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experimental kernel‑based 
quantum machine learning in finite 
feature space
Karol Bartkiewicz1,2*, Clemens Gneiting3, Antonín Černoch2*, Kateřina Jiráková2, 
Karel Lemr2* & franco nori3,4

We implement an all‑optical setup demonstrating kernel‑based quantum machine learning for two‑

dimensional classification problems. In this hybrid approach, kernel evaluations are outsourced to 
projective measurements on suitably designed quantum states encoding the training data, while the 
model training is processed on a classical computer. Our two-photon proposal encodes data points in 
a discrete, eight-dimensional feature Hilbert space. In order to maximize the application range of the 
deployable kernels, we optimize feature maps towards the resulting kernels’ ability to separate points, 
i.e., their “resolution,” under the constraint of finite, fixed Hilbert space dimension. Implementing 
these kernels, our setup delivers viable decision boundaries for standard nonlinear supervised 
classification tasks in feature space. We demonstrate such kernel-based quantum machine learning 
using specialized multiphoton quantum optical circuits. The deployed kernel exhibits exponentially 
better scaling in the required number of qubits than a direct generalization of kernels described in the 

literature.

Many contemporary computational problems (like drug design, tra�c control, logistics, automatic driving, stock 
market analysis, automatic medical examination, material engineering, and others) routinely require optimiza-
tion over huge amounts of  data1. While these highly demanding problems can o�en be approached by suitable 
machine learning (ML) algorithms, in many relevant cases the underlying calculations would last prohibitively 
long. Quantum ML (QML) comes with the promise to run these computations more e�ciently (in some cases 
exponentially faster) by complementing ML algorithms with quantum resources. �e resulting speed-up can 
then be associated with the collective processing of quantum information mediated by quantum entanglement.

�ere are various approaches to QML, including linear algebra solvers, sampling, quantum optimization, 
or the use of quantum circuits as trainable models for inference (see, e.g., Refs.2–18). A strong focus in QML 
has been on deep learning and neural networks. Independently, kernel-based approaches to supervised QML, 
where computational kernel evaluations are replaced by suitable quantum measurements, have recently been 
 proposed10,12 as interesting alternatives. Combining classical and quantum computations, they add to the family 
of quantum-classical hybrid algorithms.

Kernel-based QML (KQML)is particularly attractive to be implemented on linear-optics platforms, as quan-
tum memories are not required. Here, we thus investigate the prospect of KQML with multiphoton quantum 
optical circuits. To this end, we propose kernels that scale exponentially better in the number of required qubits 
than a direct generalization of kernels previously discussed in the  literature12. We also realize this scheme in a 
proof-of-principle experiment demonstrating its suitability on the platform of linear optics, thus, proving its 
practical applicability with current state of quantum technologies.

Let us explain KQML by �rst recalling some de�nitions and theorems, and then we overview the recently 
proposed method for �nding linear boundaries in feature Hilbert space (FHS)12. FHS is de�ned as a space of 
complex vectors |ϕ(x)�, where ϕ describes a feature map (FM), and x denotes a real vector of dimension D (the 
input data). FHSs generally have higher dimension than the original data x. �is implies that linear decision 
boundaries in FHS can give rise to nonlinear decision boundaries in the original data space. By virtue of such 
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nonlinear FMs, it is not required to implement nonlinear transformations on the quantum-state encoded data, 
in contrast to the direct amplitude encoding common in other QML approaches.

�e central idea underlying KQML is that inner products of vectors that are mapped into FHS can be directly 
accessed by measurements, which then suggests to identify these inner products with kernel functions. By 
physically measuring the kernel functions κ(x′, x) = |�ϕ(x′)|ϕ(x)�|2 , it is thus possible to bypass their per pedes 
computation on a classical machine. Such measurement-based implementation may, in some cases, be signi�-
cantly faster than the latter option.

It follows from the representer theorem that a function of the reproducing kernel that minimizes the cost 
function (a solution to the ML problem) can be written as f ∗(x) =

∑M
m=1 amκ(x, xm), where M is the number 

of training samples, the coe�cients am are real parameters subject to the training, and x belongs to feature space. 
For a given kernel κ , the parameters am can be found e�ciently. �e objective of ML is to deliver a function 
f ∗(x) that classi�es the non-separable points x1, ..., xM−K and xM−K+1, ..., xM by �nding a trade-o� between 
the number of misclassi�cations and the width of the separating margin. �e parameters am can be obtained by 
solving the following problem: minimize 

∑
M

m=1
(|am|2 + γ um) such that aiκ(x, xi) ≥ 1 − ui for i = 1, ...,M − K , 

and aiκ(x, xi) ≤ −(1 − ui) for i = M − K + 1, ...,M, u ≥ 0, where γ gives the relative weight of the number of 
misclassi�ed points compared to the width of the margin. In a nutshell, this approach allows to replace the non-
linearity of the problem with linear multidimensional quantum computations, which o�ers a potential speed-up.

Results
Kernel resolution in finite dimensions. An important and widespread kernel class are Gaussian-type 
kernels, which introduce a �exible notion of proximity among data points. An essential hyperparameter of 
Gaussian-type kernels is thus their variance (or, more generally, their resolution). �e resolution determines a 
Gaussian kernel’s ability to distinguish data points, which, for given training data, can decide if a model can be 
trained successfully or not. If kernel resolution is too coarse, resulting decision boundaries miss relevant details 
in the data; if it is too re�ned, the model becomes prone to over�tting. Only if the resolution can be chosen su�-
ciently �exibly to be accommodated to the structure of the data, model training can be expected to be successful.

In the in�nite-dimensional feature spaces o�ered by continuous variable implementations, viable FMs with 
(in principle) arbitrary resolution can be implemented, e.g., by mapping data into squeezed  states12, where the 
adjustable squeezing factor then determines the resolution of the resulting Gaussian kernel (i.e., its variance). 
However, within the paradigm of discrete, �nite-dimensional quantum information processing, the FHS dimen-
sion becomes a scarce resource, resulting in limitations on kernel resolution. As we show now, optimizing the 
range of kernel resolutions in �nite dimensions then forces us to move beyond the scope of Gaussian kernels.

Let us discuss the optimal kernel resolution that can be achieved in N-dimensional FHS, within the class of 
FMs of the form

with {|n�} a basis of the Hilbert space and x ∈ [−1/2, 1/2) . Any data set can be brought to this form, which is a 
routine step in data preparation. We stress that the amplitudes rn are independent from the input values x. �e 
resulting kernels then are of the form

In this shorthand notation κ(x) ≥ 0 ∀x and κ(0) = 1 . For the sake of clarity we consider here 1D input data x. 
For D-dimensional inputs x , each input component xi is encoded separately, requiring an (N · D + D)-dimen-
sional FHS. If the FHS is spanned by q qubits, we have N = 2

q
− 1 . In particular, for N = 1 and rn = 1/2 we have 

κ(x, x′) = cos[π(x′ − x)]2, which realizes a cosine kernel (CK). �e class of states (1) comprises also truncated 
squeezed states |ψTSQ(x)� , with

(ζ denotes the squeezing factor and B renormalizes the state a�er truncation), and, what we call here, multi-slit 
interference states |ψMSI(x)� , with constant amplitudes 

√
rn = 1/

√
N  . �e latter inherit their name from the fact 

that, by virtue of �x|p� = e2π ipx (h=1), they are formally equivalent to a balanced superposition of momentum 
states in a (hypothetical) compact continuous variable Hilbert space (augmented by an internal spin-N degree 
of freedom),

giving rise to “N-slit interference” in the position coordinate when projected onto �x| ⊗ 1√
N

∑
N

n=1
�n|19. Note 

that polynomial kernels (discussed, e.g.,  in8,12) fall outside of the state class (1).

(1)x → |ψ(x)� =
N∑

n=0

√
rne

2π inx |n�,
N∑

n=0

rn = 1,

(2)κ(x, x′) = κ(x − x
′) =

∣

∣

∣

∣

∣

N
∑

n=0

rn e
2π in(x′

−x)

∣

∣

∣

∣

∣

2

.

(3)
√
rn =

√
(2n)!(− tanh ζ )n

√
B 2nn!

√
cosh ζ

(4)|ψMSI(x)� =
1

√
N

N∑

n=1

�x|p = n�|n�,
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We can use the above compact-space embedding to gain further insight into the nature of our kernel de�ni-
tion (2). If we interpret the states (1) as |ψ� =

∑N
n=1

√
rn|p = n� ⊗ |n� , we can introduce the density operator 

ρ = |ψ��ψ | and trace over the internal spin degree of freedom,

We then find that the kernel (2) is related to the spatial coherences of the mixed reduced state ρext : 
κ(x, x′) = |�x|ρext|x

′�|2.
We de�ne a kernel’s spatial resolution �x[κ] by its variance (a hyperparameter typically optimized for Gauss-

ian kernels)

where the renormalized kernel κ̃(x) = κ(x)/R , with R ≡

∫
1/2

−1/2
dx κ(x) =

∑
N

n=1
r
2
n , describes a valid probability 

distribution. In the case of the mulit-slit interference states |ψMSI� , one analytically obtains 
(�x[κMSI])

2 = 1

12
(1 − S1(N)) , with the interferometric “squeezing factor” S1(N) = −

12

π2

∑N−1

j=1
(−1)j

N−j

Nj2
 , and 

N ≥ 219.
�e kernel (6) minimizing the variance is a solution to the optimization problem: minimize r

T ·K ·r

|r|2
 such that 

∑
N

n=1
rn = 1 , where

and r = (r1, . . . , rN )T . In Fig. 1 we compare this optimized kernel with the TSQ and the MSI kernel. �e opti-
mized kernel comes with strongly suppressed side maxima as compared to the MSI kernel, while the TSQ 
maintains a nonvanishing plateau for all x values. Consequently, the optimized kernel enables, for a given N, a 
signi�cantly improved resolution as compared to the other kernel choices. Figure 1b clari�es that amplitudes 
decaying symmetrically about the “center” state are responsible for improving the kernel resolution.

On the other hand, a kernel that maximizes the variance (i.e., κ(x) = 1 ) follows from r1 = 1 and rn = 0 for 
n  = 1 , resulting in the variance (�x[κ])2 = 1/12. By a suitable choice of the coe�cients rn , we can thus tune the 
resolution of the kernel between its minimum value obtained for the optimized kernel and its maximum value 
assumed for a uniform kernel.

Whereas kernels of the form (2) can also be e�ciently computed classically, their quantum evaluation may 
still deliver a signi�cant speed-up. We illustrate this with an example, the computation of cos2N x. �e optimal 
classical algorithm depends on the properties of N. In the best case scenario, N is a power of 2. �en, in the �rst 
step we compute cos2 x. Next, we compute [cos2 x]2, etc. �e entire computation then takes log2(N + 1) steps. As 
we demonstrate below, for the quantum implementation, the required size of the FHS (number of qubits) grows 
also like log2(N + 1) . However, in contrast, there the associated calculations are replaced by a single measure-
ment. We expect similar arguments to hold for more general classes of functions, as well.

Beyond the quantum-classical hybrid approach pursued here, the proposed FMs may, if seen as modules to be 
combined with other quantum computing subroutines, contribute their resource-e�cient data point separation 
ability to an overall setup that comes with an inherently quantum scaling advantage. MSI states, for instance, can 
be generated in a gate-based quantum computer following the �rst stage of the phase-estimation  algorithm20.

Alternative Gaussian-kernel implementation. Above we have shown that truncated squeezed states 
and their resulting kernels fall within the state class (1). If we relax the condition that the amplitudes rn be inde-

(5)ρext = Trint(ρ) =

N∑

n=1

rn|p = n��p = n|.

(6)(�x[κ])2 ≡

∫ 1/2

−1/2

dx x
2κ̃(x),

(7)Knm =

{

1
12
, n = m

(−1)|n−m|

2(n−m)2π2 , else

Figure 1.  Kernel family (2) for di�erent amplitude choices. (a) We �nd that the resolution-optimized kernel 
(blue solid) exhibits suppressed side maxima as compared to the MSI kernel (red dashed), while the TSQ kernel 
(with squeezing factor ζ = 2 , black dotted) maintains a nonvanishing plateau at all x values. For comparison, 
we also display the respective squeezed-state kernel for N → ∞ (gray dotted) and CK (purple dash-dotted). (b) 
Characteristic amplitude progressions for the example of N = 14 and ζ = 4 . (c) �e optimized kernel exhibits 
a signi�cantly improved resolution progression with N,  as compared to the MSI or the TSQ kernel (here with 
ζ = 3).
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pendent from the input values x, we can formulate an alternative data encoding into truncated squeezed states 
according to

where N = 2
q
− 1 , x = x1 + ix2, and Z−1 =

∑
N

n=0

(s|x|)2n

n!
. Note that this feature map is de�ned for 2D inputs 

x = (x1, x2)
T . For large N this kernel again reproduces to good approximation a Gaussian kernel, as

where the variance is set by the hyperparameter s. In particular, as shown in Fig. 2, this approximation is valid 
for q = 2 and relatively small values of s.

We �nd that this kernel performs, for the number of qubits q = 2 and a�er numerically optimizing the 
hyperparameter to s = 2 , on average as well as the cosine kernel for the same total number of qubits equal to 
N = 1 (see Fig. 4). Moreover, by appropriate parameter recon�guration, it would be possible to realize this type 
of kernel using the same experimental setup. From an experimental perspective, however, it is more conveni-
ent (and thus scalable) to implement the feature map associated with the powers of the cosine kernel, which is 
exclusively implemented by setting phases and polarization angles.

Cosine kernels. �e kernel selected for our proof-of-principle demonstration of KQML is

(8)|φ(x)� = Z

N∑

n=0

(sx)n
√
n!

|n�,

(9)κ(x′, x) = |�ϕ(x′)|ϕ(x)�|2 ≈ exp [−s
2(x1 − x

′
1)

2 − s
2(x2 − x

′
2)

2],

Figure 2.  Training results on a random inseparable data set of 40 samples (up/down-tipped triangles). �e 
performance on a test set (le�/right-tipped triangles) of 60 points (the fraction of correctly classi�ed samples 
that were not used in the QML process) is given in the bottom right corner of each respective subplot. We �nd 
that the optimal variance/resolution choice for the Gaussian kernel is s = 2 . For s = 3 we deal with over�tting. 
Shown are the simulation results both for an exact Gaussian kernel and for the truncated FM (8) comprising 
4 terms ( q = 2 ). �e learned classi�cation boundaries are given as contour plots. �e slight di�erence in 
performance compared to the theoretical prediction is due to statistical �uctuations in the experimental data 
and the relatively small test set (misclassi�cation of a single near-boundary point results in a 0.02 performance 
drop).
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w h e r e  t h e  F M  t a k i n g  a  n o r m a l i z e d  f e a t u r e  xn ∈ [−π/2,π/2)  t o  F H S  i s 

|ϕ(x)� =
⊗

D

n=1

∑

N

k=0

√

(

N

k

)

sin
k(xn) cos

N−k(xn)|k�n. Note that N is related to the number of qubits q per dimen-

sion as q = ⌈log2(N + 1)⌉. �is FM can also be considered a constant-phase representation of constant-amplitude 
states. �is is the same as representing states either in a basis of eigenstates of x or z components of a collective 
spin operator. In particular, (cos(x)|0� + sin(x)|1�)/

√
2 ⇔ (|0′� + e

2ix|1′�)/
√
2, where |0� = (|0′� + |1′�)/

√
2 

and |1� = (|0′� − |1′�)/
√
2.

�is mapping uses exponentially less resources (qubits) than the direct product of the map from Ref.12, i.e., 
|ϕ(x)� =

⊗
D

n=1

⊗
N

m=1

∑1
k=0 sin

k(xn) cos
1−k(xn)|k�n,m, where the number of qubits per dimension is q = N . 

Using the powers of CKs allows us to adjust the kernel resolution by choosing the proper value of N. �us, the 
number of used qubits can be related directly to the variance of the kernel. �e number of qubits here plays 
the same role as the squeezing parameter in the experimental proposal given in Ref.12. �e CK can also include 
additional (D − 1) degrees of freedom by virtue of a FM de�ned as

(10)κ(x′
, x) = |�ϕ(x′)|ϕ(x)�|2 =

D∏

n=1

cos
2N (x′

n − xn),

(11)|ϕ(x)� =

D
⊗

n=1

N
∑

k=0

ei2yn−1

√

(

N

k

)

sin
k(xn) cos

N−k(xn)|k�n,

Figure 3.  Optical circuit implementing both the FM and the model circuits. �e performance 
of the setup in QML is shown in Fig. 4 for N = 1 and D = 2. �e experimental setup consists of 
polarizing beam splitters (PBSs), beam dividers (BDs), quarter-wave and half-wave plates (QWPs 
and HWPs, respectively), and single photon detectors Dn for n = 1a, 1b, 2a, 2b, 3, 4 . D3 and D4 
are H/V polarization resolving (implemented as a PBS and two standard detectors). �e kernel 

κ(x′, x)exp = [
∑

p,s=H ,V CC(D2s ,D3p)−CC(D2V ,D3H )+CC(D2H ,D3V )]/
∑

m>n

∑6
n=1 CC(Dm,Dn) is given as 

a ratio of coincidences CC(Dm,Dn) registered by photon detectors Dn and Dm to the total number of photons.
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where y0 = 0, the number of terms here is (N + 1)D , and the associated kernel measured by postselection is 
κ(x′, x) =

∏D
n=1 cos

2N (x′

n − xn) cos
2(y′

n−1 − yn−1).

Discussion
We have experimentally implemented KQML to solve three classi�cation problems on a two-photon optical 
quantum computer. In our experiment we implemented a D = 2,N = 1 kernel (using all the modes from Fig. 3, 
we can set at most D = 5 with q = 1 ). We used two photons, but only the top mode of the dual-rail encoding. 
Including more modes would lead to kernels causing over�tting (see Fig. 4).

We have performed measurements for M = 40 two-dimensional samples ( D = 2 ), drawn from two classes 
(see horizontally/vertically-tipped triangles in Fig. 4). �is procedure was repeated for three benchmark classi�-
cation problems. For each benchmark 40 × 39/2 = 780 measurements were performed to create a corresponding 
Gram matrix (GM), which was subsequently used to �nd the best linear classi�cation boundary as given by the 
representer theorem. In other words, a custom kernel κ(xm, xn) = κ(xn, xm) for m, n = 1, 2, ...,M was measured. 
�is kernel was used as a custom precomputed kernel for the scikit-learn SVC classi�er in python.

Pairs of H-polarized photons were prepared in a type-I spontaneous parametric down-conversion process in a 
β–BaB2O4 crystal. �e crystal was pumped by a 200 mW laser beam at 355 nm (repetition rate of 120 MHz). �e 
coincidence rate, including all possible detection events from Fig. 3, was approximately 250 counts per second. 
�e setup operates with high �delity (98%) and the dominant source of errors can be attributed the Poissonian 
photon count statistics. �e design of this setup is modular and its easy to incorporate more qubits by simply 
adding additional blocks. We measured each point for a time necessary to collect about 2,500 detection events. 
�us, excluding the time needed to switch the setup parameters, the whole measurement for a single benchmark 
problem takes about two hours.

To prepare the contour plot of the decision function based on the experimental data shown in Fig. 4 and to 
quantify the performance of the trained model on the relevant test sets, we have also measured the GM for 1,225 
points and used its symmetries to �ll in the unmeasured values. �e values for points in between have been found 

Figure 4.  Training results on a random inseparable data set of 40 samples (up/down-tipped triangles). �e 
performance on a test set (le�/right-tipped triangles) of 60 points (the fraction of correctly classi�ed samples 
that were not used in the QML process) is given in the bottom right corner of each respective subplot. We see 
that the best choice of CK is N = 1 . For N = 2 we deal with over�tting and for N = 1/2 the kernel is too coarse 
to give as good results as for N = 1 . �e learned classi�cation boundaries are given as contour plots. �e slight 
di�erence in performance of KQML in relation to the theoretical prediction is due to statistical �uctuations of 
the experimental data and relatively small test set (misclassi�cation of a single near-boundary point results in 
0.02 performance drop).
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using linear interpolation. �e data accumulation time can be shortened by orders of magnitudes by �ne tuning 
the parameters of the setup and by using brighter photon sources.

conclusions
We report on the �rst experimental implementation of supervised QML for solving a nonlinear multidimensional 
classi�cation problem with clusters of points which are not trivially separated in the feature space. We hope that 
our research on QML will help to improve ML technologies, which are a major power-horse of many industries, 
a vivid �eld of research in computer science, and an important technique for solving real-world problems. We 
believe that both the theoretical and the experimental investigation of FM circuits and their constraints regarding 
kernel resolution and compression for a limited FHS (i.e., FHS size dependent FMs) constitutes a crucial step in 
the development of practical KQML for support-vector-machine  QML8–10,12,13.

We demonstrate that a linear-optical setup with discrete photon encoding is a reliable instrument for this 
class of quantum machine learning tasks. We also report obtaining exponentially better scaling of FHS in the 
case of CK than in the case of taking direct products of  qubits12. �e same can hold for other more complex 
kernels implemented in �nite FHS, which could appear unfeasible, but in fact require nontrivial FMs (e.g., the 
resolution-optimized kernels shown in Fig. 1). �us, KQML can provide a promising perspective for utilizing 
noisy intermediate-scale quantum  systems21–24, complementing arti�cial quantum neural  networks25–29 and other 
hybrid quantum-classical  algorithms30–32.

�e classical computational cost of the power kernel computation is O[log(N)] and the quantum cost is 
a constant value depending on the precision of the computation. In the classical case, one needs to perform 
O[log(N)] computation steps that can not run in parallel due to the recursive nature of the classical algorithm. 
In the quantum case, one needs to run 1 computation step but on log(N) qubits. As in any quantum computation, 
the precision of the calculation depends on the number of measurements and it can be considered constant for a 
given computational problem. �is observation itself is a valuable result and a quantum advantage. �e quantum 
advantage of the presented approach is apparent in terms of the complexity of calculations, i.e., O[log(N)] versus 
O(1) . Consider the number of samples needed for quantum calculations. It depends on the con�dence level (z) 
and admissible error: ǫ . For a given pair of z and error ǫ , one needs O(1/ǫ2) repetitions of the experiment. �is 
is just a constant overhead. In the classical case, this constant overhead can be smaller, but the complexity of 
calculations can be larger as the it is N-dependent. Only if we face signi�cantly lower than unity qubit-number-
dependent e�ciency η (i.e., circuit-size dependent losses), for a given z-value the complexity of quantum com-
putations should be considered as being O(η(

− log(N))/ǫ2) . However, the power scaling also applies to the 
total error probability of classical computations of log(N) steps. Note, however, that both η and single-step error 
probability of classical computing are not fundamentally limited and can be arbitrary close to 1 or 0, respectively.

Our quantum kernels can be used for solving high-dimensional classi�cation problems and could poten-
tially be computed faster than their classical counterparts. Popular problems solved by classi�cation algorithms 
include image recognition (e.g. face detection or character recognition), speech recognition (e.g. voice user 
interfaces), medical diagnoses (e.g. associating results of medical tests with a class of diseases), real-time speci�c 
data extraction from vast amounts of unstructured data (e.g. classi�cation of patterns in unstructured data) and 
many more. Classi�cation can also be used as an initial phase for predictive computations that help to make the 
best decision based on the available data (e.g., managing risk, security, tra�c, procurement etc.). We believe that 
this quantum-enhanced approach is useful especially in cases where it is di�cult or impossible to achieve the 
result on time with classical computing.

Methods
Optical circuit for KQML. States given by Eq.  (11) can be prepared in a quantum optical setup. In the 
reported proof of principle experiment, we can set N = 3 and D = 2 . �is means that, e�ectively, the experiment 
deploys q = 2 qubits per dimension. �e FM is de�ned via single-photon polarization states (H/V polarization) 
as well as dual-rail encoding (T/B for top/bottom rail, respectively)

where c(xn) ≡ cos(xn) and s(xn) ≡ sin(xn). �is approach is resource-e�cient as it only requires two photons 
to encode x into the FHS state of N = 3 and D = 2.

An optical circuit implementing this FM is depicted in Fig. 3. �e top part of the FM circuit works as follows: 
�rst, it transforms the standard input |HB� using wave plates resulting in |HB� → (|HB� + |VB�)/

√
2. Next, a 

beam divider separates polarization modes in space, i.e., we have (|HB� + |VT�). Now, the e�ective operation 
of wave plates in the top and bottom modes can be described as �rst transforming |VT� → µT |HT� + νT |VT� 
and |HB� → µB|HB� + νB|VB�. �e parameters are set as µT =

√
2c3(xn), νT =

√
2s3(xn), µB =

√
6c2(xn)s(xn), 

νB =
√
6c(xn)s

2(xn).

�is whole operation is unitary and can be described as U(x)|HH� = |ϕ(x)�. �e complex conjugate of opera-
tion U(x) is U†(x′) and it can be used to express the kernel as κ(x′, x) = |�HH|U†(x′)U(x)|HH�|2. �us, the 
circuit U†(x′) for projecting the state |ϕ(x)� to |ϕ(x′)� can be constructed as the inverse of the feature embedding 
U(x) circuit, but for setup parameters set for x′ . �e next action of the plates in the top and bottom rails is to 
perform a reverse transformation, but for xn = x

′

n. Next, the plates �ip the polarizations in the respective rails. 
Now, the interesting part of the engineered state is in the top rail with �ipped polarization. To implement U(x′)†, 

(12)
|ϕ(x)� =

2
⊗

n=1

(

c
3(xn)|HT�n +

√
3s(xn)c

2(xn)|HB�n

+
√
3c(xn)s

2(xn)|VB�n + s
3(xn)|VT�n

)

,
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the last pair of waveplates is used both to �ip the polarization and to perform the Hadamard transformation. 
Finally, the PBS transmits only H-polarized photons for further processing.

�e procedure of measuring the kernel κ(x′, x) can be extended to include additional dimensions, resulting 
in measuring the kernel κ̄(x′, x) = κ(x′, x) cos2(y − y′) following from FM (11). Instead of the transformation 
U

†(x′)U(x), we consider R†(y′)U†(x′)U(x)R(y), where R(y) = e2iy|H��H| is a phase shi� applied to a prese-
lected H-polarized photon in the bottom part of the setup, and R†(y′) = e−2iy′

|H��H| is a phase shi� to the 
postselected H-polarized photon in the same part of the setup. �e phase di�erence between the postselected 
upper and lower H-polarized photons can be measured as cos2(y − y′). �is is done with PBS′ which transmits 
diagonally-polarized photons |D� = (|H� + |V�)/

√
2 and re�ects antidiagonal photons |A� = (|H� − |V�)/

√
2, 

and polarization-resolving single-photon detectors (see caption of Fig. 3).
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