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A series of flow experiments were performed on matched fractures to study the problem of non-Darcy flow in fractured media. Five
rock fractures of different roughness were generated using indirect tensile tests, and their surface topographies were measured using
a stereo topometric scanning system. The fracture was assumed to be a self-affine surface, and its roughness and anisotropy were
quantified by the fractal dimension. According to the flow tortuosity effect, the nonlinear flow was characterized by hydraulic
tortuosity and surface tortuosity power law relationships based on Forchheimer’s law. Fracture seepage experiments conducted
with two injection directions (0° and 90°) showed that Forchheimer’s law described the nonlinear flow well. Both the proposed
model and Chen’s double-parameter model gave similar results to the experiment, but the match was closer with the proposed
model. On this basis, a new formula for the critical Reynolds number is proposed, which serves to distinguish linear flow and
Forchheimer flow.

1. Introduction

A long history of geological and human activities has caused
most rock masses to be cut by a large number of faults and
fractures [1–5]. These discontinuities form the main chan-
nels for groundwater flow, which control the permeability
characteristics of the rock mass. In the study of rock mass
hydrology, discontinuities are usually generalized into two
smooth parallel plates, and the famous cubic law is hence
obtained through theory and experiment. A variety of correc-
tion models [6–11] has been proposed to account for fracture
roughness, contact, or filling.

Some engineering projects involve a high hydraulic gra-
dient, for example, dam construction in the deep weak over-
burden of a river valley, exploitation of low-permeability oil

and gas wells, and coal mine gas outbursts [12–16]. Under
this condition, fluid flow through fractures is not linear,
and the use of the cubic law or related modified models
would cause large deviations. The well-known Forchheimer
law is used to describe this flow behavior:

∇P = AQ + BQ2
, 1

where ∇P is the pressure gradient between the inlet and out-
let of the fracture, Q is the flow rate through the fracture, and
A and B are the coefficients of viscosity and inertia, respec-
tively. Zimmerman et al. [17] observed the Forchheimer flow
phenomena of rough fractures when the Reynolds number
Re > 20 through experiments and numerical methods. Zhang
and Nemcik [18] discussed the linear and nonlinear flow
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characteristics of rough fractures under different confining
pressures. Zhou et al. [19] explained the physical significance
of the Forchheimer flow coefficients A and B and the internal
transition mechanism on the basis of water pressure tests
under different confining pressures. However, the effects of
fracture roughness on flow were not explained in detail. Jin
et al. (2013) pointed out that the influence of a rough geom-
etry on fracture flow is manifested in three aspects: the fric-
tional effect in the fluid, the tortuous effect of the fracture
surface, and a local roughness effect. Tsang [20] considered
that the roughness of the fracture surface would lead to flow
tortuosity, and Xiao et al. [21] introduced a tortuosity factor
to describe the tortuosity of flow. Watanabe et al. [22] carried
out fluid flow experiments in fractures with shear displace-
ments and found that the nonlinear flow effect decreases as
shear increases.

Fractal geometrywasfirst put forwardbyB.B.Mandelbrot.
Xie and Wang [23] introduced it into the description of
fracture roughness and then used it to describe fluid flow
characteristics at rock fracture surfaces. Murata and Saito
[24] studied the influence of fractal parameters on the tortu-
osity effect, and Wang et al. [25] put forward a flow model
using fractal parameters. Ju et al. [26] carried out flow exper-
iments on rough single fractures with different fractal
dimensions. These flow tests clarified the influence of a
rough structure on seepage flow. Develi and Babadagli [27]
carried out saturated seepage tests on seven kinds of artifi-
cial tensional fracture surfaces, describing the roughness of
the fractures by means of the fractal dimension and discuss-
ing the influences of roughness, anisotropy, and normal
stress on seepage characteristics.

In this paper, a nonlinear fractal model for rough frac-
tures is deduced based on the tortuous effect and the self-
affine fractal characteristics of the fracture surface. The law
and anisotropy of Forchheimer flow are analyzed, and the
new model is verified by seepage tests.

2. Nonlinear Fractal Model for Rough-Walled
Rock Fractures

Forchheimer’s law is composed of a linear part AQ and a

nonlinear part BQ2. When the flow rate is low, a cubic law
can be used to describe the relationship of the flow rate and
pressure. Hence, A can be expressed as

A =
12μ

we3h
, 2

where μ is the dynamic coefficient of viscosity of the fluid and
w is the width of the fracture. eh is the hydraulic aperture,

which can be calculated as eh = 12μQ/w/▽P 1/3.
The coefficient B represents the degree that the seep-

age curve deviates from that in the linear stage. Schrauf
and Evans [28] put forward a form of B using dimen-
sional analysis:

B = bD
ρ

e3hw
2
, 3

where ρ is the fluid density and bD is a parameter related
to the roughness of the fracture surface. Chen et al. [6]
used the peak asperity height to describe fracture rough-
ness and obtained a two-parameter model for bD:

bD = a
ξ

2eh

b

, 4

where a and b are fitting parameters, respectively. How-
ever, the peak asperity height does not account for flow
tortuosity and anisotropy. Chen et al. [6] also used
numerical simulation to study non-Darcy behavior in frac-
ture flow. The results showed that the rougher the surface
was, the more tortuous the flow would be, and eddy cur-
rents and recirculation would occur at high velocity,
which would increase the inertial resistance. In order to
characterize the effect of flow tortuosity, the following
power law relations are proposed by Murata and Saito
[24] and Ji et al. (2015):

bD = cτaτbs , 5

where a, b, and c are fitting parameters. τ is the hydrolog-
ical curvature, which is defined as the ratio of the actual
length Lt of the seepage path to the horizontal length Lc
along the pressure gradient of the fracture. τs is the curva-
ture of the surface, which is defined as the ratio of the
surface area to the projection area of the fracture surface.

For fractal fractures, the relationship between measure
F δ and measurement scale δ is as follows:

F δ = F0δ
α, 6

where α is a parameter related to the fractal dimension D and
D is in the range 1-3. F0 is the apparent measurement. Based
on this, the relationship between the fracture surface area As

and a square mesh with dimension δ1 is as follows:

As = F1δ
2−Ds
1 , 7

where Ds is the fractal dimension of the fracture area. For a
square fracture, when δ1 is equal to Lc and equation (7) is
substituted into As Lc = Ac, F1 can be obtained as follows:

F1 = Ac
Ds/2 8

Hence, τs can be obtained:

τs =
As δ1
Ac

=
δ21
Ac

2−Ds

9

In addition, the fractal relationship of the length of the
seepage path Lt and measure δ2 is as follows:

Lt δ2 = F2δ
1−DT
2 , 10
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where DT is the fractal dimension of the seepage path.
When δ2 is equal to Lc and equation (10) is substituted into
Lt Lc = Lc, F2 can be obtained as

F2 = LDT
c 11

Hence, τ can be obtained:

τ =
Lt δ2
Lc

=
δ2
Lc

1−DT

12

Mandelbrot, the founder of fractal theory, suggested
that the fractal dimension of the surface could be calcu-
lated by adding the dimension of a surface profile to 1.
Therefore, the relationship between the fractal dimension
of the profile length and the fractal dimension of the area
is as follows:

Ds =Dl + 1 13

Jin et al. [29] considered Dl as equal to DT . Hence, bD
can be obtained by substituting equation (9) and equation
(12) into equation (5):

bD = c
δ2
Lc

a 1−Dl δ21
Ac

b 1−Dl

14

When δ1 and δ2 are eh, equation (1) becomes

bD = c
eh
Lc

a+b 1−Dl

15

Hence, a new model of parameter B in Forchheimer’s
law can be obtained:

B = a
eh
Lc

b 1−Dl ρ

e3hw
2
, 16

where a and b are constants that can be determined with
fracture permeability tests. Firstly, the fractal dimension is
calculated from fracture surface data. The curve relating
flow to pressure gradient is then obtained through fracture
permeability tests, and this is used to obtain a and b.

3. Fracture Surface Measurement

3.1. Rock Fracture Preparation. The effect of fracture surface
roughness on fluid flow was studied by way of saturated seep-
age tests of rock fracture surfaces of different roughness. A
natural fracture surface is difficult to obtain, so artificial ten-
sion fracture specimens were used to study the characteristics
of fluid flow in fractures. In this study, natural granite
selected from a quarry in Sichuan Province was processed
into 150mm × 150mm × 150mm square specimens in the
laboratory, and then, the specimens were split using the
Brazilian splitting test method to obtain artificial tensional

joint specimens. Finally, five groups of fracture surfaces (F1,
F2, F3, F4, and F5) with different roughness were prepared.

3.2. Measurement Procedure. A portable 3D optical three-
dimensional scanning system was used to measure the
three-dimensional morphology of the fracture surface
(Figure 1). The system broadly comprises a scanning control
unit, scanning lens, turn table, and tripod. The scanning lens
is placed on the tripod, which can rotate freely and adjust its
position conveniently. The other components are connected
via USB. The system acquires a visible grating image pro-
jected onto the surface of the object then accurately deter-
mines the spatial coordinates (X, Y , Z) of each point using
the phase and triangulation methods according to the shape
of fringe curvature change, forming a three-dimensional
point cloud data. This approach has the benefits of being
fast, high precision (measuring accuracy 25 μm), and allow-
ing noncontact measurement.

In the actual measurement process, features of the mea-
surement environment (light, dust, etc.) and the measure-
ment methods will have an impact on the accuracy of the
three-dimensional topographic data. Therefore, after acquir-
ing the three-dimensional data for a fracture surface, the
point cloud data were processed by using the self-contained
software CloudForm to reduce noise, remove irrelevant
points, filter data ripples, and patch. Additionally, the
original point cloud of the fracture surface is composed of
hundreds of thousands of discrete points with an average
spacing of 0.025mm, which amount to a huge amount of dis-
ordered data. Data analysis was facilitated by compiling the
program with MATLAB software to delete and reorder the
measured points. The newly obtained fracture surface has a
total of 22801 points at an average spacing of 1mm. The
measured topographic parameters of the fracture surfaces
shown in Figure 2 are listed in Table 1.

4. Calculation of Fractal Dimension

There are many methods for calculating the fractal dimen-
sion of a rough fracture surface. Clarke [30] first proposed

Fracture specimen

Rotary table

Figure 1: Stereo topometric scanning system.
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Figure 2: Surfaces topographies of fractures (lower surfaces).

Table 1: Geometrical details of fractures.

Specimen Length L (mm) Width w (mm) Peak asperity height ξ (mm) Variance Rrms (mm2) Average Rm (mm) JRC

F1 149.9 150.1 3.74 2.06 1.58 11.3

F2 150.1 150.0 3.65 2.07 1.55 11.0

F3 150.1 150.1 3.97 4.14 3.52 12.8

F4 150.2 149.9 4.89 5.16 4.39 16.9

F5 150.1 149.9 3.27 3.87 3.29 13.9
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the triangular prism surface area method, which takes the
spatial surface area as the variable and a square grid as
the measure scale. Later, Xie and Wang [23] proposed a
projection coverage method. These two methods can be cat-
egorized as driver methods. The dimension calculated by
these two methods is a similar fractal dimension, not a geo-
metric fractal dimension. Zhou et al. [19] proposed box-
counting methods for calculating the fractal dimension of a
three-dimensional surface, including a cube coverage method
and an improved cube coverage method. The above compu-
tational theories are based on statistical self-similarity. How-
ever, Brown [31] and Kulatilake et al. [32, 33] argue that
rough rock fracture surfaces conform to the characteristics
of a self-affine model.

Kulatilake et al. [32] put forward a variogram method
as a self-affine model to determine the fractal dimension.
This takes the variogram function 2γ x, h of the profile as
a variable and the interval distance h as the measure scale.

The detailed method is as follows:

Step 1.Generation of two-dimensional contour data in differ-
ent directions. Firstly, the fracture surface data are meshed
into 1mm × 1mm grids. 2D profiles are divided from the
fracture surface data in accordance with the directions θ =
15 × k k = 1, 2,⋯, 11 . The height data Z x, y of a direc-
tional line is then calculated. The height data ZQ of the coor-

dinate Q x, y is found on the 15-degree directional line P.
The height of the coordinate radius within a 1mm range is
calculated according to equation (17). The profile data are
then obtained cyclically. The next set of profile data with a
distance of 10mm is obtained by the same method. Finally,
the profile data in each direction are obtained by repeated
cyclic calculation.

Z x, y =
∑n

i=1Zi/ri
∑n

i=11/ri
, 17

where Zi is the height of the point within a radius of
1mm from point Q and ri is the distance from point i to
point Q.

Step 2. Calculation of the fractal dimension of all of the direc-
tional lines. The variogram function is defined as

2γ h =
1

N
〠
N

i=1

Zi+1 − Zi
2, 18

where γ h L2 is the semivariogram, Zi L and Zi+1 L
are the heights of the 2D profile from the baseline, and
N is the number of pairs of Z at a lag distance h
between them. γ h can be simplified as a power-law func-
tion in the self-affine profile as h→ 0:

2γ h = Kvh
2H , 19

where Kv is a proportionality constant and H is the Hurst
exponent, which is related to the fractal dimension by Dv =

2 −H. However, equation (18) and equation (19) cannot be
used to calculate Dv directly. Dv should be written in the log-
arithmic form

log 2γ h = 2 2 −Dv log h + log Kv , 20

so that Dv can be obtained by linear regression analysis. At
least seven variance functions at different intervals h are
calculated for each profile line, and fractal dimension D is
obtained by fitting equation (20). The fractal dimension D
of all of the profiles in one direction is averaged, and the
fractal dimension D in that direction is obtained.

To make the anisotropic characteristics of fracture sur-
face roughness more intuitive, Table 2 presents rose dia-
grams of the fractal dimensions of five different fracture
surfaces (F1–F5). The fractal dimension is randomly distrib-
uted in all directions, and the fracture surfaces are charac-
terized by an irregular anisotropic roughness structure.
The fractal dimension of the fracture surface of F4 is larger
than that of the others and is the highest, 1.60, in the 90°

direction. Therefore, F4 has the greatest roughness of the
fracture surfaces.

It is noted that the fractal dimension D does not take the
difference between forward and backward on the 2D profile
into consideration. For example, the fractal dimension of
the 0° profile is the same as that of 180°. Hence, equation
(20) is correct when assuming there is the same nonlinear
flow in the θ and θ + 180° directions.

5. Nonlinear Flow Behavior of Rough-Walled
Rock Fractures

5.1. Seepage Tests of Rough-Walled Rock Fractures. The five
groups of rock fracture surfaces (F1–F5) mentioned in the
previous section were prepared for flow testing with a self-
designed device. A detailed description of the device is given
in Xiong et al. [7]. Two flow directions (0° and 90°) were
tested for each group of fractures, as shown in Figure 3.
The pressure difference P under different flow rates Q was
recorded during the test process; flow rates were in the range
0–100ml/s during the tests.

5.2. Nonlinear Flow Behavior. Figures 4 and 5 show the rela-
tionship between the flow rate Q and the pressure gradient
∇P of each fracture in the 0° and 90° directions. When the
flow rate is small (Q < 10ml/s), the pressure gradient
increases linearly with the flow rate. When the flow rate
increases, the pressure gradient increases nonlinearly, show-
ing an increase in the inertia effect. In order to describe this
relationship, the Forchheimer formula was used to fit the test
data for the 0° and 90° directions. The fitting results are
shown in Table 3. These results indicate that Forchheimer’s
law (equation (1)) is able to quantitatively describe the non-
linear flow behavior, which is consistent with Zimmerman
et al. [17].

In order to analyze the anisotropic characteristics of flow
in a rock fracture, a new parameter describing anisotropy is
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proposed: the ratio of the difference between the 90° and 0°

pressure gradients and the 90° pressure gradient.

anisotropy =
∇P90°−∇P0°

∇P90°

, 21

where ∇P90° is the pressure gradient in the 90° direction and
∇P0° is the pressure gradient in the 0° direction. Figure 6
shows the variation of anisotropy with flow rate. The anisot-

ropy values differ between the different groups, which indi-
cate that the anisotropy of fracture flow exists and is related
to the fracture morphology and aperture distribution.

Normalized transmissivity (Ta/T0) is determined by
Zimmerman et al. [17] in the following form:

Ta

T0

=
1

1 + β Re
, 22

where Ta is the apparent transmissivity and T0 is a special
apparent transmissivity in Darcy’s flow state and is typically
called intrinsic transmissivity. According to experimental
data, the values of β are listed in Table 2. The relationship
of bD and β is plotted in Figure 7. It can be seen from the fig-
ure that as bD increases, β linearly increases. And β is about
12 times than bD, which is consistent with Zimmerman
et al. [17].

5.3. Verification of the Nonlinear Flow Model Based on
Fractal Theory. In order to solve the undetermined constants
a and b, fracture morphology data were first obtained for F1,
F2, and F3, and the fractal dimension was then calculated
according to the method detailed in Section 4. Then, the
seepage test results were fitted according to the Levenberg-
Marquardt method, and the parameters a and b were found
to be 0.246 and -0.964, respectively.

In order to verify the model, the nonlinear fractal model
is compared with the seepage test data and Chen’s two-
parameter model [6].

For fractures F4 and F5, pressure gradients were calcu-
lated according to the proposed model and the Chen model,
respectively, and the results were compared with the experi-
mental values, as shown in Figure 8. It can be seen that the
results calculated with the nonlinear fractal model are close
to the measured values, and the relative errors are mostly
within 20%. This shows that the nonlinear fractal model gives
a better description of nonlinear seepage in fractured media

Table 2: The fractal dimensions at different directions.

Directions (°) F_1 F_2 F_3 F_4 F_5

0 1.422 1.497 1.421 1.418 1.475

30 1.398 1.486 1.391 1.426 1.426

60 1.431 1.477 1.417 1.486 1.435

90 1.542 1.503 1.434 1.600 1.436

120 1.478 1.466 1.471 1.489 1.389

150 1.425 1.459 1.370 1.424 1.407

180 1.422 1.497 1.421 1.418 1.475

210 1.398 1.486 1.391 1.426 1.426

240 1.431 1.477 1.417 1.486 1.435

270 1.542 1.503 1.434 1.600 1.436

300 1.478 1.466 1.471 1.489 1.389

330 1.425 1.459 1.370 1.424 1.407

Lower specimen

Upper specimen

Flow direction (0º)

Flow direction (90º)

Figure 3: Different directions of flow (0° and 90°) in a rock fracture.
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than does Chen’s model. The error is larger in Chen’s model
because absolute roughness is not sufficient to quantify the
effect of surface topography on fracture flow.

6. Discussion

Forchheimer’s law has been widely applied for nonlinear
seepage flow in fractured media, but the mechanism of the
transition from linear flow to nonlinear flow needs to be fur-
ther discussed.

Zimmerman et al. (2014) considered the linear to nonlin-
ear transition process in fracture fluid flow, distinguishing
the two flow regimes by the nonlinear Darcy effect factor α
with a value of 0.1:

α =
BQ2

AQ + BQ2
23

Therefore, many scholars have used the critical Reynolds
number to describe the transition mechanism. For fractured
media, the Reynolds number can be expressed as follows:

Re =
ρQ

μw
24

By substituting equation (16) and equation (23) into
equation (24), a new critical Reynolds number can be
obtained:

Rec = 5 42
eh
Lc

−0 964 Dl−1

25

Equation (25) shows that the critical Reynolds number is
closely related to hydraulic aperture, the fractal dimension of
the fracture surface, and the flow direction. The smaller the
hydraulic aperture and the rougher the fracture surface, the
smaller the critical Reynolds number. The critical Reynolds
numbers calculated by this method are shown in Table 2.
Its value ranges between 30 and 60, much smaller than the
2300 value considered by Wang et al. (2015). The nonuni-
form distributions of the fracture aperture and the rough sur-
face result in eddy currents and reflux flow, which make the
flow tortuous and increase the inertial resistance. This leads
to nonlinear flow at a low Reynolds number.

Table 3: Fractal dimension and fitted parameters of Forchheimer’s law.

Specimen A × 106 (Kg·s-1·m-5) B × 1010 (Kg·m-8) eh (mm) Rec D bD β

F1
0° 17.62 31.47 1.656 33.90 1.4221 0.00322 0.0027

90° 15.97 20.50 1.711 56.18 1.542 0.0232 0.002

F2
0° 11.04 15.01 1.935 43.53 1.497 0.0245 0.0021

90° 8.78 14.21 2.089 42.97 1.503 0.0292 0.0023

F3
0° 27.56 63.18 1.427 35.88 1.421 0.0414 0.0033

90° 27.47 56.93 1.428 38.03 1.434 0.0374 0.003

F4
0° 6.30 15.10 2.333 28.99 1.418 0.0433 0.0035

90° 5.09 6.09 2.504 57.82 1.600 0.0216 0.0018

F5
0° 13.07 20.08 1.829 40.84 1.475 0.0277 0.0022

90° 18.96 2.24 1.890 34.12 1.436 0.0034 0.00026
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Figure 6: Pressure anisotropy of fracture samples F1–F5.
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7. Conclusions

This paper discusses the effect of roughness on nonlinear
flow in a rock fracture based on previous research and anal-
ysis of physical laboratory experiments. The main conclu-
sions are as follows:

(1) A new nonlinear seepage model for rough fractures,
equation (16), is proposed according to flow tortuos-
ity in the fracture and the fractal characteristics of the
fracture

(2) The 3D optical three-dimensional scanning system
was used to acquire point cloud data from fracture
surfaces. The self-affine fractal dimension calculation
method proposed by Kulatilake et al. [32] was used to
analyze the anisotropic characteristics of the rough-
ness of the fracture surface

(3) Five different kinds of rough fractures were tested in
seepage experiments in the 0° and 90° directions. The
results show that fracture flow conforms to Forchhei-
mer’s law and has clear isotropic characteristics. The
new model generates results that are closer to those
from the experiment than does Chen’s two-
parameter model

(4) According to the new model, a new expression of the
critical Reynolds number (equation (25)) for distin-
guishing Darcy flow from Forchheimer flow is pro-
posed. It shows that the critical Reynolds number is
closely related to hydraulic aperture, the roughness
of the fracture surface, and the flow direction
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