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(ABSTRACT) 

Pressure signals were taken on a rotor blade surface of a single-

stage, low-speed axial flow compressor. The data showed unsteady, sta-

tionary pressure perturbations that correlated with the locations of five 

large downstream support struts. In the present work, these data are 

thoroughly analysed. Strut-induced pressure amplitudes as measured on 

the rotor are presented as a function of the downstream strut locations. 

Unsteady lift and moment are calculated by integrating the pressures 

measured by the blade-mounted transducers. In addition, a sequence of 

instantaneous pressure distributions on the blade surfaces presented over 

time shows how the rotor is influenced by the potential effect of the 

struts. The strut is shown to produce a significant effect on rotor flow. 

This effect exceeds the unsteady stator effect at design rotor-stator-

strut spacing, but falls off rapidly as the struts are moved downstream. 
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1.0 INTRODUCTION 

The interaction of thick struts with adjacent components in aircraft 

gas-turbine engines often causes large pressure fluctuations. In the fan 

duct such disturbances are produced by support struts located downstream 

of an axial-flow fan and stator. A similar flow nonuniformity occurs in 

the transition duct between the fan and the high compressor since struts 

are needed for service lines and an accessory drive assembly. These 

struts produce a potential field distortion which commonly extends up-

stream through the stator row to cause unsteady excitation on the fan 

blades and, thus, the threat of vibratory fatigue, acoustic noise, and 

reduced fan performance. The blades can be thickened to avoid fatigue, 

but that adds extra weight. Blade sizes may be optimized with early 

prediction of distortion patterns. An attempt to counter the strut effect 

by varying stator blade cambers (1) encountered problems in manufacturing 

the blades and controlling the flow turning angles. Another strategy 

to minimize the interaction is optimization of relative axial locations 

of fan, stator, and struts. 

The VPI&SU Turbomachinery and Propulsion Research Group has carried 

on an investigation for several years which was designed to provide in-

sight into the fundamental aspects of fan rotor-downstream strut inter-

action with emphasis on the acoustic noise problem. (2,3,4). High 

response, miniature pressure transducers were embedded in the rotor 

blades of an experimental fan rig. Five downstream struts were placed 

in the discharge flow annulus of the single-stage machine and their axial 
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location was varied. Significant interaction of the rotor blade surface 

pressures with the flow disturbance produced by the downstream struts was 

measured. These perturbations exist continually during machine operation 

and are stationary in time and position. They contribute to tone noise 

depending on the strength of the flow response and pressure fluctuations. 

Several numerical procedures for calculating the quasi-steady rotor re-

sponse due to downstream flow obstructions were developed (4). A pre-

liminary comparison of experimental and calculated fluctuating blade 

pressures on the rotor blades shows general agreement between the exper-

imental and calculated values. Although progress has been made as a re-

sult of this effort, there are still areas in which further work is 

needed. 

The overall objective of the program is to further investigate the 

interaction of fan rotor flow with downstream struts. This investigation 

should improve understanding of noise prediction and lead to the devel-

opment of a design-for-noise capability with a data base for use in val-

idating analytical prediction methods and noise-reduction concepts. The 

present program focusses on further analysis of the existing data base 

from previous work. Specific tools are developed for the analyses which 

include calculation of unsteady lift and moment coefficients, spectral 

analysis with phase information, filtering, and presentation of instan-

taneous pressure distributions. 

The struts are shown to produce a significant effect on rotor flow. 

This effect exceeds the stator effect at design rotor-stator-strut spac-

ing, but falls off rapidly as the struts are moved downstream. Although 

this study does not address theoretical modeling, it provides exper-
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imental data for validation of an analytical code, which is currently 

under development as a separate task. 

The report begins with a literature review in chapter 2. A brief 

description of the experiment follows in chapter 3, which includes a 

discussion of the basic dimensions used in the data analysis. The ex-

perimental observations are presented in chapter 4, followed by conclu-

sions in chapter 5. 
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2.0 LITERATURE REVIEW 

Compressor noise gained importance when jet noise was reduced with 

the development of the high bypass ratio jet engine. Its main component 

has been a group of high frequency tones sometimes called "compressor 

screech". Tyler and Sofrin (5) found three main sources of the tones: 

rotor blades cutting upstream stator wakes, rotating rotor blade wakes 

hitting downstream stators, and steady aerodynamic loading of the rotor. 

Working with upstream stators, Hanson (6, 7) split rotor-stator inter-

action into harmonic noise from periodic pulsing and broadband noise from 

random unsteady stator lift caused by rotor turbulence. He noticed that 

ingested inlet turbulence contributed to both types of noise. Through 

experimentation, Savell (8) discovered that tones decreased with in-

creasing rotor-stator spacing until a spacing equal to two rotor chords 

was reached. 

On the downstream side, Barber and Weingold (9) found that thick 

struts caused unsteady forcing on an upstream fan. They adapted the 

Douglas-Neumann method to predict the steady, two-dimensional flowfield 

through multi body cascade geometries. Rubbert, et al. (1) examined 

screening of the strut effect through stator modification. Gallus et al. 

(10) showed that a downstream cascade induces higher lift variations near 

the trailing edge of an upstream cascade. Greitzer (11) reported an in-

crease in pressure disturbances with blade loading and a decrease in 

pressure non-uniformity with distance upstream in a cascade. Using a 

JT15D test engine, Preisser et al. (12) and Schoenster (13) correlated 
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blade-mounted transducer signals and far field noise with the interaction 

of a rotor and six struts located downstream with four rotor axial chords 

of separation. Woodward, et al. (14) conducted an experimental program 

on a JTlSD fan stage and confirmed the significance of rotor-downstream 

support strut interaction. Yokoi, et al. (15) tested a two-stage fan with 

downstream struts and showed that the potential field of these struts 

could induce significant blade vibration in the upstream rotor. Reimers 

(3) increased the rotor-strut spacing and found strut-induced pressures 

to drop off rapidly. Richardson (4) and O'Brien et al. (16) coupled a 

Douglas-Neumann potential flow solution with a time-marching code to 

model the rotor-stator-strut interaction. 

In all of the experimental investigations mentioned above, there have 

been no attempts to calculate the unsteady lift and moment on the fan 

blades resulting from interaction with the downstream struts. Not only 

is such information useful for comparison with theoretical predictions, 

but it is a necessary part of a global integrated rotor response model. 

The present effort focuses on the calculation of unsteady lift and moment 

on the fan blades. Also a design criterion for optimal rotor-strut 

spacing according to experimental data is developed. Finally, the extents 

of unsteadiness caused by rotor/stator and rotor/strut interactions are 

compared. 
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3.0 EXPERIMENT 

The data used for this work were taken from a low-speed axial flow 

research compressor at the VPI&SU turbomachinery research laboratory. 

This section outlines the equipment, instrumentation, and treatment of 

dimensions in the analysis. 

3.1 EQUIPMENT 

A research compressor was fashioned from a General Electric Model 

5GDY34Al axial-flow fan-dynamometer set, used as a single stage rotor and 

stator. Six radial struts across the bell-mouthed inlet support the front 

drive. The compressor hub and tip radii are 157 mm and 229 mm. The rotor 

has 24 RAF-6 propeller sections with four degree twist, 45 degree mid-span 

stagger angle, 0.84 solidity, 1.66 aspect ratio, and 42.9 mm aerodynamic 

chord. 37 stators are located 33 mm behind the rotor trailing edge with 

eight degree twist, 27 degree turning angle, 15 degree mid-span stagger 

angle, 1.36 solidity, and 1.58 aspect ratio. 

Moving downstream, the 990 mm discharge annulus contains five NACA 

0021 uncambered airfoils with 165 mm chord and 34 mm width (thickness) 

installed as radial struts. Spaced evenly around the circumference, the 

struts are placed at a uniform but moveable axial location. This test 

program used axial locations of 119, 140, 165, and 254 mm (3.50, 4.12, 

4.85, and 7.47 strut widths) behind the rotor trailing edge, as shown in 

Fig. 1. They'. are correspondingly referred to as strut positions 1, 1.5, 
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2, and 3, with the additional position 0 (zero) indicating the absence 

of struts. The first and nearest location corresponds to that in a JT-15D 

engine. The maximum distance (position 3) was set for a negligible dif-

ference with the no-strut case. A cubic plenum follows the discharge 

annulus, with an adjustable valve for air flow regulation leading to the 

long exhaust duct. 

3.2 DATA ACQUISITION 

Pressures were measured along the rotor blade surface by miniature 

Kulite strain guage pressure transducers with a 10 kHz frequency response. 

Six transducers are located on the pressure surface at 50 percent span 

at chord positions 10, 25, 40, 55, 70, and 85 percent. Another six are 

on the suction side of another blade with the same chord positions; 12 

more transducers were similarly mounted at 85 percent span on two more 

blades (Figs. 2,3). Instrumentation limitations allowed measurement of 

only the ac component of the fluctuating pressure. No absolute de level 

of the pressure on the blade was recorded during the experiment. The 

circuitry and calibration procedure are available in Reimers (3). All 

analog data recorded on tapes were digitized and transferred to the com-

puters at VPI&SU for digital analysis (17, 18). 

During testing, the compressor was run at a constant speed of 2900 

rpm, which corresponds with a tip speed of 69.4 m/s. Separate data sets 

were made at two stall margins: 15 percent (Cx/UT = 0.48), and 35 percent 

The stall margin is set by adjusting the downstream 

throttle which controls ·the mass flow rate through the machine. 
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Figure 3. Rotor Blade Transducer Mounting for Suction Side Measure-
ments at 85% Span (from Ref. 3; not to scale) 
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3.3 TREATMENT OF DIMENSIONS 

The actual measured units in time, frequency, length, and pressure 

are difficult to visualize relative to machine geometry, so they have been 

converted to units which convey significant concepts more easily. The 

conversions are discussed in this section. 

The significant units of time are the digitization sample increments 

and the duration of one shaft revolution. The numbers in fractions of 

seconds are difficult to compare. However, one shaft revolution contains 

360 sample increments, so that one increment may be related to one degree 

of the rotor angle. One revolution contains 360 degrees, and five equally 

spaced struts would occur every 72 degrees. Therefore, all time axes are 

reported in degrees of rotor angle. 

The rotor shaft speed of 2900 rpm is equivalent to 48.33 Hz. As a 

rotor blade passes some number of objects (struts or stators) during one 

cycle it will experience that number of disturbances. If the objects are 

equally spaced circumferentially, they will produce a frequency of dis-

turbance which is a multiple of the rotor speed. If the rotor speed is 

defined as harmonic one, then object harmonics are readily conceived in-

tegers which equal the numbers of each object. For example, six upstream 

struts cause the sixth harmonic with a frequency of 6x48. 33=290 Hz. 

Frequency axes in this report are labeled machine order, which is the 

harmonic of the rotor speed. 

The distance on a rotor blade from its leading edge to its trailing 

edge is defined as one aerodynamic chord length, which in this case is 

42.9 mm. Axes showing distance along_ the chord from the blade leading 
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edge are labeled as percent of chord. Different strut-rotor spacings are 

measured in number of strut thicknesses from the rotor trailing edge to 

the strut leading edge. 

Pressure, force, and moment have been non-dimensionalized. Pressure, 

available in pascals, is non-dimensionalized by dynamic pressure to give 

a coefficient of pressure, Cp: 

2 Cp = pressure/(0.SxpxUT) 

where p is the fluid density (1.265 Kg/m3 for air at 1 atm and 300 K), 

and UT is the tip speed of the blade (69.4 m/s). Lift is computed in force 

per unit length of span, which is non-dimensionalized by dynamic pressure 

and rotor chord to give the lift coefficient CL. Similarly, moment in 

torque per length is non-dimensionalized by dynamic pressure and chord 

squared. 

2 2 CM= moment/(0.SpUT xchord) 

For graphs the in frequency domain, these coefficients are simple ampli-

tudes (not power or amplitude squared). The vertical axis is labelled 
4 such that CLxl0 indicates that a value read from that axis is 1000 times 

the true value. Thus, if the axis reads two, the lift coefficient is 

2/1000 or 0.002. 
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In the next section the results of data analysis will be presented, 

with both experimental observations and discussion. 
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4.0 EXPERIMENTAL OBSERVATIONS AND DISCUSSION 

4.1 ANALYSIS TECHNIQUE AND SAMPLE DATA 

Meaningful information is easily hidden in large amounts of noisy 

data. An array of tools has been developed to extract such information. 

Specifically, ensemble averaging reduces random background fluctuation, 

Fourier transformation displays frequency contents, and filtering en-

hances frequencies of particular interest. Unfortunately, these tools 

often exhibit unexpected behavior and require thorough examination and 

testing before use. Appendices A and B address specific routines used 

for digital Fourier transformation and filtering. 

The first tool applied to all data is ensemble averaging. The data 

are assumed to be stationary and periodic with a fundamental period of 

one rotor revolution. They contain various harmonics of this fundamental 

plus random high frequency fluctuation. The machine was run at 2900 rpm, 

or 48. 33 Hz, which will be referred to as the fundamental, the first 

harmonic, or machine order one for simplicity. When many cycles of data 

are averaged together point by point over time, random fluctuations are 

smoothed out in the resulting data set. Two hundred cycles are used for 

ensemble averaging with the equation: 

k=l,2, ... ,360 

where N cycles are averaged for each rotor angle, Bk. Figures 4-7 show 

sample raw data plots for 50% span, 15% stall margin for strut location 
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one and for no strut. Random high frequency fluctuations mask the useful 

information in these plots. Figs. 8-11 show corresponding samples after 

averaging. The five-per-rev strut disturbance can be seen clearly in 

Figs. 8 and 9 but is missing in Figs. 10 and 11, which resulted from tests 

without the struts. In addition, all four figures (8-11) show the 

37-per-rev stator disturbance superimposed on the pressure fluctuation. 

The remaining frequency content is then displayed by performing a 

digital Fourier transformation of a set of averaged data, which produces 

a set of complex coefficients. These are converted to an amplitude and 

phase component at each frequency. Figure 12 demonstrates the effects 

of averaging and Fourier transformation on the pressure side, 50% span, 

15% stall margin, 10% chord data set for strut location one. Notable 

components appear at harmonics 1, 5, 6, and 37, which correspond to the 

once-per-rev background disturbance, the five downstream struts, the six 

upstream struts, and the 37 stator blades. It is expected that some 

five-per-rev signal may result from uncontrollable background disturb-

ance, so test cases with no struts were included for comparison. This 

no-strut component can be subtracted from those cases with struts to give 

net components due to the struts alone. However, a difference in phase 

must be accounted for, so this subtraction is done in the complex domain 

(vectorially). 

To examine the effect of a particular frequency in time domain, a 

digital band-pass filter can be used to filter out all frequencies except 

for those of interest. This technique was used to retain the fifth har-

monic for the instantaneous pressure distributions shown later (section 

4.4). Appendix 2 presents the filter used. Figure 13 shows the effect 
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of band-pass filtering on the pressure side, 50% span, 15% stall, 10% 

chord data set. 

4.2 STRUT-INDUCED PRESSURE AMPLITUDES 

Having a primary concern with the effect of the five downstream 

struts, we must examine fifth ha:r:monic data more closely. In Figs. 14 

and 15, fifth harmonic pressure amplitudes from the Fourier transformed 

data for 15% and 35% stall margins are compiled at 50% and 85% span. Each 

plot shows pressure coefficient amplitudes versus percent chord for each 

strut location. The behavior on the suction surface appears less well 

behaved. Shaffer (19) shows more turbulent flow patterns near a blade 

suction surface. The strong signal at 85% span on the suction surface 

may result from wall boundary layer effects. 

Notice that some fifth order signal occurs even when there is no 

strut. This indicates the magnitude of background disturbance resulting 

from uncontrollable factors in the lab. To remove this disturbance, each 

strut value has its corresponding no-strut value subtracted from it. 

Since phases can differ, phase information must be accounted for in the 

calculation. This is most easily done by subtracting the original complex 

coefficients before converting them to amplitude and phase. These values 

give net strut effect plots as shown in Figs. 16 and 17. The shapes are 

still similar to those in Figs. 14 and 15, but the magnitudes are lower. 

Therefore, the struts have less effect than that indicated by the un-

processed data. A complete set of pressure data is available from the 

author. 
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4.3 UNSTEADY LIFT AND MOMENT CALCULATION 

A rotor blade experiences varying lift and moment as the surrounding 

pressure distribution changes. Lift can be calculated by integrating the 

pressure over the blade area. Lift per unit span is obtained by summing 

the product of pressure difference and incremental distance along the 

chord. 

L = L (P.-S.) ~A. 1 1 1 i 

where i denotes chord position (there are six), P and S stand for pres-

sures on the blade pressure and suction sides, and ~A is the differential 

area associated with each transducer. Each pressure can be separated into 

two components: steady-state (de), and time-varying (de): 

P(t) 

S(t) 

Therefore 

L(t) 

= Pd + p (t) , c ac 

= Sd + S (t) . c ac 

= L (P-S)d . 8A. + L (P(t)-S(t)) . tA. 
i c,1 i i ac,1 i 

= Ld +L (t) . c ac 
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Since the data were not referenced or zeroed, the steady (de) part cannot 

be determined. However, the fluctuating (ac) part can be isolated by 

referencing the data to zero over large time. This ac component is the 

subject of analysis here, and it is used to give fluctuating lift and 

moment. So the equation for unsteady lift is simplified to 

The unsteady moment calculation is similar, but it requires a 

moment-arm. The moment-arm is referenced to the blade quarter-chord: 

the point 1/4 chord length behind the leading edge. 

M(t) = l: x. (P-S)d . /J.A. + l: x. (P(t)-S(t)) . !:,.A. i 1 c,1 1 i 1 ac,1 1 

And we use 

= Md + M (t) . c ac 

M (t) = l: x.(P (t)-S (t)). !:,.A, ac . 1 ac ac 1 1 
1 

A question arises concerning the precision of the six-point inte-

gration and the treatment of the leading and trailing edges. The inte-

gration is refined by using a 16-point spline fit across the chord. The 

pressures on the top and bottom blade surfaces are assumed to match at 

the leading and trailing edges so that their difference is zero. For 

spline fitting, that value is chosen midway between the nearest measured 
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pressure and suction surface pressures. A 40-point spline produced re-

sults comparable to the 16-point spline, while both differed up to 10 

percent from the 6-point fit, so the 16-point spline was considered suf-

ficient. (See appendix C for detail.) 

The time-domain lift data for each stall margin/blade span permutation 

are shown in Figs. 18-21, which each contain five plots for the five strut 

locations tested. The corresponding lift frequency spectra are given in 

Figs. 22-25. These are followed by the time-domain moment data (Figs. 

26-29) and the moment frequency spectra (Figs. 30-33). There is wide 

variation in the fundamental (once per rev) so that it appears independent 

of stall margin and strut location, although it is more pronounced in 85% 

span tests. This first harmonic is generally attributed to random room 

disturbances and possible shaft vibration. 

third harmonic. 

It is often echoed by the 

The next strong harmonic is the fifth, which correlates with the five 

downstream struts. It appears to decrease exponentially with the struts' 

axial distance behind the rotor, as seen on the solid lines in Figs. 34 

and 35 (for 15% and 35% stall margins). These plots show lift and moment 

values versus axial separation in multiples of strut thickness between 

the rotor trailing edge and the strut leading edge. The solid curves were 

fit with exponential functions of the form y=exp(a+bx). The lift and 

moment amplitudes were obtained from the frequency spectra of Figs. 22-25 

and 30-33. In all fifth order cases, the levels drop rapidly up to 5 strut 

thicknesses (170 mm) with the rate of change becoming negligible after 6 

strut width~ (204 mm). Therefore, given the available space, a 

6-strut-width spread between rotor and strut would effectively reduce the 
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rotor-strut interaction to insignificant levels, while 5 widths would 

reduce the interaction by over 50% from the design location of 3.50 widths 

(119 mm). 

The similarity of the 50% and 85% span curves in Figs. 34 and 35 imply 

that the assumption of two-dimensionality is valid for the fifth order 

strut effects. This is an important simplification for analytical and 

theoretical studies. 

Adjacent to the fifth order effect in Figs. 22-25 and 30-33 is the 

sixth harmonic resulting from the six upstream struts. It rises at 85% 

span, and it appears insensitive to stall margin and strut location. 

The final significant harmonic is the 37th, caused by the 37 stator 

blades. It increases with stall margin and drops at 85% span. The 37th 

levels appear nearly constant with strut location, as shown by the dashed 

lines in Figs. 34 and 35. These curves were fit using a linear regression 

of the form y=a+bx. 

An important observation is evident in these plots: the fifth har-

monic amplitude is not only in the same range as the 37th, but it exceeds 

the 37th at the design strut location (3.50 strut thicknesses). However, 

this strut effect (5th order) falls below the stator effect (37th order) 

as the struts approach 5 thicknesses separation. 
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4.4 INSTANTANEOUS PERTURBATION PRESSURE DISTRIBUTIONS 

The use of filtering and spline fitting make possible visual imaging 

of the perturbation effect of specific frequency components on the pres-

sure distribution over the blade. Without filtering, several frequencies 

interact so that the pictures are complex beyond comprehension. But 

filtering can isolate the effect of a particular frequency. The filter 

was set to pass the fifth harmonic and stop those below 4.5 and those 

above 5.5. Now the fifth order becomes the fundamental, and the same 

perturbation pressure distribution appears every one/fifth revolution or 

72 degrees. Figure 36 shows distributions of pressure perturbations at 

five equally-spaced rotor angles before filtering for the 50% span, 15% 

stall, strut location one, pressure-side data set. These plots are re-

peated after filtering in Fig. 37. The effect of filtering can be seen 

by comparing Figs. 36 and 37. Notice the repeating pressure distribution 

on the blade surfaces at every 72 degree increment in Fig. 37. These 

angles are equivalent relative to the five circumferential strut lo-

cations. 

A series of pressure perturbation distribution plots in time shows 

the progression of the downstream strut disturbance across the blade 

chord. Such a series is examined for the 50% span, 15% stall, pressure 

side data set, first at strut location one in Fig. 38, then with no strut 

in Fig. 39. The rotor angle is incremented by six degrees from zero to 

72, covering one-fifth rotor revolution and one complete strut passing. 

Looking more closely at Fig. 38, one can follow the propagation of one 

cycle of the strut passage: the rotor blade encounters the strut dis-
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turbance just after angle 54 where the suction side coefficient exceeds 

the pressure side coefficient. As the leading edge of the blade enters 

the disturbance, its pressure side level rises above the suction side 

pressure (angle 60). The pressure wave moves back along the chord on the 

pressure side, followed by increased pressures on the suction side at 

angles 66, 72, and 6. The high pressure levels on both surfaces at angles 

12 and 18 indicate the peak of the disturbance. The rotor starts to pass 

out of the strut disturbance after angle 18 and pressure on the pressure 

side falls below that on the suction side, starting with the leading edge 

and moving along the chord (angles 24 to 42). The blade is between struts 

at angle 48 where the pressures are low on both sides. Then a new cycle 

begins with rotor angle 54. Notice how the whole distribution rises and 

falls, reaching maxima at angle 18 and minima near angle 54. Some five-

per-rev cycling is also evident in Fig. 39 without the strut, but there 

is no propagation down the chord and the whole distribution remains cen-

tered at zero rather than rising and falling as before. 
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5.0 CONCLUSIONS AND RECOMMENDATIONS 

The significant effect of the upstream potential field of a strut on 

rotor blade passage was confirmed and shown to be larger than the stator 

effect at design rotor-stator-strut spacing. After removing unavoidable 

background disturbances, this rotor-strut interaction was found to be 

somewhat less than that indicated by the original data. Further inves-

tigation revealed an exponential relationship between strut-rotor inter-

action and spacing so that the interaction reduces considerably with an 

increase in axial separation to 5 strut thicknesses between the rotor 

trailing edge and the strut leading edge, thereby decreasing the noise 

level and rotor fatigue. The potential effect due to the strut becomes 

negligible after 6 widths separation. Also, the similarity between 50% 

and ~5% span data characteristics indicates two-dimensionality of the 

flow. In addition, a technique has been developed to visualize rotor 

blade pressure distributions as they change with rotor angle over time., 

A flow disturbance can be seen to propagate down the chord as the blade 

passes through the disturbance. 

For further study, it would be interesting to vary the stator location 

relative to rotor and strut to see how it would affect both rotor-stator 

interaction and rotor-strut interaction. Also, instrumentation of the 

struts might reveal correlations between rotor and strut unsteady pres-

sures. Finally, thorough comparison with an analytical model is needed 

as well as observation of the steady pressure field. 
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APPENDIX A. FOURIER TRANSFORM STUDY 

360 Versus 512 (29) Data Points: For examination of frequency content, 

time-domain data must be transformed to frequency domain. Current fast 

Fourier transform algorithms (FFTs) are most easily used on data which 

n is periodic in groups of a power of two (2 ). The data available has its 

fundamental period in 360 points. When using an FFT on a group of data 

whose number is not a power of 2, accuracy and resolution often come into 

question. The frequency spectrum of a cosine wave broken into 360 points 

was compared with the same using 512 points. Peak amplitudes, resolution, 

and leakage (noise) were checked. The amplitudes and resolutions matched, 

and neither case showed any leakage. Therefore 360 and 512 data points 

per cycle produce the same results and a power of 2 is not required. 

Figures 40 and 41 show input cosine waves and resulting frequency spectra 

using 360 and 512 points per cycle. 

Magnitude: Fourier transformation produces complex numbers X(w) from 

which magnitudes are calculated using: 

Amp 2 2 = sqrt(Re (X(w))+Im (X(w))) . 

Figure 42 is a sample plot of pressure magnitude coefficient versus ma-

chine order. 

The case with no struts was run as a control to show the background 

frequency spectrum in the test equipment. This spectrum can be removed 

Appendix A. Fourier Transform Study 59 



.; 

0 
0 

N 

0 
0 

-
u.J 
0 
::lo 
1-0 
-c:i 
...J 
0.... 
:>: 
a:o 

7 

0 
0 

"' ' 

0 
0 

"' DD 

"' "' 

0 
0 

"' ,... 
u.J. ao 
:::) .... 
..Jo o.....,., 
:>:. 
a:o 

"' "' 
0 

0 
0 

I 

I I 

1f I 

I I II \ 
I 

60. OD OD DD 2~0.0D 3DD. OD 
TIME !360 UNITS= l SECJ 

ID.OD OD 30. OD ~O. DD 50. GD SD 
FREQUENCY !Hll 

y = cos(2vx/360)+cos(5*2vx/360)+cos(37*2vx/360) 

Figure 40. Time and Frequency Spectra of Cosine Waves: 360 Points 
per Cycle 

Appendix A. Fourier Transform Study 60 



..; 

0 
0 

1! 
N 

0 ! 0 
..: 

llJ 
0 

' I ::lo ,-..o 
-c:i 
..J a.. 
4 
CI:o 

I 
7 

0 

I 0 
N 

' 

0 
0 
..; 
'o.oo 85.33 170.67 256.00 3ijl. 33 ij26.67 512 TIME C5!2 UNITS= I SEC! 

"' "! -
0 
0 

"' 

I 

,... 
LJ.J. 
00 
:::i .... -..Jo a...,, 
4• 
a:o 

"' t\j 

0 

0 
0 

~-00 10.00 20.00 30. 00 ~o.oo so.co 60 FREQUENCY (HZl 

y = cos(2nx/512)+cos(5*2nx/512)+cos(37*2nx/512) 

Figure 41. Time and Frequency Spectra of Cosine Waves: 512 Points 
per Cycle 

Appendix A. Fourier Transform Study 61 



from the strut cases with a complex difference of the X(w)'s at each w. 

Then the net magnitudes are computed as above on these differences. 
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Figure 42. Sample Frequency Spectrum Plot of Pressure Magnitude 

Phase Angle: The FFT routine was tested with a single period cosine wave 

broken into 360 points, the window size. Additional functions had 5 and 

37 periods in the window. Input amplitudes were varied and checked on 

output, successfully. Phases did not fare so well. They were off by an 

amount relative to their frequencies. 

periodic functions, Newland shows (20): 

co 
X(w) = r xko(w-2Tik/T) 

k=-co 
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11611 cuts on at (2irk/T), thus shifting the phase by that amount. For the 

application used here (IMSL routine FFTRC) :o 

refers to time-domain data, 

X(w) is the complex value of the fourier transform at w, 

21T = 360°, 

k = I-1, 

T = NPTS/NCY (360), 

so the output phase can be corrected. Thus: 

Phase= arctan(Im(X(w))/Re(X(w))) - 360(!-l)NCY/NPTS . 

This shift can be ignored when summing complex numbers at a given fre-

quency because all are shifted by the same phase. Figure 43 is a sample 

plot of phase versus machine order. 

Phase plots are noisy and unreadable because all frequencies have some 

phase, no matter how small their amplitude. To make these more readable, 

frequencies below a chosen amplitude can be set to zero, or filtered out. 

A filtered phase plot is shown in Fig. 44. 

Appendix A. Fourier Transform Study 63 



<• ,u 

0 
0 

0 

"'o' ... _;=: I 
I.I.Jo 
ex;"; 
<..:) 
1.1.J 
oo 

0 

-0 I~ . " 
lJ_/l., 

I/ I ! ! f I I ~~l~ii\y \•ti'\ <fl-;" 
a: If 11' 
r 
a..o 

0 

0 ,,. 
';' 

0 
0 

0 

'a. oo 20. (_1(1 40. 00 50.00 ea. no 100.00 12(1.(l(J 140.GO : ~Q. QC• 
MACHINE ORDER 

Figure 43. Sample Frequency Spectrum Plot of Pressure Phase 

0 
a) 

0 
0 

0 
(f):::J' 

lJ...J 
lJ...J 
a:: 
(.Jo 
lJ...Jo 

0 

lJ...J 
(f)o a:o ::c • 
a_~ 

I 

C> 
0 

0 

--------- ·----

<0+-----.-----.------r-----,-----,-----, 'o.oo 20.00 60.00 so.oo ,oo.oo 120 
MACHINE ORDER 

IE(• 

Figure 44. Sample Frequency Spectrum Plot of Pressure Phase, Fil-
tered 

Appendix A. Fourier Transform Study 64 



APPENDIX B. FILTER 

The digital filter used is a frequency impulse response (FIR) linear 

phase filt~r developed in reference 21. A desired filter shape is input 

to the filter program which creates a set of weighting coefficients (bk). 

These are convoluted (22) with the time-domain data (x) to produce the 

filtered set (y): 

Fourier transformation of the coefficients reveals the actual filter 

shape (Fig. 45). Higher precision and smoothness require a higher span 

(2N) and thus geometrically higher cost. 

A large span, N=360, is used for this application because high re-

solution is required: the fifth order is passed (retained), and all 

others are stopped on a scale of 1 to 180. Specifically, two stopbands 

were set: 0.0-3.2 and 6.0-180.0. The passband was 4.8-5.2. All three 

bands had a weighting of one. This produced a gain of 97.2, which can 

be removed in the convolution. To aid filter efficiency, the transition 

bands (3.2-4.8 and 5.2-6.0) were made as large as possible without in-

cluding significant harmonics. 

Appendix B. Filter 65 



l.D 

o.e 

0.6 

AMPLITUDE 
0.11 

D. 

20 

D 

-20 

LCIG 
AMPLITUDE 

-110 

-60 

20 60 80 JOO 120 160 JBD 
MACHINE CIRDER 

-BD-t-----.-----.-----.-------.---,-----,----.-----.-----, 
0 20 60 BO JOO 120 1110 ]60 lBD 

MACHINE CIRDER 

Figure 45. Digital filter shape for fifth order enhancement 

Appendix B. Filter 66 



APPENDIX C. INTEGRATION WITH SPLINE FITTING 

Integration is performed using a trapezoid rule on n equally spaced 

points. In the following equations P, S, L, and M refer to ac components 

of the pressure side pressure, suction side pressure, lift, and moment 

although the subscripts are not shown. (See Fig. 46 for geometry.) 

n-1 
L = aAi[O.S(P-S) 1 + E (P-S). + O.S(P-S) ] 

i=2 1 n 

A n-1 
= n-l E (P.-S.) 

i=2 1 1 

P -S = 0 at the leading and trailing edges, and the 
n n 

area increment aA. = A/(n-1) 
1 

n-1 
M = aA.[0.5(P-S) 1x + E (P-S).x. + O.S(P-S) x] , 

1 cm 1 1 n n 

A= (n-1) aA. 
1 

P -s = 0 n n 

x. = x Ci-1) aA. 
1 cm 1 

= x - (i-1)( A) cm n-1 

i=2 

so 

n-1 
M = n~l E (P.-S.)[x -(i-1)( Al)] i= 2 1 1 cm n-
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