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ABSTRACT 

 

This paper presents an experimental investigation on the coated carbide cutting tool 

performance of aluminium alloy AA6061-T6 machining through end mill processes using 

the minimum quantity lubrication (MQL) technique. The process parameters including 

the cutting speed, depth of cut and feed rate are selected. The effect of the base fluid ratio 

(water: EG) to the hybrid nanocoolant was investigated in this experiment. The hybrid 

nanocoolant with 80:20 of volume concentration up to 0.1% was prepaid with a 21 nm 

particle size of TiO2 and 10-30 nm ZnO nanoparticle for measurement purposes and tested 

at cnc end milling machines. The analysis of the variance method is utilised to validate 

the experimental data and to check for adequacy. The response surface method was used 

to develop the mathematical models and to optimise the machining parameters. It is 

observed that the material removal rate depends significantly on the depth of cut and feed 

rate, followed by the spindle speed. The results can be used as an example of the minimum 

quantity lubricants (MQL) technique applied to the machining of aluminium alloys, 

providing economic advantages in terms of reduced the machining costs and better 

machinability. 

 

INTRODUCTION 

 

Machinability is one of the most important properties of a material. It is about cutting the 

material with maximum metal removal, shortest time, maximum tool life and a smooth 

surface finish [1-6]. Nowadays, the demand in various applications for fluids with more 

efficient heat transfer has led to enhance heat transfer to meet the cooling challenge 

necessary, such as in the electronics, photonics, transportation and energy supply 

industries. In the present study, the effect of different parameters on the surface finish of 

the material is investigated using a CNC end milling machine [7-14]. The tool geometry 

parameters play an important role in determining the overall machining performance, 

including cutting forces, tool wear, surface finish, chip formation and chip breaking [15-

17]. The value of surface roughness increased linearly with the increase of the tool 

diameter and spindle speed; the feed rate played an important role when other parameters 

remained constant [18]. The principal wear mechanisms in aluminium alloys machining 

are the burr formation, built-up-edge as well as surface roughness. The surface finish and 
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burr formation in aluminium alloy machining are mainly used as tool life criteria as it is 

difficult to observe tool wear in aluminium alloys [19-22].  

The minimum quantity lubrication has been proved to be an effective near dry 

machining technique as well as an efficient alternative to completely dry and wet cutting 

conditions from the viewpoint of cost, ecological and human health issues and machining 

process performance [23-28]. The purpose in sustainable machining is to produce the 

parts using an optimised minimum quantity of metal working fluids so that the workpiece, 

chips and environment remain dry after cutting. Besides environmental and health issues, 

the costs associated with the applications, storage and disposal of cutting fluids are also a 

concern. About 15-20 % of the overall machining costs are related to cooling and 

lubricating fluids [29-32]. Most of the research studies involving machining with MQL, 

as a cutting medium, have been mainly concerned with the turning, drilling and grinding 

process. There have been very few articles published which use MQL in end milling [14, 

29, 33-37]. The usual applied in the end milling process is the application of abundant 

amounts of liquid coolant, whereby the liquid coolant as intermittent cooling increases 

the temperature variations and build up edge. Hence, simply cutting off the amount of 

coolant used is not a practical answer for end milling due to the intermittent nature of the 

cutting action at the tool tip resulting in increased temperature variations at the tip of the 

tool. Thus, the role of MQL as a potential method is still to be explored for minimising 

the consequences of thermal shock in end milling for removing the generated heat during 

the entire cutting cycle. End milling is one of the most widely used metal removal 

operations in the industry because of its ability to remove material faster, giving a 

reasonably good surface finish. Owing to the significant role that milling operations play 

in today's manufacturing world, there is a vital need to optimise the machining parameters 

for this operation, particularly when CNC machines are employed. 

The objective of the present work is to study the effect of the hybrid nanocoolant 

with 80:20 volume concentration of TiO2:ZnO towards the material removal rate, surface 

roughness and tool wear using the end milling machine. The investigation on these 

rheological properties is very important to expand the application of the hybrid 

nanocoolant with addition of EG in the coolant of machining. The selection of ZnO and 

TiO2 nanoparticles with a 21nm particle size and 10-30 nm ZnO are due to its stability 

period that withstand up to two months. The purpose of this study is to optimise the 

process of minimum quantity lubrication in the end milling of the aluminium alloy 

AA6061T6.  

 

METHODS AND MATERIALS 

  

Hybrid Nanocoolant Preparation  

The hybrid nanocoolant used in the sample preparation is 21 nm in particle size of TiO2 

and 10-30 nm ZnO in powder form, respectively. The nanoparticles were suspended in 

80:20 TiO2:ZnO by volume percent. Figure 1 shows the process flow of the preparation 

of the hybrid nanocoolant. A two-step method was used in the preparation of the hybrid 

nanofluid. The sonication process was employed to help improve the dispersion of 

nanoparticles in the base fluid. The nanoparticles are dispersed in the base fluid using a 

magnetic stirrer and sonicated in an ultrasonic bath for two hours [38-40]. The samples 

prepared for a ratio of 80:20 of TiO2 and ZnO have been found to be stable for two 

months. Equation (1) was used to determine the mass of ZnO and TiO2 to disperse in the 

base fluid.  
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Viscosity Measurement 

The viscosity was measured with a Brookfield LVDV III Ultra Rheometer. The range of 

applicability of the measurement is from 1 to 6 × 106 mPa.s. Figure 2 shows the setup of 

the experiment for measuring the viscosity. The rheometer is used to make accurate and 

reproducible measurements on low viscosity materials. A hybrid nanocoolant with a 16 

ml volume sample was inserted into a cylinder jacket and attached to the rheometer. A 

RheoCal program was installed for the data measurement at the designated torque and 

temperature. The sample was heated from 50 to 70 °C for the viscosity measurement. To 

validate the data, the reading of the torque from the measurement was selected within the 

range of 10-100%. 

 

                          

 
 

           
 
 

 

Figure 1. Process flow in the preparation of the hybrid nanocoolant. 

 

Thermal Conductivity  

The thermal conductivity of nanofluids is one of the reasons for the enhancement of heat 

transfer. The large (100 mm long, 2.4 mm diameter) single needle TR-1 sensor from 

KD2Pro measures the thermal conductivity and the thermal resistivity has been used. For 

the dual-needle sensor, the needles must remain parallel to each other during insertion to 

make an accurate reading. Because the sensors give off a heat pulse it is necessary to 
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allow a minimum of 1.5 cm of material parallel to the sensor in all directions, or errors 

will occur. When the temperature of the sample is different from the temperature of the 

needle, the needle must equilibrate to the surrounding temperature before beginning a 

reading. Thus, the calibration process has also been used with a standard fluid (Glycerin), 

which was already brought with devices. Validating the data error of the reading from the 

measurement was less than 0.01. 

 

 
 

Figure 2. Viscosity measurement with the Brookfield Rheometer. 

 

Experimental Details 

The machining parameters selected in this research are the spindle speed, feed rate, depth 

of cut and the minimum quantity lubricant flow rate to investigate the material removal 

rate, surface roughness and tool wear. The central composite design approach of the 

response surface methodology is used for the design of experiments in order to find the 

effects and the combination of the parameters. The flow rates for the MQL used are 36 

ml/hour, 72 ml/hour and 144 ml/hour. The MQL coolants used a hybrid nanofluid with a 

0.1 concentration. Table 1 shows the chemical composition of the workpiece used for the 

experiment which is aluminium alloys A6061. Table 2 shows the design of the experiment 

matrix for this study. Three levels of machining variables are selected. 

 

Table 1. Chemical composition of the Aluminium Alloy A6061. 

 

 

 

 

 

 

 

 

 

 

 

 

The surface roughness and material removal rate are the two conflicting responses 

of the experiments. The surface roughness is measured using a perthometer (MarSurf XR 

20 (Mahr)) while the material removal rate is calculated by weighing the workpiece after 

every single cut. The surface roughness (Ra) is measured in μm. The tool wear is 

Component Amount (%wt) 

Aluminium Balance 

Magnesium 0.8-1.2 

Silicon 0.4-0.8 

Iron Maz 0.7 

Copper 0.15-0.40 

Zinc Max 0.25 

Titanium Maz 0.15 

Manganese 0.04-0.35 

Others 0.05 

Rheometer  

Spindle   

Sample 

jacket   
Sample 

Hybrid nano   
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measured in µm with a FESEM. The specimen workpiece material used is an AA6061T6 

aluminium alloy with wide-ranging applications in the industry on account of its good 

machinability and continuous chips. The workpiece has the dimension of 100 mm × 100 

mm × 20 mm. The density of the alloy used for calculating the material removal rate is 

0.0027g/mm3. A coated tungsten carbide end mill with two flutes is selected for the 

machining. An analysis of variance (ANOVA) is utilised to verify the adequacy of the 

experimental data. A commercial non-toxic type of renewable vegetable oil-based cutting 

fluid (Coolube 2210, UNIST, Inc.) is used. Experiments are performed using a vertical 

CNC milling centre, the HAAS VF6.  

 

Table 2. Design of experiments. 

 

Factors Levels 

1 2 3 

Spindle speed (rev/min) 3000 4800 6800 

Federate (mm3/min) 610 975 1382 

Depth of cut (mm) 0.35 0.95 1.3 

 

RESULTS AND DISCUSSION 

 

The optimal cutting parameters were obtained using the objectives as to minimise the 

surface roughness and simultaneously maximise the material removal rate, within the 

specified limits of the parameters as maximum and minimum boundary conditions for 

optimisation. A response surface is developed to predict the surface roughness (Ra) and 

material removal rate (mm3/min) and the set of cutting parameters is selected for a given 

range of material removal rate until the tool wear reaches 0.3 μm, by which the surface 

roughness is not affected. The significance of the input parameters is determined based 

on the difference in the mean of the two groups of experimental design at high and low 

levels. The relative importance and rankings of the main parameters and their interactions 

with respect to response variables are evaluated by determining the parameters effect size 

using RSM. Figure 3 presents the effect of the spindle speed on the depth of cut in the 

material removal rate. Figure 3 shows the optimum result for surface roughness when the 

speed is 5718 rev/min and the feed rate is 1047 mm3/min. Figure 4 shows the optimum 

result for the material removal rate. It shows that the best speed is 5124 rev/min and the 

feed rate is 600 mm3/min and the material removal rate is 67597 mm/min. 

One of the typical techniques to accurately quantify surface integrity is the surface 

finish measurement. It is considered as an indicator for the surface quality of the turned 

part, reporting that the wiper geometry provides the ability to duplicate the feed value and 

achieve the same surface finish with a conventional tool. It is suggested that the surface 

roughness values in finish machining are expected to be in the range of 0.5- 1.5 µm [41]. 

Figures 5-6 show the comparison between dry, MQL and hybrid nanofluids in terms of 

surface roughness and material removal rate at different cutting speed, depth of cut and 

feed rate values. Hybrid nanofluids show a slight improvement in enhancing surface 

roughness compared to the dry and MQL technique due to the lesser effect of the cooling 

function of the cutting fluid, which is significantly effective as a lubricant more than its 

function as a coolant [20]. The surface roughness value is increasing at a high speed and 

feed for dry and lubricated surfaces and the improvement in surface roughness can be 

attributed to the reduction in the material transfer onto the machined surface [42]. 

However, applying the MQL was also reported to result in some improvement in surface 
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roughness [43]. Hybrid nanofluids indicated a slightly lower surface roughness than using 

the MQL technique and dry cutting. This can be due to the temperature reduction in the 

cutting zone [27, 44, 45]. A lower surface roughness was obtained at a low cutting speed 

and low feed rate. Surface roughness values tend to be higher at the end of tool life and 

the highest value was obtained at a high cutting speed and high feed rate. 

 

 
Figure 3. Effect of the spindle speed on the depth of cut in the material removal rate.  

 

 
 

Figure 0. RSM for surface roughness. 

 

In order to study the wear mechanisms, the cutting edges used in the experiments 

were taken to a Scanning Electronic Microscope (SEM) equipped with an EDX system. 

Figure 7 shows the flank wear lands of the carbide cutting edges used to cut with a spindle 

speed of 3000 rpm. The rough appearance of the wear land and the results of the EDS 

analysis showed that the wear lands of the edges used to cut the three alloys were full of 

the workpiece material adhered. The explanations for the occurrence of such adhesions 

on the tool flank are the favourable conditions developed during the cutting between the 
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tool flank face and the workpiece [21, 46]. For the adhesion of the workpiece/chip 

material on the tool flank face to occur, some chip material has to be extruded in such a 

way to be able to pass between the edge and the workpiece and to adhere on the flank 

wear land. For a seizure (adherence) zone to occur on the flank wear land and start the 

attrition mechanism “attrition”, some wear had to have already occurred, generated by 

some other wear mechanism, such as abrasion[47, 48]. In the presence of vibration during 

the cutting, the metal flow past the tool may be very uneven, causing small fragments of 

the tool to be removed. This mechanism was called attrition by them. 
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Figure 5. Material removal rate comparison for dry, MQL and hybrid nanofluids 
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Figure 6. Surface roughness rate comparison for dry, MQL and hybrid nanofluids 

 

 With a cutting speed of 3000 rpm adhesion was also present, as can be seen in  

Figure 7(a),  the flank wear lands of the tools used to cut with 4400 rpm were also full of 

the workpiece/chip material adhered on it, indicating that attrition was also present at this 

cutting speed. However, in Figure 7(c), related to the tool, which cuts the aluminium 

alloy, it can be seen that a large portion of the edge was removed. Probably, the higher 

amount of heat generated by the process, due to the higher cutting speed, caused the 

softening of the edge and facilitated the removal of large particles of the tool [49].  
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(a) Spindle speed 3000 rpm, feed rate = 610 mm/min and depth of cut = 0.35mm 

 

    
 

(b) Spindle speed = 4400 rpm feed rate = 894 mm/min and depth of cut = 0.70mm. 

 

    
 

(c) Spindle speed = 6000 rpm feed rate = 1219 mm/min and depth of cut = 1.10mm. 

 

Figure 7. Flank wear of the cutting edge used to cut the aluminium alloy at the end of 

the tool life. 

 
When using a lower and medium spindle speed, the aluminium alloys were cut 

and there was no removal of such large portion of the tool because due to the shorter tool 

lives, the cutting edge did not reach the temperature necessary to cause such a removal. 

Moreover, as the life of the tool which cut the aluminium alloy was longer, any vibration 
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inherent to the machining process which stimulates the attrition mechanism could 

generate a higher number of shocks between the workpiece and the tool, thus leading to 

mechanical fatigue and, consequently, the chipping of the edge [50]. In this study, the 

EDX technique was used to analyse the deposits on the surface of the tool. The EDX 

analysis shows the areas of aluminium deposits and eroded areas on the tool rake face. 

Figure 8 shows the zones at the rake face in the case of finishing machining at a spindle 

speed of 3000 – 6000 rpm, respectively. The chemical analysis showed that all analysed 

elements are almost homogeneously distributed on the whole worn tool’s surface. 

However, a bigger amount of aluminium in the above part signalises a destruction of the 

coating and a creation of the built-up edge.  

 

 
 

(a) Feed rate 3000mm/min and depth of cut 0.35µm  

 

 
 

(b) Feed rate 4400mm/min and depth of cut 0.7µm 

 

 
 

(c) Feed rate 6000mm/min and depth of cut 1.10µm 

 

Figure 8. Micro area selected on the cutting edge  

 

Element Weight% Atomic% 

Carbon K 40.04 58.14 
Oxygen K 7.10 7.74 

Aluminium 52.69 34.06 

Titanium 0.16 0.06 
Totals 100  

 

 

 

 

 
 

Elements Weight% Atomic% 

Carbon 46.78 64.47 

Oxygen 7.23 7.48 
Aluminium 45.44 27.88 

Titanium 0.43 0.15 

Zinc  0.13 0.03 
Totals  100  

 

Elements Weight% Atomic% 

Carbon 49.99 64.41 
oxygen 18.45 17.85 

Aluminium 30.32 17.39 

Titanium 0.60 0.19 
Zinc 0.64 0.15 
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The distribution of tungsten indicated areas of heavy tool wear (areas where 

surface coating was removed) because tungsten (WC) is representing the tool body 

material. In Figure 8(a), the point analysis confirmed that no built-up edge formation was 

observed. The chemical analysis shows that all elements are almost homogenously 

distributed on the whole worn tool surface, therefore, the zinc elements disappeared. It 

can be observed that the zinc elements completely mix with the hybrid nanofluids. The 

wear mechanisms identified during the course of study are micro-attrition, abrasion, 

adhesion, and edge chipping. Micro attrition wear is characterised by the dull surfaces on 

the flank face due to the smearing of aluminium on the flank face while the abrasion flank 

wear is identified by the appearance of small flats surrounded by protruding carbide grains 

[51, 52].  

 

  
(a) At spindle speed 3000 rpm                   (b) At spindle speed 4400 rpm 

 

  
       (c) At spindle speed 6000 rpm 

 

Figure 9. SEM analysis. 

 

The flank wear is the main mode of wear, with abrasive wear as the baseline wear 

mechanism. Figure 9(a) shows the SEM micrographs for the cutting edge of the tool at 

machining conditions with a cutting speed of 3000 rpm, a depth of cut at 0.35mm, a feed 

rate of 610 mm/min and an MQL flow rate at 0.74 ml/min. Micro-abrasion and micro-

attrition are clearly seen on the flank wear-land. The selected micro-area shows the zinc 

disappeared on the cutting edge, proving the nanoparticle of zinc completely homogenous 

transfer to material. Figures 9 (b-c) show fractures on the cutting edge. The fracture is 

caused by work material adhesion on the tool. The EDX spectra for the selected micro-

area observed the presence of high concentrations of carbon and oxygen. The selected 
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micro-area shows the presence of titanium and zinc on the cutting edge, proving the 

transfer of hybrid nano-material during the machining. For the combination of parameters 

with a speed of 6000 rpm, a feed rate of 1219 mm/min, a depth of cut of 1.10 mm, and an 

MQL flow rate set at 0.42 ml/min, the SEM images are shown in Figure 9(c). A fracture 

is seen at one location only in Figure 9(c). Micro-attrition followed by micro-abrasion is 

seen on the cutting edge. Very little chip adhesion is seen. Micro-attrition and abrasion 

seem to be major wear processes. 

 

CONCLUSIONS 

 
The tool wear was increased with the increasing cutting speeds and cutting depths for 

both materials investigated as expected. The SEM analyses of the worn tools after the 

machining of the aluminium alloy showed the formation of built-up edges. In wear, 

increases speed, feed rate and depth of cut, wear grow but speed produces the major 

influence. A hybrid nanocoolant using a minimum quantity lubrication technology seems 

to be a suitable alternative for an economically and environmentally compatible 

production. It is concluded that the cutting parameters and the MQL-hybrid nanocoolant 

play an important role in determining surface roughness, the material removal rate and 

tool wear. In roughness, a reduced feet rate gives better value and increases speed. 
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