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Experimental investigations on circular concrete columns reinforced with
GFRP bars and helices under different loading conditions

Abstract
Glass-fiber-reinforced polymer (GFRP) bar has emerged as a preferable alternative to steel bar in reinforced
concrete (RC) members in harsh, corrosive, coastal environments in order to eliminate corrosion problems.
However, only limited experimental studies are available on the performance and behavior of concrete
columns reinforced with GFRP bars under different loading conditions. This study investigates the use of
GFRP bars and GFRP helices (spirals) as longitudinal and transversal reinforcement, respectively, in RC
columns. A total of 12 circular concrete specimens with 205-mm diameter and 800-mm height were cast and
tested under different loading conditions. The effect of replacing steel with GFRP reinforcement and changing
the spacing of the GFRP helices on the behavior of the specimens was investigated. The experimental results
show that the axial load and bending moment capacity of the GFRP-RC columns are smaller than those of the
conventional steel-RC columns. However, the ductility of the GFRP-RC columns was very close to the
ductility of the steel-RC columns. It is concluded that ignoring the contribution of the GFRP bars in
compression leads to a considerable difference between analytical and experimental results.
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Glass Fiber Reinforced Polymer (GFRP) bar has emerged as a preferable alternative to steel 

bar in Reinforced Concrete (RC) members in harsh, corrosive, coastal environments in order 

to eliminate corrosion problems. However, only limited experimental studies are available on 

the performance and behavior of concrete columns reinforced with GFRP bars under different 

loading conditions. This study investigates the use of GFRP bars and GFRP helices (spirals) 

as longitudinal and transversal reinforcement, respectively, in RC columns. A total of 12 

circular concrete specimens with 205 mm diameter and 800 mm height were cast and tested 

under different loading conditions. The effect of replacing steel with GFRP reinforcement and 

changing the spacing of the GFRP helices on the behavior of the specimens were investigated. 

The experimental results show that the axial load and bending moment capacity of the GFRP-

RC columns are smaller than those of the conventional steel-RC columns. However, the 

ductility of the GFRP-RC columns was very close to the ductility of the steel-RC columns. It 
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is concluded that ignoring the contribution of the GFRP bars in compression leads to a 

considerable difference between analytical and experimental results.               

 

Keywords: Reinforced concrete, Columns, GFRP bars, Eccentric load, Ductility. 

 

Introduction 

Corrosion of conventional steel reinforcing bars is a major concern in Reinforced Concrete 

(RC) members in harsh, corrosive, coastal environments. Also, the cost of repair and 

rehabilitation of deteriorated structures due to corrosion of steel reinforcement can be 

significant (Sheikh and Légeron 2014). In addition, epoxy coating of steel bars may cause the 

loss of bond between concrete and the steel bars (Sagüés et al. 1994). Fibre Reinforced 

Polymer (FRP) bars consisting of glass, carbon or aramid fibres encased in a matrix of epoxy, 

polyester or phenolic thermosetting resins were developed as economical substitute of 

conventional steel bars to overcome the corrosion problems. FRP materials possess high 

tensile strength to weight ratio and are nonmagnetic, noncorrosive and nonconductive 

(Hollaway 2003).  

 

In order to investigate the contribution and the effect of GFRP bars on the concentrically 

loaded Reinforced Concrete (RC) columns, a few experimental studies were conducted 

(Alsayed et al. 1999; De Luca 2009; De Luca et al. 2010; Tobbi et al. 2012; Pantelides et al. 

2013; Afifi 2013; Afifi et al. 2014a,b; Mohamed et al. 2014; Tobbi et al. 2014). It was 

reported that the load carrying capacity of the GFRP-RC columns is about 13 to 16% smaller 

than the load carrying capacity of the steel-RC columns. Also, the contribution of the GFRP 

longitudinal bars is about 3 to 10% of the total load carrying capacity of the RC columns 

whereas the contribution of the same amount of steel bars is about 12 to 16%. Circular RC 
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columns with GFRP helices and columns with the same amount (volumetric ratio) of steel 

helices can achieve about the same ductility and confined concrete core strength. In addition, 

few studies were carried out about concrete cylinders reinforced with FRP grids which consist 

of integrated vertical and horizontal FRP (Saafi 2000; Li 2007; Li and Maricherla 2007; Li 

and Velamarthy 2008; Ji et al. 2009). It was concluded that the vertical grids mainly increase 

the axial strength and the horizontal grids results in higher ductility. Also, the confinement 

effectiveness of concrete cylinders confined with FRP grids is higher than the same amount of 

FRP laminate. The interfacial shear strength of FRP grids is higher than the regular FRP tube 

which is beneficial in the pile construction.         

 

A limited number of studies are available on the behavior of FRP-RC columns under 

eccentric loads. Amer et al. (1996) tested eight rectangular columns reinforced with CFRP 

bars and steel ties under different eccentric loads (eccentricity=305, 127, 64 and 28 mm). 

They observed that the calculated failure loads were higher than the measured failure loads. 

However, the calculated and measured failure bending moments were in close agreement. 

Also, the curvature and deflection of the CFRP-RC columns followed the same pattern of the 

conventional steel-RC columns. Mirmiran (1998) and Mirmiran et al. (2001) reported that 

columns reinforced with FRP bars are more susceptible to length effect than their steel-RC 

columns counterparts because of the lower modulus of elasticity of FRP bars. Also, it was 

suggested to reduce the slenderness limits by 5% for AFRP, 15% for CFRP and 22% for 

GFRP bars, if the minimum reinforcement is held at 1%. Choo et al. (2006a) and Deiveegan 

and Kumaran (2011) reported that the cross-section strength interaction diagram of FRP-RC 

columns do not have a balance point because of the linear elastic behavior of FRP bars. Also, 

in some cases, a brittle tension failure will occur before the strength interaction reaches the 

pure bending condition because of the rupture of FRP bars in the tension face. Therefore, a set 
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of equations were presented in Choo et al. (2006b) to calculate minimum FRP reinforcement 

ratio for rectangular columns under pure bending to prevent the tensile failure of FRP bars in 

the tension side. Zadeh and Nanni (2013) carried out numerical analyses on short and slender 

RC columns reinforced with GFRP bars under different loading conditions. They suggested 

limiting the ultimate strain of the GFRP bars in tension to 1% to avoid the exaggerated 

deflection. Also, the contribution of the GFRP bars in compression was replaced with an 

equivalent area of concrete. 

 

For the design of GFRP-RC columns, steel bars cannot be simply replaced with GFRP bars 

because of the differences in the mechanical properties of the steel and GFRP materials (ISIS 

2007). Also, because of the lack of experimental studies on GFRP-RC columns and especially 

for columns under eccentric loading, available design standards do not address the design of 

GFRP-RC columns. Therefore, experimental investigations are needed to understand and to 

establish design guidelines for GFRP-RC columns under different loading conditions. This 

current study is a step towards this goal. 

 

Research Objective 

The majority of RC columns in building structures and bridge piers are under a combination 

of axial and lateral loads or bending moments. It has been observed from the literature review 

that the experimental behavior of eccentrically loaded GFRP-RC circular columns has not 

been adequately investigated. In addition, The American Concrete Institute (ACI) 440.1R-15 

(ACI 2015) do not recommend the use of FRP bars in RC columns, while the Japan Society of 

Civil Engineers (Sonobe et al. 1997) and Canadian Standard Association (CSA) S806-12 

(CSA 2012) permit the use of FRP bars in RC columns with ignoring their contribution in the 

axial load carrying capacity of the RC columns. Therefore, this study focuses on the behavior 
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of GFRP-RC circular columns and compares the behavior of GFRP-RC columns with the 

behavior of conventional steel-RC columns. For this purpose, a total of 12 circular RC 

specimens were tested under different loading conditions. The specimens were reinforced 

with the same amount of steel or GFRP longitudinal bars and with different amounts of 

transversal GFRP helices.  

 

Experimental Program 

Specimen Design and Preparation 

In this study, 12 small scale circular concrete specimens were cast and tested under different 

loading conditions. Nine specimens were tested as columns and three specimens were tested 

as beams. All specimens were 205 mm in diameter and 800 mm in height or length (height to 

diameter �� ℎ⁄ � ratio is equal to 4). The dimensions were chosen to be suitable to the condition 

and capacity of the available testing equipment in the laboratory. It is noted that vertical 

support with � ℎ⁄  ratio of greater than or equal to 2.5 is considered as a column in Canadian 

Standards Association (CSA) S6-06 (CSA 2006). The slenderness ratio of the specimens was 

about 16, which is within the limit of a short concrete column. In addition, the height of the 

columns was enough to have a sufficient development length for the longitudinal bars (ACI 

2014). The size effect of the RC columns on strength and ductility can be reasonably 

neglected for a short RC specimens (Marques et al. 2004; Němeček and Bittnar 2004; Silva 

and Rodriguez 2006; Thériault et al. 2004). The dimensions and reinforcement scheme and 

configuration of the tested specimens are presented in Fig. 1. The specimens were divided 

into three groups. Specimens of the first group (S6-S60) (reference specimens) were 

reinforced longitudinally with six N12 (12 mm diameter deformed bars with 500 MPa 

nominal tensile strength) steel bars (longitudinal reinforcement ratio=2.06%) and 

transversally with R10 (10 mm diameter plain bars with 250 MPa nominal tensile strength) 
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steel helices with a pitch of 60 mm (transversal reinforcement ratio=3.27%). Specimens of the 

second group (G6-G60) were reinforced longitudinally with six #4 (nominal diameter=12.7 

mm) GFRP bars (longitudinal reinforcement ratio=2.3%) and transversally with #3 (nominal 

diameter=9.5 mm) GFRP helices with a pitch of 60 mm (transversal reinforcement 

ratio=2.97%). Specimens of the third group (G6-G30) were reinforced longitudinally with six 

#4 GFRP bars and transversally with #3 GFRP helices with a pitch of 30 mm (transversal 

reinforcement ratio=5.94%). The reinforcements (longitudinal and transversal) of the 

reference group were provided to satisfy the requirements of ACI 318-14 (ACI 2014).     

 

Table 1 provides reinforcement details of the specimens. Each group consists of three 

columns and one beam. One column was tested concentrically, one was tested under 25 mm 

eccentric load, and the one was tested under 50 mm eccentric load. The beam was tested 

under four point loading. The specimens are identified by the longitudinal reinforcement 

material and its number, the transversal reinforcement material and its spacing, and the 

applied loading condition. For example, Specimen G6-G60-E25 is reinforced longitudinally 

with six GFRP bars and transversally with a pitch of 60 mm of GFRP helix and tested under 

25 mm eccentric load. All the testings were conducted at the laboratories of the School of 

Civil, Mining and Environmental Engineering, University of Wollongong, Australia.  

 

Materials 

All the specimens were cast on the same day using ready mix concrete with an average 28-

day compressive strength of 37 MPa with a coefficient of variation of 4%. The maximum size 

of the coarse aggregate of the concrete was 10 mm. Two different diameter steel bars were 

used to reinforce the steel-RC specimens. Deformed steel N12 and plain mild steel R10 bars 

were used as longitudinal and transversal reinforcement, respectively. The steel bars were 
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tested according to AS 1391-2007 (AS 2007). Figure 2 shows the stress-strain behavior of the 

tested steel bars. Table 2 reports the experimental tensile strength and modulus of elasticity of 

the steel bars.  

 

The GFRP bars and helices used in this study had a sand-coated surface to enhance the bond 

strength between the bars and the surrounding concrete. The GFRP bars and helices were 

provided by V-Rod Australia (V-Rod 2012). Sand coated #4 GFRP bars were used for 

longitudinal reinforcement and sand coated #3 GFRP helices were used for transverse 

reinforcement. Cross-sectional areas of the #3 and #4 GFRP bars were determined by 

immersion test according to ISO 104061-1:2015 (ISO 2015). Five pieces of bars of 100 mm 

long for each diameter bars were used to calculate representative cross-sectional dimensions. 

Also, five pieces from the same bar for each of the two diameter bars with a test length of 40 

times the diameter of the bars plus the required gripping length at both ends were tested to 

determine the ultimate tensile strength and strain and the elastic modulus of the GFRP bars as 

recommended in ASTM D7205-11 (ASTM 2011). The ultimate tensile strength and elastic 

modulus of the GFRP bars were determined using areas of the bars obtained from immersion 

test. Figure 3 shows the stress-strain behavior of the tested GFRP bars. Also, the test results 

are reported in Table 2.  

 

Specimen Fabrication and Instrumentation  

The formwork used for casting the concrete specimens was PVC pipe. The longitudinal steel 

and GFRP reinforcement were prepared and cut to 760 mm length in order to have 20 mm 

clear cover at the top and bottom of the reinforcement cage. The transverse steel helix was 

prepared by forming a coil with 170 mm outer diameter and 60 mm pitch. The GFRP helices 

were manufactured in a coil shape with 170 mm outer diameter by the manufacturer (V-Rod 
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2012). The clear covers to the face of the helices were 17.5 mm for all the specimens. The 

steel and GFRP reinforcement cages assembled for the specimens are shown in Fig. 4. The 

PVC moulds were fixed vertically in a wooden formwork and the cages were inserted into the 

PVC moulds. Concrete was placed into the formwork in three stages. In every stage concrete 

was vibrated using an electric vibrator to compact and to remove any air bubbles. The 

specimens were cured by covering them with wet hessian and plastic sheets to maintain the 

moisture conditions. The curing process lasted 28 days before testing the specimens.  

 

The specimens were instrumented internally and externally to capture the axial and lateral 

deformations of the specimens and the axial and hoop strain in the reinforcement. For 

concentric loading, the axial deformation of the columns was recorded by two Linear Variable 

Differential Transducers (LVDT) attached vertically to the loading plate at two opposite 

corners. Also, before casting the concrete, two electrical strain gages were attached at the 

mid-height in the two opposite longitudinal bars (one in the compression side and the other in 

the tension side) in order to capture the axial strain at these bars. In addition, two electrical 

strain gages were attached at mid-height in the two opposite sides of the helical reinforcement 

to measure the strain in the hoop direction. In addition, a lazer triangulation was used for the 

columns under eccentric loads to record the lateral deformation at the mid-height of the 

columns. For the flexural loading, the lazer triangulation was fixed vertically at the bottom of 

the beams to record the mid-span deflection. 

 

Testing Procedure 

The Denison 5000 kN compression testing machine was used to test the specimens. The top 

and bottom of the column specimens were wrapped by a single layer of CFRP sheet to 

prevent the premature failure of the concrete during axial compression tests. The width of the 
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CFRP sheet was 75 mm. Also, both ends of the columns were capped with high-strength 

plaster in order to distribute the load uniformly. The eccentric loading system consisted of 

two steel loading heads with two steel plates on top and bottom of the columns with an 

overhang edge (or loading knives) as shown in Fig. 5(a). Also, the flexural loading system 

consisted of two rigs at top and bottom of the beams. The span of the beam specimens was 

700 mm and spacing between the loads was 233.3 mm, as shown in Fig. 5(b).   

 

The test stared with a force-controlled pre-loading the specimens at a rate of 2 kN/s to about 

10% of the yield loads of the specimens and then unloading the specimens to 20 kN. 

Afterwards, the test resumed with displacement control loading (0.005 mm/s) until the 

resistance of the specimens dropped to 30% of the yield load or until the axial displacement 

reached 40 mm. The applied axial load and displacement of the tested specimens were 

recorded through the internal load cell of the Denison testing machine. Also, the experimental 

test results were recorded through the LVDTs, lazer triangulation, the strain gages, and a 

sensor located on the bottom of the testing machine to capture the applied axial load and 

displacement of the specimens. The LVDTs, strain gages, the lazer triangulation and the 

sensor were connected to a data-logger to record the readings at every 2 seconds. Typical test 

set ups for a column and a beam specimens are shown in Fig. 6. 

 

Experimental Results and Analysis  

Failure Modes 

All the specimens were tested to failure. The failure modes depended on the reinforcement 

materials and the loading conditions. The failure of the reference specimen (S6-S60-C) under 

concentric loading was caused by buckling of the longitudinal bars followed by crushing of 

the concrete core. However, the failure of the GFRP-RC specimens under concentric loads 
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was due to the rupture of the GFRP helices followed by buckling and crushing of the 

longitudinal bars and the concrete core. The specimens under eccentric loads failed due to 

crushing of the concrete in the compression side. The spacing of the horizontal cracks in the 

tension side depended on the reinforcing materials and the pitch of the helices. The spacing of 

the cracks in the steel-RC specimens was about 60 mm, which was approximately 6.3% 

smaller than the crack spacing of the corresponding GFRP-RC specimens. The spacing of the 

cracks in the specimens with 30 mm pitch of GFRP helix (about 54 mm) were about 15.6% 

smaller than the specimens with 60 mm pitch of GFRP helix (about 64 mm). The failure of 

the beam specimens (S6-S60-F and G6-G30-F) was also caused by concrete crushing in the 

compression region. The failure of Specimen G6-G30-F was marked as a brittle failure 

because of the behavior of GFRP bars which is linear elastic till failure. However, Specimen 

G6-G60-F failed in shear after reaching the yield load because the provided lateral 

reinforcement was not enough to carry the shear force till the ultimate flexural load carrying 

capacity. Also, the shear span of the tested beam specimens was less than twice of the 

effective depth of the cross-section. The failure modes of the tested specimens are shown in 

Fig. 7. 

 

Behavior of Column Specimens 

In general, the axial load and deformation (axial or lateral) behavior of the column specimens 

can be divided into three phases. The first phase is the ascending part of the load-deformation 

curve. The second phase is a sharp descend of the axial load within a small amount of axial 

and lateral deformation which is caused by the spalling of concrete cover. The third phase is a 

descending or an ascending axial load of the columns with increasing axial and lateral 

deformation till failure of the column specimens. There were also two main points which 

were the first and the second peak load in the load-deformation curve of the GFRP-RC 
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specimens. The first peak load in the load-deformation curve shows the maximum axial load 

carried by the reinforced gross concrete cross-section (concrete cover and core). At this point, 

the concrete covers may have been cracked and cover spalling started afterwards. The second 

peak load expresses the maximum axial load carried by the confined concrete core (without 

concrete cover). In some cases, the second peak load was greater than the first peak load 

depending on the confinement conditions. However, there was only a peak load in the load-

deformation curve of the steel-RC specimens and the reason will be clarified in the following 

paragraph. Table 3 and 4 report the experimental results in terms of first and second peak 

loads and ductility of the column specimens. The ductility based on energy absorption of the 

column specimens after the first peak load was used in this study. The ductility ���	and	��� 
defined in Foster and Attard (1997) was computed based on area under the axial load-axial 

deformation curves. �� is the area of ��� (Fig. 8) divided by the area ���, where � 

corresponds to the Point ∆�� and � corresponds to the Point 3∆��. Also, �� is the area of 

��� divided by the area of ���, where � corresponds to the Point 5.5∆��. Point ∆�� is the 

deformation corresponding to the intersection point of an extension line through the origin 

and 0.75 times of the first peak axial load and a horizontal line from the first peak axial load, 

as shown in the Fig. 8. 

 

Figure 9 shows the axial load-axial deformation behavior for the tested columns under 

concentric loads. It can be seen that the ascending part of the load-deformation curve of the 

columns followed the same pattern till first peak load and was dominated mainly by the 

concrete strength. It can be noticed that the ascending part of Specimen G6-G60-C is slightly 

smaller than the other specimens, although the difference is not significant. This slight 

difference may be because concrete is a composite and non-homogeneous material that 

different factors such as placing, compacting and curing may affect the strength and 
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properties of concrete (Neville 2005). Specimen G6-G60-C obtained about 20% lower first 

peak load than the first peak load of the reference specimen (S6-S60-C) because of the lower 

modulus of elasticity of the GFRP bars. However, the ductility of the GFRP-RC specimen 

(G6-G60-C) was slightly greater than the reference specimen (S6-S60-C). This is because the 

axial and hoop strain of the GFRP bars and helices at first peak load were less than 20% and 

5%, respectively, of their ultimate strain. Whereas, the steel bars reached to yield strain and 

the steel helices reached to about 50% of yield strain at first peak load. Therefore, it is 

expected that the GFRP-RC columns will carry more loads and deformations after first peak 

load. Therefore, most of the GFRP-RC column specimens achieved greater second peak load 

than the firs peak load. Also, it can be observed that the contribution of the longitudinal steel 

bars in the first peak load of the columns was about 26.6%. The contribution of the steel bars 

was about two times greater than the contribution of the longitudinal GFRP bars (about 

13.4%). Reducing the spacing of the GFRP helices from 60 to 30 mm led to increase in the 

first peak load and ductility by about 7% and 29%, respectively. It can also be observed that 

increasing the lateral GFRP reinforcement could improve the ductility more than the first 

peak load. This is because the GFRP helices were not completely activated before the cover 

spalling. The strains in the GFRP helices were smaller than 5% of the ultimate tensile strain. 

In contrast, after cover spalling and dilation of the concrete core, the GFRP helices were 

activated and resulted in improving the second peak load and ductility of the GFRP-RC 

column specimens.          

 

Figure 10 shows the axial load versus the axial and lateral deformation behavior of the tested 

column specimens under 25 mm eccentric loads. In general, the GFRP-RC columns under 

eccentric loads exhibited a slightly smaller stiffness in the ascending part of the load-

deformation curves than the steel-RC columns because of the lower modulus of elasticity of 
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the GFRP bars than the steel bars. Similar to the columns under concentric loads, the GFRP-

RC column gained lower first peak load by about 13% than the first peak load of reference 

column. Also, the ductility of Specimen G6-G60-E25 was slightly greater than the ductility of 

the reference specimen (S6-S60-E25). Increasing the amount of GFRP helices did not 

increase the first peak load of the column specimens because the smaller spacing of GFRP 

helix created a separation plane between the concrete cover shell and the concrete core which 

led to instability of the concrete shell and cover spalling at an early stage (Razvi and 

Saatcioglu 1994; Pessiki and Pieroni 1997). However, the ductility and second peak load of 

the columns increased due to the reduction of the spacing of the GFRP helices from 60 mm to 

30 mm. 

 

Figure 11 shows the axial load versus axial and lateral deformation behavior of the tested 

column specimens under 50 mm eccentric loads. Specimen G6-G60-E50 achieved about 17% 

lower first peak load and slightly greater ductility compared to the first peak load and ductility 

of the reference specimen (S6-S60-E50). Similar to the specimens under 25 mm eccentric 

loads, the specimens with 60 mm pitch achieved about 3% greater first peak load than the first 

peak load of specimens with 30 mm pitch. However, the ductility ���� increased by about 

57% as a result of the reduction of helices spacing from 60 mm to 30 mm. This is because the 

smaller spacing helix led to better confined concrete core and allowed the columns to sustain 

more loads with increasing axial deformation.   

 

The effects of eccentricity on the behavior of the column specimens have been shown in Fig. 

12. In general, increase in the eccentricity led to decrease the performance of the column 

specimens in terms of axial load carrying capacity and ductility. In general, the first peak load 
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of the column specimens decreased by about 40 and 60% under the 25 and 50 mm 

eccentricity, respectively, compared to the column specimens under concentric load.  

 

Behavior of Beam Specimens 

Figure 13 shows the load versus mid-span deflection behavior of the tested beam specimens 

under flexural loadings. It can be observed that the ascending part of the load-deflection curve 

of the steel-RC beam has greater stiffness than the GFRP-RC beams because of the smaller 

modulus of elasticity of the GFRP bars. The load and mid-span deflection curve of the steel-

RC beam consisted of three parts which represent the yielding of the reinforcement in each 

layer. The first (Point A to B) and second (Point B to C) ascending parts of the load and mid-

span deflection curve represent the yielding of the first and the second layer of the steel 

reinforcement, respectively, followed by stabilizing the load-deflection curve (Point C to D). 

With the progression of the applied load, the concrete in the compression zone reached its 

crushing strain and led to complete failure of the steel-RC beam specimen. However, the 

load-deflection behavior of the GFRP-RC beams consisted of only an ascending part and 

followed by a descending part because of the linear elastic stress-strain behavior of GFRP 

bars. However, the descending part of the load-deflection curve of Specimen G6-G60-F is 

less steep than Specimen G6-G30-F because Specimen G6-G60-F failed in shear. Table 5 

reports the experimental results of the tested beams.  

 

Peak Axial Load-Bending Moment Diagrams  

As mentioned above, there were two main points which are the first and the second peak 

loads in the load-deformation curve of the GFRP-RC specimens. Therefore, two sets of the 

peak axial load-bending moment diagrams were drawn for the GFRP-RC specimen based on 

the first and the second peak loads. In this study, four points which are concentric, 25 and 50 
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mm eccentric and flexural loading were considered in drawing the experimental peak axial 

load-bending moment diagrams. The experimental bending moments at the mid-height of the 

columns under eccentric loads were calculated as, 

�� = ���� ,�	�" + $�� (1) 

�% = ���� ,%	�" + $%� (2) 

where ��	and	$� are the moment and lateral deformation corresponding to the first peak load 

&���� ,�', respectively, �%	and	$% are the moment and lateral deformation corresponding to 

the second peak load &���� ,%', respectively, and " is the applied initial eccentricity. The 

experimental bending moments at mid-span of the beams were calculated as, 

�� = �
%	���� ,�	( (3) 

�% = �
%	���� ,%	( (4) 

where, ( is the shear span length, or the distance between the support and the closer loading 

point (( = 233.3 mm in this study). The experimental moment of the column and beam 

specimens are reported in Tables 4 and 5, respectively. The experimental confined concrete 

strength �)**� of the column specimens under concentric loads was calculated as, 

)** = 	���� ,% − �,�-,%	�**  (5) 

where ���� ,%	and	�,�-,% are the second peak load and the corresponding loads carried by the 

longitudinal bars, respectively, and �** is the area of confined concrete core with diameter .* 

that through the centre of the GFRP helices. The experimental results of the confined concrete 

strength are reported in Table 3. 

 

Figure 14(a) shows the peak axial load-bending moment diagram for the tested specimens in 

terms of the first peak loads. It can be seen that the conventional steel-RC specimens obtained 

greater load and moment capacity than the GFRP-RC specimens because of greater modulus 
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of elasticity of the steel reinforcement. Reduction in the spacing of the GFRP helices did not 

considerably change the peak axial load-bending moment diagram of the GFRP-RC 

specimens because the passive confinement due to the GFRP helices is not considerably 

activated in the first peak load. However, it is clear in Fig. 14(b) that the GFRP bars and 

helices improved the peak axial load-bending moment diagrams of the GFRP-RC specimens. 

This is because the modulus of elasticity of the GFRP bars is much smaller than the steel bars. 

Therefore, larger deformation and lateral expansion are needed to achieve higher stress in the 

GFRP bars and helices.       

 

Figure 15 shows a typical axial load-axial deformation curve of the GFRP-RC specimens. 

Similar to the experimental peak axial load-bending moment diagrams, two analytical peak 

axial load-bending moment diagrams were drawn for the GFRP-RC specimens corresponding 

to the first and the second peak loads. The analytical peak axial load-bending moment 

diagrams were drawn based on five points (Points A to E) as demonstrated in Fig. 16. These 

points (Points A to E) can demonstrate the entire peak axial load-bending moment diagram 

for FRP-RC cross-sections reasonably accurately results for over reinforced FRP-RC cross-

sections. It is noted that the analytical peak axial load-bending moment diagrams presented 

herein did not consider the slenderness effect, as the specimens were considered short 

specimens.    

 

The GFRP bars do not reach the ultimate strain when the concrete reach the ultimate strain. 

Also, the ultimate compressive strength of the GFRP bars is smaller than their ultimate tensile 

strength. Therefore, the nominal load carrying capacity of GFRP-RC columns under 

concentric loads (Point A if Fig. 16) can be calculated based on the CSA S806-12 (CSA 

2012), which ignores the contribution of the longitudinal GFRP bars.  
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�/� = 0.85	)*2	�3 (6) 

�/% = 0.85	)** 	�** (7) 

where �/�	and	�/% are the nominal load carrying capacity of the columns corresponding to 

the first and the second peak loads, respectively, �3 is the gross area of the concrete cross-

section with diameter ℎ and )*2	and	)** are the unconfined concrete cylinder compressive 

strength at 28 days and the confined concrete core strength, respectively. The )** of the 

specimens confined with GFRP helices cannot analytically be calculated because the available 

equations is introduced for steel helix, tubes and FRP wrapping. Therefore, the experimental 

)** of the specimens under concentric loads were used in the analytical calculations. 

 

Also it is reasonable to assume that the strain in the GFRP bars is approximately equal to the 

concrete ultimate strain, which is equal to 0.003 for the first peak load as defined in ACI 318-

14 (ACI 2014) and equal to 4** for the second peak load. As a result, the nominal load 

carrying capacity of the GFRP-RC columns under concentric loads can also be computed by 

Eq. (8) and (9) for the first and the second peak loads, respectively. Based on the 

experimental study of Deitz et al. (2003), it can be assumed that the compressive and tensile 

moduli of elasticity of GFRP bars is approximately equal. 

�/� = 0.85	)*2	&�3 −	�5' + 0.003	�5	�5 (8) 

�/% = 0.85	)**	&�* −	�5' + 4**	�5	�5 (9) 

where �5 is the area of the longitudinal GFRP bars that determined from immersion test, and 

�5 is the modulus of elasticity of the longitudinal GFRP bars.    

 

The analytical peak axial load-bending moment diagrams for the GFRP-RC specimens under 

eccentric and flexural loads (Points B to E) were calculated based on the principles of 

equilibrium and strain compatibility in the concrete cross-sections between GFRP bars and 
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concrete. The equivalent rectangular stress block as defined in ACI 318-14 (ACI 2014) and 

Mohamed and Masmoudi (2010) were used to calculate the concrete stress in the compression 

region for the first and the second peak loads, respectively. A linear elastic stress-strain 

relationship was used for the GFRP bars in tension and compression. In order to investigate 

the effect and contribution of the GFRP bars in compression, two different calculation 

procedures were conducted for the GFRP-RC columns. In the first calculation procedure, the 

contribution of the GFRP bars in the compression region was ignored and replaced with an 

equivalent area of concrete, as recommended by Zadeh and Nanni (2013). However, in the 

second calculation procedure, the contribution of the GFRP bars was considered. 

 

In order to calculate the peak axial load-bending moment diagram in the Points B to E, 

arbitrarily values for 6 were taken as shown in Fig. 16, where 6 is the ratio of maximum 

tensile strain of the GFRP bars in the tension side to the ultimate compressive strain in the 

extreme compression fiber in the compression side. In this study, compression strain, stress 

and force are considered as positive and tensile strain, stress and force are considered as 

negative. From Fig. 17(a) and (b), by similar triangles, the depth of neutral axis �7� and strain 

in each of the GFRP bars &458' can be calculated as, 

7 = .�	1 − 6	 (10) 

458 = :1 − .87 ; 4*< (11) 

where .8 is the distance between the centre of the =>? GFRP bar to the extreme compression 

fiber in the compression side, 4*< is the ultimate concrete compressive strain which is equal to 

0.003 in the first peak load and equal to 4** in the second peak load. Also, the forces in each 

of the GFRP bars &�58' and the compression force in concrete in the compression side ��*� 
can be determined as,   
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�58 = 458	�5	�58 (12) 

�* = @	)*<	�* (13) 

�* = �A − sin A cos A�	F% (14) 

A = cosG� :1 − H7
F ; (15) 

where �58 	and	�* are the areas of the =>? GFRP bar and concrete in the compression side, 

respectively, )*< is the maximum concrete compressive strength which is equal to )*2 in the 

first peak load and equal to )** in the second peak load. Also, @	is the ratio of the member 

concrete compressive strength to the cylinder concrete compressive strength at age 28 days, H 

is the ratio of height of the equivalent rectangular stress block to the depth of neutral axis as 

defined in ACI 318-14 (ACI 2014). The F is the radius of the concrete cross-section which is 

equal to ℎ 2⁄  in the first peak load and equal to .* 2⁄  in the second peak load (Fig. 15 and 17).       

 

The nominal axial load ��/� and bending moment ��/� of the GFRP-RC specimens can be 

calculated by summation of the forces in the concrete cross-section and taking moment of the 

forces around the centroid of the concrete cross-section: 

�/ = �* +J�58 (16) 

�/ = �* 	KL +J�58�F − .8� (17) 

KL = 2	F
3 M sinN A

A − sin A cos AO (18) 

where KL is the distance between the centroid of concrete in the compression side to the 

centroid of the concrete cross-section. 

 

Figure 18(a) and (b) show the peak axial load-bending moment diagrams of the experimental 

and calculated results corresponding to the first and the second peak loads, respectively, for 
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the GFRP-RC specimens. Two analytical peak axial load-bending moment diagrams were 

drawn for the GFRP-RC specimens. In the first curve, the contribution of the GFRP bars in 

compression was ignored. In the second curve, the contributions of the GFRP bars in 

compression were taken into account. It can be seen that there is a large difference between 

the experimental and calculated results when the effect of the GFRP bars was ignored in the 

compression region. However, the experimental results are in a better agreement with the 

calculated results when the effect of the GFRP bars in compression is taken into account. The 

experimental bending moments of the GFRP-RC beam specimens were greater than the 

calculated results. This may be because the shear span of the RC beam specimens was smaller 

than twice of the effect depth of the concrete cross-section. Eventually, it can be concluded 

that ignoring the contribution of GFRP bars in compression is not reasonable and very 

conservative.  

 

Conclusions 

In this study, a total of 12 circular RC specimens were tested under different loading 

conditions. The specimens were reinforced with conventional steel bars and helices and 

GFRP bars and different pitches of GFRP helices. The effect of replacing steel reinforcement 

with the same amount of GFRP reinforcement and the effect of spacing of the GFRP helices 

on the behavior of the RC specimens were investigated. Based on the experimental 

investigations carried out in this study, the following conclusions can be drawn: 

1. Replacing the steel bars and helices with the same amount of GFRP bars and helices led to 

reductions in the axial load carrying capacity and bending moment of the specimens under 

different loading conditions. Also, increase in the applied initial eccentricity caused a 

reduction in the performance of the column specimens in terms of axial load carrying 

capacity and ductility. 
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2. The contribution of the longitudinal steel bars in the load carrying capacity of the column 

specimens under concentric load was about two times of the contribution of the 

longitudinal GFRP bars. Whereas, the ductility of the GFRP-RC column specimens was 

slightly greater than the ductility of the reference steel-RC column specimens under 

different loading conditions.  

3. Reduction of the GFRP helices pitch from 60 to 30 mm led to improvement in the 

performance of the GFRP-RC specimens in terms of load carrying capacity, bending 

moment, and ductility. 

4. The load carrying capacity and bending moment of the GFRP-RC specimens can be 

calculated by the same principles used for the conventional steel-RC specimens. Also, 

ignoring the contribution of the GFRP bars in compression may result in a large 

discrepancy between the experimental and analytical results.  
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Table 1. Test Matrix 

Group Specimen 

Longitudinal 

reinforcement 

Transversal 

reinforcement 

Test eccentricity 

S6-S60 

S6-S60-C 

Steel 

6 N12 

Steel 

R10@60 mm pitch 

Concentric 

S6-S60-E25 25 mm 

S6-S60-E50 50 mm 

S6-S60-F Flexural 

G6-G60 

G6-G60-C 

GFRP 

6 #4 

GFRP 

#3@60 mm pitch 

Concentric 

G6-G60-E25 25 mm 

G6-G60-E50 50 mm 

G6-G60-F Flexural 

G6-G30 

G6-G30-C 

GFRP 

6 #4 

GFRP 

#3@30 mm pitch 

Concentric 

G6-G30-E25 25 mm 

G6-G30-E50 50 mm 

G6-G30-F Flexural 
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Table 2. Mechanical properties of steel and GFRP bars 

Bar size 

Nominal 

diameter 

(mm) 

Area 

(mm
2
) 

Tensile strength 

(MPa) 

Elastic 

modulus 

(GPa) 

Strain corresponding 

to tensile strength 

(mm/mm) 

N12 12 113 600
b 

200
 

0.0030
 

R10 10 78.5 400
b 

190
 

0.0021
 

#4 14.6
a 

168
a 

1200
c, d 

50
d 

0.0240
 

#3 11
a 

95
a 

1275
c, d 

57
d 

0.0224
 

a
 Determined from immersion test 

b
 Yield tensile strength  

c
 Ultimate tensile strength 

d
 Calculated based on the cross-sectional areas obtained from immersion test 
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Table 3. Experimental results of the tested column specimens under concentric loads 

Specimen 

First peak Second peak Ductility 

Axial 

load 

(kN) 

�,�-a 

(kN) 

Axial 

load 

(kN) 

�,�-a 

(kN) 

)**b 

(MPa) 

�� �� 

S6-S60-C 1528 407 - - - 4.8 8.7 

G6-G60-C 1220 163 1425 307 55.6 5.0 9.0 

G6-G30-C 1309 148 2041 494 76.9 5.1 11.6 

a
 �,�- =	4,�-	�,�-	�,�- 

b
 Calculated using Eq. (5) 
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Table 4. Experimental results of the tested column specimens under eccentric loads 

Specimen 

First peak Second peak Ductility 

Axial 

load 

(kN) 

Lateral 

deformation 

(mm) 

Bending 

moment 

(kN.m) 

Axial 

load 

(kN) 

Lateral 

deformation 

(mm) 

Bending 

moment 

(kN.m) 

�� �� 

S6-S60-E25 895 2.4 24.5 - - - 4.7 8.1 

G6-G60-E25 781 2.5 21.5 751 11 27.0 4.8 8.6 

G6-G30-E25 767 2.8 21.3 1003 19 44.1 5.5 9.2 

S6-S60-E50 594 3.2 31.6 - - - 4.6 5.4 

G6-G60-E50 494 3.4 26.4 459 15 29.8 4.7 5.8 

G6-G30-E50 479 3.7 25.7 592 22 42.6 5.5 9.1 
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Table 5. Experimental results of the tested beam specimens 

Specimen 

First peak Second peak 

Load 

(kN) 

Mid-span 

deflection 

(mm) 

Bending 

moment 

(kN.m) 

Load 

(kN) 

Mid-span 

deflection 

(mm) 

Bending 

moment 

(kN.m) 

S6-S60-F 344 6.5 40.1 - - - 

G6-G60-F 247 9.4 28.8 268 17.5 31.3 

G6-G30-F 242 8.1 28.2 452 29.9 52.7 
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