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Quantum entanglement is a form of cor-

relation between quantum particles that

cannot be increased via local operations

and classical communication. It has there-

fore been proposed that an increment

of quantum entanglement between probes

that are interacting solely via a media-

tor implies non-classicality of the media-

tor. Indeed, under certain assumptions

regarding the initial state, entanglement

gain between the probes indicates quan-

tum coherence in the mediator. Going be-

yond such assumptions, there exist other

initial states which lead to entanglement

between the probes via only local inter-

actions with a classical mediator. In this

process the initial entanglement between

any probe and the rest of the system

“flows through” the classical mediator and

gets localised between the probes. Here

we theoretically characterise the maxi-

mal entanglement gain via classical media-

tor and experimentally demonstrate, using

liquid-state NMR spectroscopy, the opti-

mal growth of quantum correlations be-

tween two nuclear spin qubits interacting

through a mediator qubit in a classical

state. We additionally monitor, i.e., de-

phase, the mediator in order to empha-

sise its classical character. It is impor-

tant to note here that no new entangle-

ment is being generated, but rather the

correlation already present in the system

is being redistributed or localised between

the two probe qubits. Our results indicate
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the necessity of verifying features of the

initial state if entanglement gain between

the probes is used as a figure of merit for

witnessing non-classical mediator. Such

methods were proposed to have exemplary

applications in quantum optomechanics,

quantum biology and quantum gravity.

1 Introduction

Quantum entanglement is widely recognised as a
resource “as real as energy” [13]. Yet, limits on
establishing entanglement between remote par-
ticles were systematically studied only recently
and with surprising results. Protocols in which
the distant particles get entangled by exchanging
ancillary particles can establish remote entangle-
ment without ever communicating it, i.e., no en-
tanglement with the ancillaries [9, 10, 28, 39, 40].
It is now understood that entanglement gain in
these schemes is not bounded by the communi-
cated entanglement, but rather by communicated
quantum discord [8, 31–34, 41], a form of quan-
tum correlation that persists in many disentan-
gled states [11, 24, 27].

In another route to producing remote entan-
glement, the exchange of quantum particles is re-
placed by continuous interactions of distant sys-
tems (probes) with a third object, a mediator. In
this scenario the theory predicts that not only the
probes can get entangled without ever entangling
the mediator [9], but also that they can even get
entangled in the absence of any quantum discord
between the probes and the mediator [17]. This
lack of discord is a strong notion of classicality
which means that the mediator can be measured
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at any time without disturbing the whole multi-
partite system. It is the same notion as “classical
communication” in the framework of local opera-
tions and classical communication at the core of
entanglement theory [3], but generalised to con-
tinuous in time interactions. In practical terms,
the probes get entangled even if the mediator is
continuously monitored or dephased.

It is an observation of this effect, for a dis-
crete number of measurements on the mediator,
that is reported here together with theoretical
characterisation of maximal amount of entangle-
ment that can be established in this way. More-
over, in our experiments the monitoring measure-
ment is the same at all times, which reinforces
classicality of the mediator being at all times in
one of two distinguishable states (correlated to
the probes). Additionally to observing exotic ef-
fect of multipartite entanglement our results have
practical implications. The scenario where two
objects are coupled via a mediator is common
in science. For example, entanglement gain be-
tween the probes has been proposed as a witness
of quantum mediator in various scenarios [16],
such as spin chains in solid state magnetic com-
pounds [15], mechanical membranes inside optical
cavities [17], detection of initial quantum corre-
lations in open-system dynamics [17], quantum
gravity [4, 17, 22] or quantum properties of parts
of living organisms coupled to a multi-mode cav-
ity field [18]. Present results emphasise that these
methods must verify features of the initial state
in order to validate their implications, i.e., non-
classicality of the mediating system.

2 Results

2.1 Theoretical example

The simplest example of the discussed phe-
nomenon involves three qubits (spin-1

2
systems)

in the following initial state [17]:

ρ0 =
1

2
|ψ+〉〈ψ+| ⊗ |+〉〈+| +

1

2
|φ+〉〈φ+| ⊗ |−〉〈−|,

(1)
where the first two qubits are the probes A and
B, and the third qubit is the mediator M . Kets
|±〉 denote the eigenstates of σM

x Pauli matrix,
whereas |ψ+〉 = 1√

2
(|01〉 + |10〉) and |φ+〉 =

1√
2
(|00〉 + |11〉) are the two Bell states. Since

one could dephase the mediator in the σM
x basis

without perturbing the total state, the mediator
is said to be in a classical form. Note also that ini-
tially the probes are not entangled as their state
is an even mixture of two Bell states [36], but the
whole tripartite state is initially entangled across
partitions A : MB and AM : B. This system
evolves under Hamiltonian (~ = 1 throughout the
paper):

H = ω(σA
x + σB

x ) ⊗ σM
x , (2)

where each probe individually interacts with the
mediator via a coupling constant ω, but not di-
rectly with each other. It is easy to see that the
state of the mediator is stationary and hence it
remains classical at all times. Furthermore, at
all times, it is one and the same measurement
i.e., dephasing along σM

x basis, that keeps the
total state invariant. Yet entanglement between
the probes increases and they become even max-
imally entangled [17].

At first sight this example might be surprising
as it seems that entanglement between the probes
is increased by local interactions with a classical
mediator, in contradiction to the very definition
of entanglement [7, 13]. We stress that there is no
contradiction as already in the initial state each
individual probe is entangled with the rest of the
system. One can show that the corresponding
entanglement, as quantified by negativity [38], is
given by EA:MB = EAM :B = 1/2, which is the
amount of entanglement in maximally entangled
state of two qubits. The subsequent evolution
localises this entanglement to the probes. One
could also think about this process as continuous
in time entanglement distillation, where the local
interactions “read” the state of the mediator and
suitably adapt the dynamics to arrive at entan-
glement between the probes. It is the essence of
our demonstration that entanglement localisation
can be done via the classical mediator even if it
is measured or dephased.

2.2 Optimality

We show in the Methods section that a resource
behind entanglement localisation via a classical
mediator is the amount of initial correlations with
the mediator. The amount of entanglement that
can be localised is bounded as follows:

EA:B(t) − EA:B(0) ≤ IAB:M (0), (3)

where EA:B denotes the relative entropy of en-
tanglement [37] and IAB:M is the mutual infor-
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mation [26]. Let us put this result in perspec-
tive and repeat, this time with quantitative state-
ments, what has been known about the resources
behind distribution of various correlations. Con-
sider first two laboratories (operated by Alice and
Bob) that exchange a quantum particle M . Ini-
tially, Alice has systems A and M , then M is
communicated to Bob, who finally stores systems
M and B in his laboratory. How much can infor-
mation between the laboratories increase in this
process? As expected, the bound is given by the
communicated information and is characterised
by the inequality IA:MB − IAM :B ≤ IAB:M [8].
Surprisingly, a similar inequality does not ex-
tend to quantum entanglement. Instead, we have
EA:MB −EAM :B ≤ DAB|M , i.e., entanglement gain
between the laboratories is bounded by the com-
municated quantum discord [8, 31–34, 41]. This
allows for entanglement distribution via exchange
of unentangled particles [9] since discord can be
nonzero in separable states. Now, if the commu-
nication is continuous in time (not exchange of a
particle) and we study entanglement between the
probes only (not entanglement between the labo-
ratories) Eq. 3 shows that the initial information
with mediator is the relevant bound. This em-
powers entanglement localisation via classical me-
diator because there exist correlated states with-
out discord.

Summing up, the necessary conditions for an
initial state to give rise to entanglement locali-
sation via classical mediator include: (i) corre-
lations to mediator, i.e. IAB:M > 0, and (ii)
entanglement between a probe and the rest of
the system, e.g., EA:MB > 0. The latter is for-
mally recognised in Eq. (11) of the Methods sec-
tion, which proves EA:B(t) ≤ EA:MB(0). This
holds for any convex entanglement monotone. It
is straightforward to verify that

the theoretical example presented above
achieves both the upper bound in Eq. 3 and the
bound given by the initial entanglement with a
probe particle.

2.3 NMR setup

We use liquid-state NMR spectroscopy of 13C,
1H and 19F in dibromofluoromethane dissolved
in acetone with linear topology, H - C - F (see
Fig. 1(a)). Nuclei of hydrogen and fluorine
are identified as probes A and B, respectively,
whereas carbon nucleus is naturally the medi-

ator M . Experiments were performed in 500
MHz Bruker NMR spectrometer at room temper-
ature. The sample consists of identical and fairly
isolated dibromofluoromethane molecules and all
the dynamics of the three-qubit system is com-
pleted before any significant environmental influ-
ences [6, 21, 35]. The longitudinal and transverse
relaxation time constants are longer than 2 s and
0.2 s, respectively. The internal Hamiltonian of
the three spin system in a frame rotating about
the Zeeman field with individual Larmor frequen-
cies reads:

H0 =
π

2

(

JAM σA
z ⊗ σM

z + JBM σB
z ⊗ σM

z +

JAB σ
A
z ⊗ σB

z

)

,
(4)

with JAM = 224.5 Hz, JBM = −310.9 Hz, and
JAB = 49.7 Hz being the corresponding coupling
constants between the nuclei. The qubits in the
molecular system have internal dynamics that di-
rectly couples the probes A and B. The effects of
this coupling must be canceled if we are to claim
generation of entanglement between the probes
via classical mediator only. Thus, during experi-
ments, to evolve the system under the interaction
Hamiltonian H in Eq. 2 we switch off the inter-
nal interaction between spins A and B by apply-
ing suitable refocusing pulses as will be explained
later.

In general, the quantum state of our three-
qubit NMR system is of the form (1 − ǫ)1

8
1 + ǫ ρ,

where 1

8
1 describes the background population, ρ

is the so-called deviation density matrix and ǫ is
the purity factor, which is in the order of 10−5.
Nevertheless the NMR experiments are sensitive
to the deviation density matrix and from now on
whenever we refer to the “state” of the system
we mean the pseudopure state characterized by
the deviation density matrix. Despite the low
purity of the NMR qubits, it has been shown
that such systems can still efficiently implement
certain quantum information tasks, for which no
known efficient classical algorithms exist [25]

Starting from a three qubit thermal equilib-
rium state of longitudinal magnetization at room
temperature, we prepare the state corresponding
to |00〉〈00| ⊗ 1/2, written in the order ABM , us-
ing a similar pulse sequence as given in [14, 23].
The initial state ρ0, Eq. 1, is then obtained by the
succession of gates given in Fig. 1(b). All gates
are implemented using radio frequency pulses res-
onant with the nuclei. The open CNOT gate
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is realised with the help of Krotov optimisation
technique [20] with fidelity exceeding 0.99 using
push-pull optimization of quantum controls [2].
The fidelity of the produced initial state to the
ideal one is more than 97%.

Fig. 1(c) shows the pulses used to realize the
interaction Hamiltonian, H in Eq. 2. In our ex-
periments we have set the strength of the cou-
pling constant ω = 1 rad/s. The solid bars and
empty bars represent π/2 and π pulses, respec-
tively. The first half of the pulse sequence evolves
the system under the coupling between M and A.
Since we have σz ⊗ σz coupling in our system to
start with (see Eq. 4), the (π/2)y pulses trans-
form the z-basis to x-basis which then evolves
under σz ⊗σz coupling. Since the Hamiltonian in
Eq. 2 is a sum of two commuting terms, we first
evolve the entire system under σA

x ⊗ σM
x followed

by the evolution under σB
x ⊗ σM

x for the same
amount of time, i.e, the physical time rescaled by
the coupling strengths JAM and JBM . As all the
three qubits are coupled to each other, we decou-
ple B during the first half of the evolution by re-
focusing it using a π pulse, as shown in Fig. 1(c).
The net effect is that the system only evolves un-
der AM coupling, whereas B remains unaltered.
The same is repeated in the second half of the
evolution with A being refocused and the sys-
tem evolving under BM coupling. We repeat
the experiment with the same initial conditions
and different duration of dynamics in order to il-
lustrate how entanglement accumulates between
the probes. The probes in principle gain maximal
entanglement at ωt = π/8. Finally, we obtain the
deviation density matrices via full state tomogra-
phy using eleven detection experiments [30].

To make the claim that the mediator M is clas-
sical even stronger, we introduce another set of
experiments in which we dephase (measure) the
mediator qubit in between and at the end of the
evolution. The pulse sequence implementing the
dephasing of M is depicted in the orange box of
Fig. 1(c). In contrast to the previous set of exper-
iments, just after the realization of σA

x ⊗ σM
x the

mediator qubit M is dephased in x-basis. The se-
lective dephasing of the mediator is achieved by
a pair of opposite pulsed-field-gradients (PFGs)
separated by a π-pulse on the mediator. The
PFGs cancel each other for the probes A and
B, whereas they add-up for M . A π-pulse on
M is applied to undo the spin-flip caused by the

(a)

(b)

(c) y -y y -y

y -y x

x -y y

y y y -y

1H

19F

13C
M

A

B

M

A

B

M

A

B

H

H

PFG

τ
BM

τ
BM

τ
AMτ

AM

Initial state 
preparation

Dephasing M
𝜎𝑥𝐴 𝜎𝑥𝑀⊗ 𝜎𝑥𝐵 𝜎𝑥𝑀⊗

ۧ|0 0|ۧ|0ۦ |0ۦ 𝜌0

Figure 1: (a) Molecular structure of dibromofluo-
romethane. We identify 1H and 19F nuclei as probe
qubits and 13C as the mediator qubit. (b) Preparing
the initial state as in Eq. 1 using CNOT and Hadamard
gates as shown. (c) Pulse sequences used to evolve the
system under the coupling Hamiltonian of Eq. 2. The
solid and empty bars represent π/2 and π pulses with
phases shown above them. The blue pulses cancel each
other for the no-dephasing case. Dephasing of M is
realized by introducing pulses shown in the orange box
in the positions marked by the dashed lines. Here PFG
represents the pulsed-field gradient along ±z axis. The
delays τAM = 1/(4JAM ) and τBM = 1/(4JBM ).

previous π-pulse. Finally, measurement along x-
basis is realized by simply rotating the basis using
(π/2)y and (π/2)−y pulses as shown.

3 Discussion

From the experimentally measured three-qubit
deviation density matrices we compute various
quantum correlations such as discord between the
two probes and mediator, DAB|M , quantum en-
tanglement between the probes, as measured by
the negativity EA:B, as well as the negativity
EB:AM . The quantum discord is calculated fol-
lowing the definition of Ollivier and Zurek [27].
Recall that discord is not a symmetric quantity
and DAB|M denotes discord as measured on the
mediator. It should also be stressed that due to
small admixture of the deviation density matrix,
the ensemble averaged NMR signals mask gen-
uine entanglement [5]. From this perspective one
can think of our experiment as NMR simulation
of entanglement localisation via classical media-
tor.
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Figure 2: Theoretical (lines) and experimental (markers)
correlations: (a) without dephasing and (b) with dephas-
ing the mediator qubit. Solid lines show noiseless theo-
retical predictions: blue for EA:B and purple for EAM :B .
The corresponding experimental data is marked with yel-
low and purple markers, respectively. Green markers
show measured discord DAB|M , all within experimen-
tally established region of vanishing discord (grey, see
main text). The error bars represent the random error
in the experiments, obtained from the signal to noise ra-
tio for each experiment. The dotted red lines represent
EA:B within a model including inhomogeneity of radio
frequency pulses with the distributions P(ωRF) as shown
in the insets.

The measured discord and entanglement are
presented in Fig. 2 for datasets without and with
dephasing the mediator. The gray-shaded re-
gion represents measurability threshold of dis-
cord owing to experimental errors. This thresh-
old is obtained from measurements of discord for
experimental thermal equilibrium state. Ideally
this state has vanishing discord but experimen-
tal imperfections in state tomography give rise to
residual values. The amount of discord DAB|M
calculated for evolved deviation density matrices
(green data points) all lie well within this exper-
imental precision limit of discord. We thus con-
clude that the mediator was classical at all times
during the evolution. Yet, negativity of quan-
tum entanglement between the probes EA:B con-
sistently grows as shown by experimentally esti-
mated values depicted with yellow markers. The
error-bars represent random errors and do not
exactly match the noiseless prediction based on
Hamiltonian in Eq. 2, presented with a solid blue
line. This is the effect of systematic errors which
include the spatial RF inhomogeneity (RFI) over
the sample volume, fluctuations in the resonance
frequencies due to variations in ambient temper-
ature, as well as finite precision involved in quan-
tum state tomography. We have simulated the
effect of RFI in the evolution as well as tomog-
raphy pulses, see the dotted red curves, and in-
deed observe better agreement with the experi-
mental data. It is interesting to note that the en-
tanglement between each probe with the rest of
the system, EB:AM or EA:BM , remains invariant
throughout the evolution. We demonstrated that
an increment of quantum entanglement between
two probes coupled via a mediator in general does
not signify a non-classical mediator.

We note that the process demonstrated here
is different from, e.g., entangling two spins via
dipole-dipole interaction. The usual Hamiltonian
of the latter directly couples magnetic moments
of the two particles and hence it is not surpris-
ing that entanglement grows. In contradistinc-
tion, we study tripartite system with an explicit
mediator. Even if the dipole-dipole interaction is
rewritten in the form where the mediating virtual
photons are clearly distinguished, they typically
get entangled with the particles and hence the
mediator is not classical.

Perhaps the most interesting application for re-
vealing non-classicality of mediators is witness-
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ing quantum gravity through entanglement be-
tween nearby masses [4, 17, 22]. Assuming that
the whole mass-gravity-mass system can be de-
scribed by the standard tripartite Hilbert space
formalism, entanglement EA:MB or EAM :B can-
not grow via classical mediator, i.e., when the dis-
cord DAB|M = 0 at all times [17]. However, the
masses alone can become entangled, i.e., EA:B

may grow even via classical mediator — analo-
gously to the phenomenon demonstrated in the
present work. As shown here, this requires initial
entanglement EA:MB or EAM :B and correlations
to the mediator. Since in practice one would only
measure the masses and not the field, it is highly
desirable to provide the bound on possible entan-
glement gain via classical mediator solely in terms
of quantities measured on the masses. Ref. [17]
proves that the relevant bound is given by the
sum of initial entropies of the masses. Estima-
tions with concrete experimental arrangements
show that in order to observe gravitational en-
tanglement the masses need to be cooled down
near the ground state of their traps [1, 4, 19, 29].
In such a case the masses are close to a pure state
and hence they are initially almost uncorrelated
from the rest of the world, i.e., their entropies
are small, but not zero. It is this latter bound on
entanglement that has to be experimentally vio-
lated in order to witness quantum gravity within
this framework.

4 Methods

We prove here Eq. 3 of the main text. Let us
begin with a useful lemma.

Lemma 1. For a tripartite system with clas-
sically correlated mediator, i.e, in a state ρ =
∑

m pm ρAB|m ⊗ |m〉〈m| with orthonormal basis
{|m〉}, the relative entropy of entanglement fol-
lows the bound

EA:BM − EA:B ≤ IAB:M , (5)

where IAB:M is the mutual information between
the mediator and remaining systems.

Proof. From the definition of relative entropy of
entanglement, we have EA:BM = −tr(ρ log σ) −
SABM , where σ is the closest separable state to
ρ and SABM stands for von Neumann entropy
of state ρ [37]. The flags condition [12] applied

to ρ gives EA:BM =
∑

m pm EA:B(ρAB|m). Fur-
thermore, the same reference shows that the cor-
responding closest separable states satisfy σ =
∑

m pmσAB|m ⊗ |m〉〈m|, where σAB|m is the clos-
est separable state to ρAB|m. Using expressions
for σ and ρ, we find

EA:BM = SM − SABM −
∑

m

pmtr(ρAB|m log σAB|m) (6)

EA:B = −
∑

m

pmtr(ρAB|m log σAB) − SAB,(7)

where σAB is the closest separable state to the
marginal ρAB =

∑

m pmρAB|m. Using the defini-
tion of mutual information, IAB:M = SM +SAB −
SABM , we have

EA:BM − EA:B = IAB:M +
∑

m

pm[−tr(ρAB|m log σAB|m)]

−
∑

m

pm[−tr(ρAB|m log σAB)].(8)

The lemma follows by noting that the difference
between the last two sums is non-positive because
each σAB|m minimises the relative entropy of en-
tanglement of the corresponding ρAB|m.

Eq. 3 is the result of the following theorem.

Theorem 1. In a tripartite system with classi-
cally correlated mediator at all times (each sub-
system can be open to its local environment) we
have

EA:B(t) − EA:B(0) ≤ IAB:M (0), (9)

with notation as in the lemma.

Proof. Consider the following chain of inequali-
ties:

EA:B(t) − EA:B(0) ≤ EA:BM (t) − EA:B(0) (10)

≤ EA:BM (0) − EA:B(0)(11)

≤ IAB:M (0). (12)

In the first line we used monotonicity of entan-
glement under tracing out the mediator M , i.e,
EA:B(t) ≤ EA:BM (t). Inequality in Eq. 11 is
proven in Ref. [17] and states that entanglement
in partition A : BM (or B : AM) cannot grow
via classical mediator, i.e, EA:BM (t) ≤ EA:BM (0).
Lemma 1 confirms the last line.
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