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Abstract

Installation layout of wind turbines plays a prominent role in the design of every wind farm. Thus, the wind farm layout opti-

mization problem is proposed to maximize the total power output with the minimum cost. In this research, Kahrizak region in 

Tehran province of Iran is selected as a windy region and its real wind speed data are gleaned. Three different scenarios are 

also considered, with various number of generations and populations for GA parameters, effective distances, and longitude 

and latitude distances of turbines from each other. Among these scenarios, the best result is obtained for the one in which 

the longitudinal distance between turbines is greater than the latitudinal distance. By observing the wind rose of Kahrizak 

region, it is observed that the dominant wind direction of the region is toward the east and south–east. Therefore, by increas-

ing the longitudinal distance of the turbines from each other, the efficiency can be improved and the turbine layout becomes 

more realistic. In this case, the efficiency rate and normalized cost of turbines are 89.5% and 37.4, respectively, and also 56 

turbines are needed. The amounts of efficiency and power output are very convenient for real wind speed data of a region.
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Introduction

Throughout history, fossil fuels were the primary resources 

for power production. Despite the efforts in increasing gov-

ernment’s attention to the development and expansion of 

renewable energy sources, yet fossil fuels are one of the 

principal sources of power production [1].

However, there is no doubt that some sophisticated cir-

cumstances caused striking limitations for fossil fuel con-

sumers, for instances, finite nature of fossil fuels, rising 

demand for variety of energy sources, sustainable develop-

ment, awareness of environmental problems from burning 

fossil fuels, to name a few. Therefore, many countries are 

paying extra attention to renewable energies.

Recently, the share of renewable energies in the world’s 

energy portfolio has been constantly increased [2]. Renew-

able energy resource is often viewed as a good alternative for 

fossil fuel because of its wide availability and environmen-

tally friendly nature [3]. Although, there are several inex-

pensive and renewable energy sources in the world, their 

uses are somewhat low [4]. Among all sources of renewable 

energies, wind power due to its safety for environment as 

well as its sustainability, has become more conspicuous in 

recent years [5]. As the electrical power generated by wind 

farms is cost-effective, the number of wind farms is notice-

ably proliferated. Since 1980, from the beginning of wind 

farms’ development, wind power experienced an unprec-

edented evolution, increased with almost 1500% within the 

global wind power installation over the last 15 years, in such 

a way that at the end of 2015, the total installed capacity 

reached 432 GW [6].

Wind turbine transforms wind power to electrical power. 

For a specific large area with high wind speed, to increase 

power production and decrease costs of installation, wind 

turbines are grouped within a wind farm. The location of 

the wind farm, the quality of gearbox, and the shape of wind 
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blades are the factors affecting the conversion efficiency [7]. 

According to Kenway and Martin [8], changing the blade 

geometry and structural sizes while maintaining a fixed 

cost and compatibility with the remainder of turbine system 

can improve the power output of a wind turbine. Besides, 

reduced cost of producing wind power can be achieved in 

different ways, for example, site selection, site layout design, 

predictive maintenance, and optimal control system design 

[9]. The installation layout of turbines plays an important 

role in the design of a wind farm. A non-optimal wind farm 

layout design can lead to lower than expected wind power 

capture, increased maintenance costs, and so on [10]. By the 

ability of turbine’s rotor rotation, wake zone is extracted, 

which renders negative influence on other turbines [11]. This 

wake phenomenon, which is generated by upstream turbines, 

causes speed reduction for downstream ones. Subsequently, 

the power generated by downstream turbines is lower than 

upstream ones. Since conventional wind turbines’ layout sig-

nificantly increases wake effect, optimization of the layout 

configuration can be a rational strategy to decrease wake 

effects and also maximize the total power which may be 

extracted from wind farms. The ‘wind farm layout optimiza-

tion (WFLO)’ problem is classified under such type of wind 

turbine layout problem [12].

A lot of research studies have been carried out related to 

WFLO. There are two major approaches in layout optimiza-

tion: grid-based approach, and unrestricted layout approach. 

Grid-based approach is to divide a wind farm into a set of 

equal-sized cells and place turbines in the center of these cells, 

while in unrestricted layout approach, turbines are allowed 

to be placed in any positions within the wind farm [13]. For 

example, Grady et al. [14] conducted grid-based approach to 

place wind turbines in a 2 km × 2 km farm and results showed 

that it was able to place wind turbines in a defined area where 

the goals of the optimization were maximizing the power 

output and reducing the cost of implementation. Bazacliu 

et al. [15] conducted a study on wind farm layout optimiza-

tion problem (WFLOP). The objective of their study was to 

determine the optimal placement of wind turbines within the 

farm. They used a discrete representation of wind farm so that 

the farm area was decomposed into a set of cells, where each 

cell can contain only one wind turbine. In that approach, the 

expected power production was maximized. Chowdhury et al. 

[16] presented the unrestricted wind farm layout optimization 

(UWFLO) that addressed critical aspects of optimal wind 

farm planning using constrained particle swarm optimization 

(PSO). Reasonable agreement between the wind farm model 

and the experimental results were obtained. The complex 

nonlinear optimization problem presented by the wind farm 

model was effectively solved. They found that an optimal com-

bination of wind turbines with different rotor diameters could 

improve the wind farm efficiency. Mora et al. [17] applied an 

evolutionary algorithm (EA) to maximize the profit obtained 

during the useful life of a wind farm, taking into account a 

given initial investment. Chen et al. [18] investigated the effect 

of using wind turbines with different hub height on power out-

put in a small wind farm. Three different wind conditions were 

analyzed using nested genetic algorithm. Results showed that 

power output of the wind farm using different hub heights 

would be increased even when the total number of wind tur-

bines was the same. Moreover, results showed that different 

hub heights could also improve cost per unit power of a wind 

farm. Serrano Gonzalez et al. [19] discussed the optimal wind 

farm configuration problem and proposed EA to optimize 

the wind farm layout. The algorithm’s optimization process 

was based on a global wind farm cost model using the initial 

investment and the present value of the yearly net cash flow 

during the entire wind farm lifespan. Results showed that the 

proposed EA was capable of finding the optimum wind farm 

configuration.

Some other optimization methods have been used for lay-

out optimization of a wind farm. For example, binary parti-

cle swarm optimization (BPSO) was used to design optimal 

wind farm configuration [11]. Ant colony optimization (ACO) 

algorithm was applied to the design of wind farm layout [20]. 

Monte Carlo simulation method was used to optimize the lay-

out of a wind farm [21]. Bansal and Farswan [22] presented 

a solution of WFLO problem using a recent unconventional 

optimization algorithm, biogeography-based optimization 

(BBO). Results showed that BBO was capable to outperform 

conventional methodologies of solving WFLO problem.

This paper attempts to create a GA-based innovative WFLO 

method taking into account the ability of rotor’s 360 rotation 

against wind direction and considering the following factors: 

(1) real wind conditions, (2) selection of wind turbine type 

and its parameters, (3) number of wind turbines needed for a 

given wind farm, and (4) wind farm shape. The overall objec-

tive of this paper is to significantly develop the grid-based 

approach by:

1. Developing novel GA-based codes to optimize the wind 

farm layout as well as reduce the cost per unit power.

2. Implementing the newly developed GA-based codes in a 

given site under real wind conditions with three scenar-

ios, with different number of generations and population, 

different effective distances, and different longitudinal 

and latitudinal distances of turbines from each other.

3. Estimating the annual power production of wind farm 

and its efficiency.
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Materials and methods

Site description and wind condition

The power output of a wind farm is directly affected by wind 

condition. Most previous research used simplified wind con-

ditions, including three scenarios of single wind speed and 

direction, single wind speed and different directions, and dif-

ferent wind speeds (8, 12 and 17 m/s) and directions. In this 

study, real wind data in the Kahrizak region, Tehran prov-

ince of Iran are used. The data include wind speeds and wind 

directions for 6 years at 3 h intervals. The detailed informa-

tion about Kahrizak region is summarized in Table 1. By 

assessing the wind data of Kahrizak and drawing wind rose 

of this region (Fig. 1), it is observed that this region with 

maximum and average wind speed of 15 and 6 m/s, respec-

tively, has a high potential for establishing wind farm and 

the dominant wind direction of the region over the 6 years is 

toward east and south–east. Kahrizak region also has a flat 

terrain and Earth’s topography has a surface roughness prop-

erty which is considered as a constant number of Z0 = 0.3. 

Besides, wind turbines that are used in the wind farm have 

the same model and characteristics. The wind farm chosen 

in this study is divided into a set of cells, where each cell can 

contain only one wind turbine that is located in the center of 

each cell. Two-dimensional Cartesian coordinate system is 

used to determine the turbine layout and to obtain the opti-

mal response. To prevent severe and dangerous wind arising 

Table 1  Detailed information about Kahrizak region

Parameter Value

Location Kahrizak, Tehran, Iran

Period of record 2010–2015

Longitude 51°21′36.45″E
Latitude 35°31′2.68″N
Height above mean sea level (m) 1003

7 %

14 %

21 %

28 %

35 %

EASTWEST

SOUTH

NORTH

Wind speed (m/s)

> 12

9 - 12

6 - 9

3 - 6

Calms : 23.61 %

Resultant Vector

95 deg – 29 %

Fig. 1  Wind rose of Kahrizak region
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from the turbulent flow behind wind turbines, the distance 

between a turbine and its adjacent turbines is considered.

Cost model

The total cost for installation of a wind farm is modeled 

in such a way that depends exclusively on the number of 

installed turbines. To evaluate the installation cost of a wind 

farm, the equation applied in Mosetti et al. [23] is used in 

this study (Eq. 1). It is assumed that the non-dimensional-

ized number of cost/year (normalized cost) for a turbine is 

one. If a large number of turbines are installed, a maximum 

cost reduction of 
1

3
 can be considered for each added turbine. 

Thus, the total cost/year of the whole wind farm or the nor-

malized cost is computed as follows:

where N is the number of turbines installed in the wind farm.

Turbine parameters and wake model

Wind farm efficiency and cost per unit power are mostly 

affected by the selection of wind turbine type. The electrical 

power extracted from the wind turbine is influenced by direc-

tion, intensity and occurrence probability of the wind. Thus, 

thrust coefficient, hub height and rotor diameter are effective 

factors on the extracted power. There are different turbine 

types with different characteristics and powers. For this study, 

wind turbine AV 928, a production of Avantis, which is a man-

ufacturer from China, is selected. The characteristic curve of 

turbine AV 928 under 10% turbulence is shown in Fig. 2. The 

technical characteristics of the turbine are presented in Table 2. 

The turbine starts producing power at wind speed of 3 m/s and 

reaches the maximum produced power of 2500 kW at wind 

speed of 11.6 m/s. After this point, with increasing wind speed 

up to 25 m/s, turbine’s power output remains constant till the 

wind speed reaches cutting out wind speed. At higher speeds 

(1)Normalized cost = N

(

2

3
+

1

3
e−0.00174 N

2
)

,

than 25 m/s, the turbine blades automatically remain inactive 

to prevent turbine damages.

The following equation shows the relationship between the 

speed and the turbine’s electrical power output considering a 

quadratic function based on EL-Shimy et al. [24]:

where Pi is the power output of ith wind turbine, and ui is the 

wind speed in front of ith wind turbine. When the ith wind 

turbine is not affected by any wake, ui will be the velocity 

of the free stream. When the ith wind turbine is affected by 

a wake, ui will be the wind speed caused by the wake [13].

The wake model used in this study is the one proposed by 

Jensen (1983) in describing the wind behavior of a wake, as 

shown in Fig. 3. Assuming that the momentum is conserved 

in the wake, the wind velocity of a downstream turbine is as 

follows [25]:

(2)
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Fig. 2  Characteristic curve of AV928 wind turbine

Table 2  Technical characteristics of wind turbine AV 928

Parameters Value

Rated power (kW) 2500

Cut-in wind speed (m/s) 3

Rated wind speed (m/s) 11.6

Cut-out wind speed (m/s) 25

Rotor diameter (m) 93.2

Swept area  (m2) 6822

Hub height (m) 80

Fig. 3  Schematic diagram of Jensen’s wake model [14]
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where u is the wind velocity of the downstream turbine, u0 

is the free flow velocity, x is the distance from the upstream 

turbine, a is the axial induction factor, α is the entrainment 

constant, and r is the downstream rotor radius. The rela-

tionship between r and the turbine radius rr is computed by 

Eq. (4) [25]:

The axial induction factor can be computed by the turbine 

thrust coefficient CT, which is given by Eq. (5) [14]:

where α is the entrainment constant that can be varied, 

depending on the characteristics of local terrain and weather 

conditions, and is determined by Eq. (6) [14]:

where h represents the hub height, and z0 is the terrain sur-

face roughness. Assuming that there are multiple wakes, 

the kinetic energy wastage is equal to sum of the energy 

defects. Thus, for N downstream turbines, the velocity can 

be expressed by Eq. (7) [26]:

When investigating wind in different directions, it is noted 

that if wind blows from the right direction, only the last 

column is subjected to direct wind (Fig. 4a) and if the wind 

direction is inclined, both the first row and the last column 

are exposed to direct wind (Fig. 4b).

It is also worth noting that the wake effect varies for dif-

ferent wind angles. An innovative algorithm is developed 

(4)r = r
r

√

1 − a

1 − 2a

.

(5)CT = 4� (1 − �),

(6)
� =
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(7)u = u
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based on the angle of two turbines from each other and the 

angle of wind collision with the first turbine (Fig. 5).

According to Fig. 5, this pattern is used to determine 

whether the turbine T is influenced by the wake effect of 

turbine T1. The wake effect generated by the wind blown 

from turbine T1 makes angle α with wind direction. On the 

other hand, two turbines T and T1 create an angle β with 

each other. According to Eq. (8), the wake effect of turbine 

T1 affects turbine T.

If Eq. (8) is not realized, turbine T will not be influenced 

by the wake effect of turbine T1. To implement this and cod-

ify it in MATLAB software, specific items should be consid-

ered. Therefore, the terrain is divided into four coordinate 

intervals, and considered as radians (Fig. 6).

In this study, to determine the small range of wind 

direction, the interval between 0 and π/2 is selected 

(0 ≤ angle < π/2) and then generalized to three other inter-

vals. Besides, to determine the turbine affected by the wake 

of upstream turbine, the wake of the nearest turbine is con-

sidered and this assumption is precisely generalized to other 

ones. The impact criterion of a turbine from the wake of the 

(8)angle − � < � < angle + �.

Fig. 4  Turbines which are 

exposed to wind’s speed and 

angle. a The last column is 

exposed to the initial wind 

speed. b The first row and the 

last column are exposed to the 

initial wind speed

Fig. 5  Pattern of wake effect
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upstream turbine is the distance. Thus, the effective distance 

(ED) is innovatively considered six times as much as the 

average longitudinal and latitudinal distance between the 

turbines (Eq. 9)

where x and y are the longitudinal and latitudinal distance of 

the turbines, respectively.

Optimization method

Overview of genetic algorithm

Wind farm layout optimization (WFLO) problem is a dis-

crete problem that, due to its complexity, for example, non-

uniform wind speeds with variable directions, cannot be 

solved using classical methods and have to be solved by 

intelligent algorithms. Among all intelligent algorithms that 

have been used in WFLO problem, GA is the best one. It is 

actually the most famous type of evolutionary algorithms 

due to its specific properties to yield a set of preliminary 

solutions, search for optimal solution from amongst the 

proper ones and repeat this process to achieve the optimum 

solution [27]. GA is a heuristic solution-search or optimiza-

tion technique, originally motivated by the Darwinian prin-

ciple of natural genetic and evolution mechanisms observed 

in nature. GA was first proposed by John Holland [28] as 

(9)effective distance = 6 ×

(

x + y

2

)

,

a means of finding good solutions to problems that were 

otherwise computationally intractable. Holland’s Schema 

Theorem and the related building block hypothesis provided 

a theoretical and conceptual basis for the design of efficient 

GA that was successfully applied to a wide range of practi-

cal problems in science, engineering and industry [29–34]. 

This algorithm is based on artificial intelligence and is a 

population-based method which improves the solutions dur-

ing different iterations and contributes to the evolutionary 

process of solutions. GA includes following stages:

In the first stage, a random set of solutions is created. 

Each solution is called a chromosome and each chromosome 

is made of smaller parts named as gene. In GA, these set of 

solutions are called population. After the formation of each 

generation, it must be specified to what extent the chromo-

somes of the next generation are close to optimal solution. 

This is known as fitness function. The best solutions for 

each generation could be defined using fitness function. In 

the next stage, we create a new generation using a series of 

GA operators. These operators include selection, crossover 

and mutation. Creation of a new generation is accomplished 

through reproduction, for which we need parents. The par-

ents are determined from current population by a selection 

operator. This operator selects the best cases from the chro-

mosomes existing in a population to create a new generation. 

With the fusion of two chromosomes, a new member will 

be created. These two genetic chromosomes play the role 

of the parents and the new member plays the role of the 

child. The most common types of crossovers contain: one-

point crossover, two-point crossover, and uniform crossover. 

Mutation operator uses only one parent to make a child. This 

is realized through slight changes in initial strings of chro-

mosomes. Finally, after the creation of a new generation, we 

select the best solution (chromosome) of this generation and 

compare it with best present solution. This process (mak-

ing generation) continues till the algorithm reaches its final 

position, e.g., the optimal solution is found or the stopping 

criterion for the algorithm is brought to an end.

Process of optimization

GA coding is implemented in MATLAB to search the opti-

mal layout of a given wind farm. The coding is sub-divided 

into several sections as follows:

Insert data: in this section, data are introduced as input to 

the algorithm, e.g., terrain dimensions, wind turbine charac-

teristics, wind characteristics, and the number of turbines.

Problem definition: in this section, objective functions 

including fitness and cost functions related to this problem 

are determined (Eq. 10). The fitness function in this study is 

to optimize the wind farm layout, and the cost function is to 

minimize the total cost of the produced power.

π

3

2

2

0 and 2π

Fig. 6  Terrain division into four coordinate intervals
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Parameter setting: in this section, parameters related to 

reproduction, such as population size, max_iter, percent-

ages of children produced by crossover and by mutation are 

determined.

Initialization: in this section, an empty matrix for indi-

viduals (chromosomes) is defined. In this study, as initial 

population, GA makes a m × n binary matrix including dif-

ferent individuals representing wind farm layouts, where m 

is the total number of individuals in one generation and n is 

the length of each individual representing potential positions 

of wind turbines. The values of m and n are defined at the 

beginning of optimization. In each individual, 1 means there 

is a turbine in the cell and 0 means there is no turbine in it. 

After that, a random solution should be created for the total 

population. Members of the population are then sorted and 

ultimately the best solutions are found and saved.

GA main loop: in the main loop of the algorithm, main 

computations of the algorithm are performed to determine 

the optimal solution for the problem. In this section, the 

algorithm generates new children based on crossover and 

(10)

Objective =
Normalized cost

Ptot

=

N

�

2

3
+

1

3
e−0.00174 N2

�

∑i=N

i=1
P

i

.

mutation operations. The two operators of crossover and 

mutation are written as a function in this section.

Crossover: this section includes properties related to 

crossover operator. The present paper applies the single-

point crossover method and the crossover rate is consid-

ered 0.9.

Mutation: this part includes properties related to muta-

tion operator. The present paper applies the mutation 

method in chromosomes with real variable and the muta-

tion rate is considered 0.1.

Results: results of the algorithm, including the best 

solution, the best fitness, computation time, figures rep-

resenting the number of iteration, fitness, etc., are coded 

in this section.

Figure 7 illustrates the flowchart of the methodology 

followed in this study for solving WFLO problem using 

genetic algorithm.

Results and discussion

Optimal turbine layout of the studied region is presented 

using three scenarios: (1) different population and genera-

tions, (2) different effective distances, and (3) different 

Insert data:

Terrain dimensions, wind       

turbine characteristics, wind  

characteristics, and the 

number of turbines

Definition of objective functions:

optimizing wind farm layout, as well as

minimizing the cost per unit power in 

year

Initializing the population 
Evaluating the values of 

objective functions

Start layout 

optimization

Result: Optimized wind 

farm layout

Yes

No

Fig. 7  Flowchart of wind farm layout optimization by genetic algorithm
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longitudinal and latitudinal distance of the turbines from 

one another.

Optimization results with di�erent numbers 
of population and generations

Layout optimization is performed in MATLAB software for 

Kahrizak region with three different numbers of generations 

and population: (1) generation = 500 and population = 250; 

(2) generation = 500 and population = 500; and (3) genera-

tion = 1000 and population = 500. The optimization results 

based on different generations and population are presented 

in Table 3. According to Table 3, changes in the number of 

generations and population do not have a significant impact 

on wind farm efficiency, but increases the total power. It 

must be mentioned that wind farm efficiency is defined 

as the ratio of the total energy extracted by the wind farm 

having N turbines and N times the energy extracted by an 

isolated turbine with the same undisturbed wind [23]. Fig-

ure 8 shows the visual representation of the optimal layout 

obtained using three different number of generations and 

population. As can be seen, three layouts are approximately 

similar to each other. Considering the turbine’s 360° rota-

tion, the turbine dispersion at the outer edge of the wind 

Table 3  Optimization results of 

Kahrizak region using different 

generations and population

Parameter Generation = 500 popula-

tion = 250

Generation = 500 popula-

tion = 500

Genera-

tion = 1000 popu-

lation = 250

Fitness value 0.0036 0.0036 0.0036

Total power (kW/year) 9228.2 9418.6 9422.4

Normalized cost 33.5 34.18 34.18

Efficiency (%) 88.63 88.69 88.72

Number of turbines 50 51 51

Fig. 8  Optimal layout of 

turbines for the studied wind 

farm, considering different 

generations and population. a 

Generations = 500 and popula-

tion = 250, b generations = 500 

and population = 500, and c 

generations = 1000 and popula-

tion = 500
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farm to its center is logical and justifiable. Convergence dia-

grams of the GA for three different generations and popula-

tion are presented in Fig. 9.

Optimization results with di�erent e�ective 
distances

In this scenario, the distance between adjacent turbines is 

changed from 6 to 20 times as much as the average longitu-

dinal and latitudinal distance of turbines from one another. 

Then, the coding is executed with generations and popula-

tion of 1000 and 500, respectively. The numerical results are 

summarized in Table 4. Based on the results, by increasing 
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Fig. 9  Convergence diagrams of genetic algorithm for three different generations and population. a Generations = 500 and population = 250, b 

generations = 500 and population = 500, and c generations = 1000 and population = 500

Table 4  Comparison of results with different effective distance in 

Kahrizak region

Parameter ED = 6 ×

(

x+y

2

)

ED = 20 ×

(

x+y

2

)

Fitness value 0.0036 0.0036

Total power (kW/year) 9422.4 9205.2

Normalized cost 34.18 33.54

Efficiency (%) 88.72 88.41

Number of turbines 51 50
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the effective distance, the efficiency has been decreased from 

88.72 to 88.41%. Also, total output power is decreased from 

9422.4 to 9205.2 kW/year. These results reflect that increas-

ing the effective distance does not have a positive effect on 

results and highlight that the distance considered (six times 

as much as the average longitudinal and latitudinal distance) 

is logical. Figure 10 shows the visual representation of the 

optimal layout obtained for the effective distance 20. Con-

vergence diagram of GA for effective distance 20 is pre-

sented in Fig. 11.

Optimization results with di�erent longitudinal 
and latitudinal distance of turbines from one 
another

Given equal number of generations and population and 

changing the distance x and y, the numerical results are as 

presented in Table 5. Numerical results show that changing 

the longitudinal distance (x) and latitudinal distance (y) have 

a positive effect on the wake effect and significant increase 

of power output obtained from this scenario confirms it. 

Figure 10 shows the visual representation of the optimal 

layouts obtained from this scenario. According to Fig. 12, 

because the dominant wind direction in this region is toward 

the east and south–east, thus by increasing the longitudinal 

distance (x) of the turbines from one another, the density 

of the turbines in the left hand of the upper rows and the 

right hand of the lower rows is more than the other sides of 

the wind farm. In fact, by increasing the longitudinal dis-

tance of the turbines from each other, the wake effect on the 

downstream turbines is decreased, which results in higher 

efficiency. Convergence diagram of GA with different lon-

gitudinal and latitudinal distance of the turbines from one 

another is shown in Fig. 13.

According to results from this study, it can be concluded 

that GA is capable of optimizing the turbine layout so that 

the energy cost is reduced compared to that of the traditional 

layout. These results can be confirmed by some similar stud-

ies. For example, Pillai et al. [35] conducted a case study 

wherein they explored the application of a wind farm layout 

evaluation function and layout optimization framework to 

Middelgrunden wind farm in Denmark using genetic algo-

rithm. Results showed that this optimization algorithm was 

capable of identifying layouts with reduced levelized energy 

cost compared to the existing layout while still consider-

ing the specific conditions and constraints of this site and 

those typical of future projects. In another study, Rajper and 

Amin [36] conducted a GA-based study to find out the opti-

mal solution for the wind turbine micro-sightings. The site 

that was under consideration for greener solutions of the 

problem was Gharo-Sindh, Pakistan. The basic objective of 

the study was to find the most optimal solution for cost per 

unit power. Results showed that GA was able to optimize 

the value of fitness function. Parada et al. [37] proposed an 

approach to solve the WFLO problem based on a Gaussian 

wake model using GA. The proposed approach minimized 

the annual cost of energy of a wind farm. The application 

Fig. 10  Optimal layout obtained for the effective distance 20 ×

(

�+�

2

)
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Fig. 11  Convergence diagram of genetic algorithm for effective dis-

tance 20

Table 5  Optimization results with different longitudinal and latitudi-

nal distance of turbines from one another in Kahrizak region

Parameter X = 372.8

Y = 186.4

X = 186.4

Y = 372.8

Fitness value 0.0036 0.0036

Total power (kW/year) 10,441 8834.9

Normalized cost 37.41 32.29

Efficiency (%) 89.54 88.39

Number of turbines 56 48
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of the proposed approach yielded higher annual generation 

and a lower computational time for all wind scenarios under 

study.

Conclusions

Given the relatively low cost of electrical power gener-

ated by wind farms, the number of installed wind farms is 

increasing every year. The installation layout of turbines 

plays an important role in the design of a wind farm. 

Thus, wind farm layout optimization (WFLO) problem is 

proposed so as to maximize the total power output with 

minimum cost. This study introduces innovative GA-based 

codes considering the rotor’s 360° rotation ability against 

the wind direction to make the optimization of wind tur-

bine layout closer to reality. In this study, by selecting the 

Kahrizak region as a windy region and choosing a turbine 

named “AV980”, three different scenarios, including dif-

ferent numbers of generations and population, different 

Fig. 12  Optimal layout with 

changing longitudinal and 

latitudinal distance of turbines 

from one another. a X = 372.8 

and Y = 186.4, b X = 186.4 and 

Y = 372.8
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Fig. 13  Convergence diagram of genetic algorithm with different longitudinal and latitudinal distance of the turbines from one another
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effective distances, and different longitudinal and latitu-

dinal distance of turbines from one another are studied. 

Among three scenarios, the best result is obtained for a 

scenario wherein the longitudinal distance is greater than 

the latitudinal distance. By observing the wind rose of 

Kahrizak region, it is found that the dominant wind direc-

tion of the region is toward the east and south–east. There-

fore, increasing the longitudinal distance of the turbines 

from one another will improve the efficiency and also 

make the turbine layout more realistic in the terrain. In 

this case, the efficiency and normalized cost of turbines 

are 89.5% and 37.4, respectively, and also 56 turbines are 

needed. Total power is computed annually over 10.1 MW. 

These amounts of efficiency and power output are very 

suitable based on real data of a region.
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