The resulting three l0/δ ratios are very close, with an average of 0.24. It can be seen that
the normalized measurements for all three stations follow essentially the same curve, which
might be described as a weak S shape. In the central outer layer, between 0.3 ≤ z/δ ≤ 0.7,
lm/δ is largely constant at about 0.13, before retreating slightly and then increasing as the
top of the boundary layer is approached. Not surprisingly, Blackadar’s relation used for all
stability conditions does not fit the data well. A parametrization based on either the dissi-
pative scale or the vertical integral scale would also yield significant differences, so direct
parametrization of the mixing length based on the measured lm profiles in Fig. 12 might be
most appropriate.

6 Conclusion

The main goal of our study was to investigate turbulence in the neutral boundary layer to
help validate numerical simulation models and to help improve the parametrizations of the
turbulent processes for one-dimensional neutral boundary-layer models. The experiment pre-
sented herein reproduces the development of a neutral boundary layer in a water flume over
a rough surface at high Reynolds numbers. The velocity measurements were performed via a
two-dimensional particle image velocimetry (PIV) technique in the vertical symmetry plane
of the flow. The turbulent statistics at several longitudinal positions were obtained by spa-
tially and temporally averaging the PIV velocity fields, ensuring statistical convergence for
the higher-order statistics.
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The boundary-layer growth was established on the basis of the mean longitudinal veloci-
ties and the turbulent shear stress, yielding a 0.8 power law in agreement with previous results
for the growth of an internal boundary layer. However, it appears that our 0.18 coefficient is
smaller than that for a typical internal boundary layer. The commencement of the roughness
surface is well revealed by mean vertical velocity perturbations whose streamwise extent is
about 0.18 m.

An analysis of the budget of turbulent kinetic energy (e) shows that shear production is
the main source of turbulence in the outer layer, as is the case for the turbulent boundary
layer over a smooth surface. The residual term in this budget yielded the dissipation rate,

allowing also the dissipation of the u′2 and w′2 budgets to be estimated. Finally, we were able
to quantify the pressure fluctuations and describe their role in transferring energy between
the different variances. Again, these transfers were found to mirror the exchanges due to
the pressure-correlation terms in a smooth boundary layer, suggesting the turbulent structure
of the outer layer over a rough surface is very similar to that over a smooth surface. The
development of the rough-surface neutral boundary layer does not significantly modify the

repartition between the constituent terms in the budget of e, u′2, w′2 and u′w′. Whatever the
variable, even before equilibrium is reached, the same terms govern the transfer of energy,
except for the vertical turbulent transport of e, which is a minor term when 0.1 < z/δ < 0.6
at all stations except for x = 1 m, where it is not negligible, and where it appears as a
sink of energy that balances the “surplus” of dynamical production. All budgets, as well the
first-order and second-order statistics reach equilibrium between 12,000 ≤ x/z0 ≤ 24,000.

Finally, the spatially resolved measurements allowed us to compute the spatial integral
length scales directly, including the vertical scales, that are more appropriate for modelling
purposes. These integral length scales were used to compare against the dissipative and the
mixing length functional scales. It is shown that the ratio of the dissipative scale to the vertical
integral length scale, not expected to be constant in this inhomogeneous flow, indeed varies
significantly by a factor of up to 2. Direct calculation of the mixing length suggests a better
match with the vertical integral scale, with a narrow constant of proportionality for z/δ ≥ 0.1
of about lm/Lz ∼= 0.52. Further numerical tests need to be done in order to validate the new
proposal for Lz and to verify whether this improves the simulation of the neutral boundary
layer.

Acknowledgments This work study was supported by the MesoScale Meteorology and Experiment
Meteorology groups (GMME and GMEI) of the National Center of Meteorological Research of Météo-France.
The authors would like to thank B. Beaudoin, J-C. Boulay, J.-C. Canonici, M. Morera, S. Lassus Pigat and H.
Schaffner of the CNRM-GAME fluid mechanics laboratory (SPEA) for their support in the experiments and
for providing us with valuable comments.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

References

Antonia RA, Luxton RE (1971) The response of a turbulent boundary layer to a step change in surface rough-
ness. Part 1. smooth to rough. J Fluid Mech 48:721–761

Ashrafian A, Andersson HI (2006) Roughness effects in turbulent channel flow. Int J Prog Comput Fluid Dyn
6:1–20

Bandyopadhyay PR (1987) Rough-wall turbulent boundary layers in the transition regime. J Fluid Mech
180:231–266

123



Experimental Investigation of Turbulent Momentum Transfer 409

Belcher SE, Jerram N, Hunt JCR (2003) Adjustment of a turbulent boundary layer to a canopy of roughness
elements. J Fluid Mech 488:369–398

Blackadar AK (1962) The vertical distribution of wind and turbulent exchange in a neutral atmosphere.
J Geophys Res 67(8):3095–3102

Blackadar AK (1965) A single layer theory of the vertical distribution of wind in a baroclinic neutral atmo-
spheric boundary layer. Final report, AFCRL-65-531, Department of Meteorology, The Pennsylvania
State University, University Park, PA, 22 pp

Bottema M (1995) Parameterisation of aerodynamic roughness parameters in relation to air pollutant removal
efficiency of streets. In: Proceedings of 3rd international conference on Air pollution, Wessex Institute
of Techn, Porto Carras, Greece, pp 235–242

Bottema M (1997) Urban roughness modelling in relation to pollutant dispersion. Atmos Environ 31:3059–
3075

Bougeault P, Lacarrère P (1989) Parameterization of orography-induced turbulence in a meso-beta scale
model. Mon Weather Rev 117:1870–1888

Bouttier F (2003) The AROME mesoscale project. In: Seminar on Recent developments in data assimilation
for atmosphere and ocean, 8–12 September, ECMWF, European Center for Medium-Range Weather
Forecasts

Bouttier F (2007) Arome, avenir de la prévision régionale. La Météorol 58:12–20
Burattini P, Leonardi S, Orlandi P, Antonia RA (2008) Comparison between experiments and direct numerical

simulations in a channel flow with roughness on one wall. J Fluid Mech 600:403–426
Canuto VM, Cheng Y, Howard A (2001) New third-order moments for the convective boundary layer. J Atmos

Sci 58:1169–1172
Carlotti P, Drobinski P (2004) Length scales in wall-bounded high-Reynolds-number turbulence. J Fluid Mech

516:239–264
Castro IP (2007) Rough-wall boundar layers: mean flow universality. J Fluid Mech 585:469–485
Castro IP, Cheng H, Reynolds R (2006) Turbulence over urban-type roughness: deductions from wind-tunnel

measurements. Boundary-Layer Meteorol 118:109–131
Cheng H, Castro IP (2002a) Near-wall flow development after a step change in surface roughness. Boundary-

Layer Meteorol 105:411–432
Cheng H, Castro IP (2002b) Near-wall flow over urban-like roughness. Boundary-Layer Meteorol 104:

229–259
Cheng Y, Canuto VM, Howard AM (2002) An improved model for the turbulent PBL. J Atmos Sci 59:

1550–1565
Chow FK, Street RL, Xue M, Ferziger JH (2005) Explicit filtering and reconstruction turbulence modeling

for large-eddy simulation of neutral boundary layer flow. J Atmos Sci 62:2058–2077
Coceal O, Belcher SE (2004) A canopy model of mean winds through urban areas. Q J Roy Meteorol Soc

130:1349–1372
Coceal O, Thomas TG, Castro IP, Belcher SE (2006) Mean flow and turbulence statistics over groups of

urban-like cubical obstacle. Boundary-Layer Meteorol 121(3):475–490
Cuijpers JWM, Duynkerke PG (1993) Large eddy simulation of trade wind cumulus clouds. J Atmos Sci

50:3894–3908
Drobinski P, Carlotti P, Newson RK, Banta RM, Foster RC, Redelsperger JL (2004) The structure of near-

neutral surface layer. J Atmos Sci 61:699–714
Drobinski P, Carlotti P, Redelsperger JL, Banta RM, Masson V, Newson RK (2007) Numerical and experi-

mental investigation of the neutral atmospheric surface layer. J Atmos Sci 64:137–156
Ducrocq V, Bouttier F, Malardel S, Montmerle T, Seity Y (2005) Le projet arome. La Houille Blanche 2:39–43
Elliott W (1958) The growth of the atmospheric internal boundary layer. Trans Am Geophys Union 39:1048–

1054
Fincham AM, Delerce G (2000) Advanced optimization of correlation imaging velocimetry algorithms. Exp

Fluids 39(suppl):S13–S22
Fincham AM, Spedding GR (1997) Low cost, high resolution DPIV for measurement of turbulent fluid flow.

Exp Fluids 23:449–462
Flack KA, Schultz MP, Shapiro TA (2005) Experimental support for Towsend’s Reynolds number similarity

hypothesis on rough walls. Phys Fluids 17(3):1–9
Freeman FR, Jacobson MZ (2002) Transport-dissipation analytical solutions of the e − ε turbulence model

and their role in predictions of the neutral ABL. Boundary-Layer Meteorol 102:117–138
Glendening JW, Lin CL (2002) Large eddy simulation of internal boundary layers created by a change in

surface roughness. J Atmos Sci 59:1697–1711
Grant ALM (1986) Observations of boundary layer structure made during the 1981 Kontur experiment. Q J

Roy Meteorol Soc 112:825–841

123



410 S. Tomas et al.

Hess GD, Garratt JR (2002) Evaluating models of the neutral, barotropic planetary boundary layer using
integral measures. Part II. modelling observed conditions. Boundary-Layer Meteorol 104:359–369

Hommema SE, Adrian RJ (2003) Packet structure of surface eddies in the atmospheric boundary layer. Bound-
ary-Layer Meteorol 106:35–60

Hunt JCR, Moin P, Lee M, Moser RD, Sparlat P, Mansour NN, Kaimal JC, Gaynor E (1989) Cross-correla-
tion and length-scales in turbulent flows near surfaces. In: Fernholz HH, Fiedler HE (eds) Advances in
turbulences, vol 2. Springer, Berlin, pp 128–134

Jiménez J (2004) Turbulent flows over rough walls. Annu Rev Fluid Mech 36:173–196
Kim J, Moin P, Moser R (1987) Turbulence statistics in fully developed channel flow at low Reynolds number.

J Fluid Mech 177:133–166
Kondo J, Yamazawa H (1986) Aerodynamic roughness over an inhomogeneous ground surface. Boundary-

Layer Meteorol 35:331–348
Krogstad PA, Antonia RA, Browne LWB (1992) Comparison between rough- and smooth-wall turbulent

boundary layers. J Fluid Mech 245:599–617
Krogstad PA, Andersson HI, Bakken OM, Ashrafian A (2005) An experimental and numerical study of channel

flow with rough walls. J Fluid Mech 530:327–352
Kunkel GJ, Marusic I (2006) Study of the near wall turbulent region of the high Reynolds number boundary

layer using an atmospheric flow. J Fluid Mech 548:375–402
Lafore JP, Stein J, Asencio N, Bougeault P, Ducrocq V, Duron J, Fisher C, Hereil P, Mascart P, Masson V,

Pinty JP, Redelsperger JL, Richard E, Gueraude Arellano JV (1998) The Meso-NH atmospheric simu-
lation system. Part I: adiabatic formulation and control simulations. Ann Geophys 16:90–109

Lettau HH (1962) Theoretical wind spirals in the boundary layer of a barotropic atmosphere. Beitr Phys Atmos
35:195–212

Lettau H (1969) Note on aerodynamic roughness parameter estimation on the basis of roughness element
description. J Appl Meteorol 8:828–832

Lin CL, Moeng CH, Sullivan PP, McWilliams JC (1997) The effect of surface roughness on flow structures
in a neutrally stratified planetary boundary layer flow. Phys Fluids 11:3235–3249

Macdonald RW (2000) Modelling the mean velocity profile in the urban canopy layer. Boundary-Layer
Meteorol 97:25–45

Macdonald RW, Griffiths RF, Hall DJ (1998) An improved method for estimation of surface roughness of
obstacle arrays. Atmos Environ 32:1857–1864

Macdonald RW, Schofield SC, Slawson PR (2002) Physical modelling of urban roughness using arrays of
regular roughness elements. Water Air Soil Pollut Focus 2:541–554

Marusic I, Kunkel GJ (2003) Streamwise turbulence intensity formulation for flat-plate boundary layers. Phys
Fluids 15:2461–2464

Mason PJ, Thomson DJ (1987) Large-eddy simulation of the neutral static stability planetary boundary layer.
Q J Roy Meteorol Soc 113:413–442

Moeng CH, Sullivan PP (1994) A comparison of shear- and buoyancy-driven planetary boundary layer flows.
J Atmos Sci 51:999–1022

Mulhearn PJ (1978) A wind-tunnel boundary layer study of the effects of a surface roughness change: rough
to smooth. Boundary-Layer Meteorol 15:3–30

Nicholls S, Readings CJ (1979) Aircraft observations of the structure of the lower boundary layer over the
sea. Q J Roy Meteorol Soc 105:785–802

Panofsky HA (1974) The atmospheric boundary layer below 150 meters. Annu Rev Fluid Mech 6:147–177
Pendergrass W, Arya PS (1984) Dispersion in neutral boundary layer over a step change in surface rough-

ness—I. Mean flow and turbulence structure. Atmos Environ 18(7):1267–1279
Perrier M, Butet A (1988) Veine hydraulique du cnrm: fonctionnement en écoulement neutre. Note de travail

de l’etablissement d’etudes et de recherches météorologique n 216, Ministère des Transports et de la
Mer, Direction de la Météorologie Nationale, 54 pp

Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge, 771 pp
Poulos GS et al (2002) Cases-99: a comprehensive investigation of the stable nocturnal boundary layer. Bull

Am Meteorol Soc 83:555–581
Rao K, Wyngaard J, Coté O (1974) The structure of the two dimensional internal boundary layer over a sudden

change of surface roughness. J Atmos Sci 31:738–746
Raupach MR, Thom AS, Edwards I (1980) A wind-tunnel study of turbulent flow close to regularly arrayed

rough surfaces. Boundary-Layer Meteorol 18:373–397
Raupach MR, Antonia RA, Rajagopalan S (1991) Rough-wall boundary layers. Appl Mech Rev 44:1–25
Redelsperger JL, Mahé F, Carlotti P (2001) A simple general subgrid model suitable both for surface layer

and free-stream turbulence. Boundary-Layer Meteorol 101:375–408

123



Experimental Investigation of Turbulent Momentum Transfer 411

Saddoughi SG (1997) Local isotropy in complex turbulent boundary layer at high Reynolds number. J Fluid
Mech 348:201–245

Saddoughi SG, Veeravalli SV (1994) Local isotropy in turbulent boundary layer at high Reynolds number.
J Fluid Mech 268:333–372

Schlichting U, Gersten K (1979) Boundary layer theory, 8th revised and enlarged edition 2000. Springer,
Berlin, 817 pp

Schmidt H, Schumman U (1989) Coherent structure of the convective boundary layer derived from large eddy
simulations. J Fluid Mech 200:511–562

Schultz MP, Flack KA (2007) The rough-wall turbulent boundary layer from the hydraulically smooth to the
fully rough regime. J Fluid Mech 580:381–405

Seity Y, Brousseau P, Malardel S, Hello G, Bénard P, Bouttier F, Lac C, Masson V (2010) The AROME-France
convective scale operational model. Mon Weather Rev. doi:10.1175/2010MWR3425.1

Spalart PR (1988) Direct simulation of a turbulent boundary layer up to rθ = 1410. J Fluid Mech 187:61–98
Taylor GI (1935) Statistical theory of turbulence: parts I–III. Proc Roy Soc Lond A 151:421–464
Tennekes H, Lumley JL (1972) A first course in turbulence. MIT Press, Cambridge, MA, 300 pp
Townsend AA (1966) The flow in a boundary layer after a change in surface roughness. J Fluid Mech 26:

255–266
Townsend AA (1976) The structure of turbulent shear flow. Cambridge University Press, 429 pp
White FM (1991) Viscous fluid flow, 2nd edn. McGraw-Hill International Editions, New York, 614 pp
Wyngaard JC (1992) Atmospheric turbulence. Annu Rev Fluid Mech 24:205–233
Xu D, Taylor PA (1997a) An e − ε turbulence closure scheme for planetary boundary-layer models: the

neutrally stratified case. Boundary-Layer Meteorol 84:247–266
Xu D, Taylor PA (1997b) On turbulence closure constants for atmospheric boundary-layer modelling: neutral

stratification. Boundary-Layer Meteorol 84:267–287
Yaglom AM (1991) Similarity laws for wall turbulence flows. In: Dracos T, Tsinober A (eds) New approaches

and concept in turbulence. Monte Veritá, Birkhauser, 20 pp

123

http://dx.doi.org/10.1175/2010MWR3425.1

	Experimental Investigation of Turbulent Momentum Transfer in a Neutral Boundary Layer over a Rough Surface
	Abstract
	1 Introduction
	2 Experimental Procedure
	2.1 Boundary-Layer Flow Facility
	2.2 Roughness Elements
	2.3 PIV Measurements

	3 Boundary-Layer Development
	3.1 Mean Velocity Field
	3.2 Vertical Development of the Boundary Layer
	3.3 Turbulent Quantities

	4 Normalised Budgets of the Second-Order Turbulent Quantities
	4.1 Turbulent Kinetic Energy Evolution Equation
	4.2 overlineu2 Evolution Equation
	4.3 overlinew2 Evolution Equation
	4.4  The overlineuw Evolution Equation

	5 Length Scales
	5.1 Integral Length Scales
	5.2 Dissipative Length Scales
	5.3 Mixing Length

	6 Conclusion
	Acknowledgments
	References


