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We review recent progress, based on the approach introduced by McKeon and Sharma

[J. Fluid Mech. 658, 336–382 (2010)], in understanding and controlling wall turbu-

lence. The origins of this analysis partly lie in nonlinear robust control theory, but

a differentiating feature is the connection with, and prediction of, state-of-the-art

understanding of velocity statistics and coherent structures observed in real, high

Reynolds number flows. A key component of this line of work is an experimental

demonstration of the excitation of velocity response modes predicted by the theory

using non-ideal, but practical, actuation at the wall. Limitations of the approach and

promising directions for future development are outlined. C© 2013 American Institute

of Physics. [http://dx.doi.org/10.1063/1.4793444]

I. INTRODUCTION

The potential impact of control of turbulence near walls, particularly in the context of the energy

expenditure and emissions associated with overcoming turbulent skin friction, is well known. Avi-

ation alone is known to consume approximately 13% of all transport-related energy requirements,2

of which up to 50% is associated with turbulent drag on commercial airliners.3, 4 Kim5 quantified

the savings arising from the reduced fuel consumption associated with a relatively modest 30%

reduction in skin friction achieved by employing future flow control technologies on ocean-going

ships as 0.7 × 109 barrels of oil, or $70 billion annually (updated to current prices of approximately

$100 per barrel). In terms of emissions, which would be similarly affected by reductions in fuel

burn, a single long distance flight of a Boeing 747 is known to generate in excess of 400 tons of

CO2. Alonso et al.2 estimate that this is all the more potent as a greenhouse gas (by a factor of 2-4)

because it is released at altitude.

At the level of fundamental understanding, the ability to effect the practical control required

to obtain this reduction in applications such as commercial air vehicles would imply a significant

advance in understanding of the dynamics and scaling of turbulence, together with a step away

from the canonical flows that have been the primary focus of academic study for several decades.

Clauser6 framed such an advance in the context of considering wall turbulence as a “black box,”

the contents of which can be explored by investigating its response to external stimuli. Where the

response is unknown, the black-box idea approaches turbulence as a problem in nonlinear system

identification. In contrast, the current approach considers the problem of response to endogenous

stimulus, as determined by the Navier-Stokes equations. Since the equations are known, this is a

white-box approach, to use the terminology of control engineering. With careful design of the form

of the input, the linear and nonlinear mechanisms of energy transfer, or the pathways for energy

transfer in physical and spectral space, can be identified.

a)This paper is based on an invited lecture, which was presented by Beverley McKeon at the 64th Annual Meeting of the
Division of Fluid Dynamics of the American Physical Society, held 20–22 November 2011 in Baltimore, MD.
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It is increasingly clear that turbulence is an emergent phenomenon arising from the nonlinear

interaction between many different scales. As such, its analysis must be at the level of the system,

such that the characteristics of the flow are considered at a global rather than local level. This makes it

difficult to guarantee any global benefit of control. This may not be as difficult a problem as would be

expected, since the existence of recognizable structure is suggestive that there are low-dimensional

processes governing the flow. The key question is how to characterize simply these low-dimensional

processes.

In recent years, dynamical systems approaches have had intriguing success in predicting the

features of transition, particularly in (linearly stable) pipe flow,7 as reviewed by Eckhardt et al.8 Our

understanding of transition has also benefited from a model in which small disturbances develop

over infinite or finite time horizons.9–11 In the latter picture, the system is explored by investigating

the properties of the linearized Navier-Stokes system, via either its linear stability (eigenvalues)

or more recently by a transient growth analysis (which investigates perturbation growth on a finite

instead of infinite time horizon). These analyses are linear in nature, though often they go on to

consider secondary instabilities arising from the nonlinearity.

One problem with applying perturbation analysis to turbulence is the selection of an appropriate

base flow around which to linearize, since the turbulent mean velocity profile does not constitute

a solution of the Navier-Stokes equations (NSE) and the transport due to turbulent fluctuations

must be treated explicitly. However there have been notable efforts to extend this analysis to char-

acterize stability and transient growth in turbulence, including the works of Butler and Farrell,12

del Álamo and Jiménez,13 Cossu, Pujals, and Depardon,14 and Hwang and Cossu,15 who used a

turbulent eddy viscosity to circumvent the closure problem. The use of transient growth method-

ology in transitional flows is certainly well-motivated. However, despite some informative results,

particularly with respect to the match between the most amplified spanwise scales (occurring for

streamwise-constant disturbances) and experimental observations,13, 15 the analysis of infinitesimal

perturbations growing in finite time in a system where nonlinear feedback is so prevalent struck

us as problematic and motivated the desire to look beyond the time-domain behaviors of unforced

perturbations. Turbulent flows experience very large instantaneous deviations from any known fixed

point solution and the largest growing initial condition under some time horizon will surely it-

self be perturbed before it reaches maturity. We suggest that things look simpler in the frequency

domain.

Important steps were made in this direction by, among others, Bamieh and Dahleh16 and

Jovanovic and Bamieh.17, 18 There is a link, via the pseudospectrum, between the non-normality

investigated in the transient growth body of work and the resolvent norm, which we will describe

further in what follows.1, 9, 11 Those studies of the non-normality of the linearized Navier-Stokes

operator, however, did not go so far as to develop a full, self-consistent approach to wall-bounded

turbulence, in the sense that links to experimental observations were not made and the connection

with the omitted nonlinear terms was not established.

The nonlinear triadic interaction between spatial wavenumbers in homogeneous turbulence is

well-known and has been described by, among many others, Waleffe.19 There is a comparable process

in frequency space, suggesting that perhaps things are not so complicated in wavenumber/frequency

space. In this space, a “gain” analysis becomes natural, where wavelike motions—excited by others,

via the nonlinear term—in a network of such motions, extract energy from the mean flow via a linear

process and amplify disturbances through a linear resonance mechanism. The inhomogeneity in the

wall-normal direction caused by the presence of the wall presents an important, but surmountable,

complication of this approach in terms of the requirement on spatial collocation of interacting waves.

The picture at each wavenumber/frequency combination is essentially that sketched in Figure 1, in

which the lower block represents the linear dynamics of fluctuations around the turbulent mean

velocity profile associated with the selective response of the resolvent discussed in Sec. II, forced

by nonlinear triadic interactions from other wavenumbers and frequencies.

At the heart of the theory reported in this paper are two insights. First, that turbulence is robust.

Second, that the robustness comes from a feedback loop involving the Navier-Stokes nonlinearity,

which is energy-conserving, and a highly selective linear system, which leads to highly directional

amplification.
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u · ∇u

linear dynamics

fu

FIG. 1. A high-level description of the turbulence process. The lower block contains the linear dynamics of the fluctuations

interacting with the mean velocity profile.

Robustness may be defined as the ability of a system to operate in a similar way under a

wide range of conditions and uncertainties. Wall turbulence is nothing if not robust, indeed, it is

the persistence of complex, but recognizable, features that characterizes these flows as turbulent.

Essentially, then, in seeking to understand the processes that characterize wall turbulence, we are

seeking to explain its robustness. This is not to say that “turbulence is linear,” but rather that the

processes that drive turbulence and select structure do appear to have a strong linear flavor (as

hinted at by other studies20) once the nonlinear effects are confined to the determination of the mean

velocity and a conservative nonlinearity.

Systems theory is rich in elegant theoretical tools to analyze and design robustness;21, 22 to some

large extent, that extant body of work has influenced the direction taken in this study. Inspired by

these tools, we approach the turbulent flow as a system, to give us information about how the system

behaves as a whole, inclusive of the nonlinearity and with a view to making direct connections to

experimental and numerical observations of wall turbulence.

The full nonlinear behavior of a turbulent flow is probably too complicated to model in a simple

manner, because the interconnection between scales governed by the nonlinear term would require

modeling all scales at once. One approach, then, is to pretend we know nothing of the nonlinear

interactions between scales and concentrate on the part we can most easily analyze, the linearized

system. However, in our case, the nonlinearity is not assumed away; instead, we treat it as an

unstructured forcing that has already acted to support an (assumed) turbulent mean profile of the

appropriate form. The resulting decomposition of the NSE as a linear system driven by an unknown

nonlinear term works because the linearized system is so selective that the exact form of the forcing

is almost unimportant. We will expand on this theme throughout the paper.

A further benefit of the systems paradigm advocated here is that closed-loop control thinking and

technology will carry over in the future for control designs, offering the opportunity for sophisticated

closed-loop strategies (effectively based on a perfect-system model), different from the open-loop

“manipulation” described here in Sec. IV. By exciting disturbances innate to the flow system, control

with efficient input effort is likely achievable. The black box approach has implicitly underpinned

much earlier work attempting passive and open loop control of wall turbulence, however closed loop

control approaches in which the details of the model are implicit and/or imperfect have often been

confounded by physical actuation and sensing requirements. Gad-el Hak3 estimates that targeting

the elimination of all near-wall streaks on a typical commercial aircraft would require sensors and

actuators with a frequency response of tens of kiloHertz, spaced with a density greater than 1 million

per square meter. Scaled up to complete coverage of an Airbus A380, this would require an astounding

20 × 106 microsensors and actuators with the associated power requirements and practical control

problems. To put this in perspective, the average human brain is estimated to contain (80–100) ×
106 neurons23 firing at frequencies of order 1 kHz, such that the idea of attempting real-world flow

control with traditional techniques gives the concept of “fly-by-wire” an entirely new meaning!

We review here recent developments with respect to a formulation of the NSE which is amenable

to systems analysis. Some new insights will be presented. The resolvent analysis developed by

McKeon and Sharma,1 which will be described in detail in Sec. II below, provides, first, an ex-

act representation of the NSE in which the output from a linear sub-system at each wavenum-

ber/frequency combination interacts with all others to provide forcing to all linear sub-systems. The

operator in each linear sub-system, called the resolvent, describes the transfer of energy into the

turbulent fluctuations, along with one describing the sustenance of the mean profile that appears in

all the resolvents. The inter-wavenumber energy transfer then follows from the nonlinear term as a
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consequence of gradients in energy distribution and triadic spectral interaction mechanisms. In this

sense, the resolvent formulation serves as a road map for the energy transfer in wall turbulence, and

captures key dynamical processes. Such information makes possible theoretical extensions to the

basic framework, in order to predict the influence of prescribed external inputs and to design

forcing strategies for specific, application-optimized modification of turbulent spectra. Second, the

formulation admits significant mathematical simplification associated with the low-rank nature of

the resolvent, which can be exploited to enable conceptually and numerically simple interroga-

tion, replication and extension of known results in wall turbulence, ranging from the statistical to

structural.

In what follows, we present an integrated picture of the power of the resolvent analysis. The

exposition will be phenomenologically driven, with a view to giving an overview of the broad

potential of this approach for understanding wall turbulence and ways to control it. We outline the

underlying analysis and demonstrate its post- and pre-dictive power with respect to observations

of real turbulence in pipe flow in Sec. III, reviewing the key results in the literature as they are

introduced. Strategies for control based on the approach are outlined in Sec. IV, with a review of the

first experimental demonstration of experimental manipulation of a zero pressure gradient turbulent

boundary layer (ZPGTBL) using practical, wall-based, dynamic roughness actuation and use of the

analysis to predict the experimental results. A brief summary and outlook concludes the paper. The

material discussed here represents an integration and expansion of the work presented in assembled

papers from this group, especially McKeon and Sharma,1 Jacobi and McKeon,24 and Sharma and

McKeon,25 where full details of the underpinning analytical and experimental studies can be found.

An abbreviated version was presented as an invited lecture during the 2011 APS-DFD meeting.26

II. TURBULENCE AS A DIRECTIONAL AMPLIFIER

The full analysis described in McKeon and Sharma1 was performed for pipe flow primarily

because of the geometrical simplicity, the availability of high Reynolds number experimental data

for comparison of statistical results27, 28 and the potential for extrapolation to other canonical flows.

Turbulent flow through pipes is, of course, important for the transport of fluids such as oil and natural

gas, numerous natural and biomedical applications, and is also highly relevant to the study of other

canonical flows. Transition to turbulence in a pipe is still not completely understood,29 but the pipe

offers the analytical benefits of statistical homogeneity in the streamwise direction and a simple

constraint on the azimuthal wavenumber. The coordinate system in a long, straight pipe of circular

cross section for the following analysis is shown in Figure 2.

The conceptual picture underlying our analysis is that of a nonlinearity “feeding back” to excite

the linear wave propagation dynamics, which in turn drive the nonlinearity (Figure 1). As such, we

concentrate on the linear amplification aspect of the turbulent process and examine the corresponding

linear transfer function, considering its action at each wavenumber/frequency combination (described

below), which is shown to provide highly directional amplification. This picture is closely related

to, but distinct from, the sector-bounding analysis of the NSE for control30 and model reduction.31

A full solution of the NSE would predict the turbulent mean velocity profile. However, a

significant restriction on the scope of our modeling efforts is obtained by assuming the mean profile

is known and concentrating on the action of the resolvent operators in which it appears. With

x, u

r, v′

y, v

θ, w

FIG. 2. A schematic of pipe geometry and nomenclature.
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the particular choice of pipe flow, experimental measurements from the Princeton Superpipe are

available up to conditions representative of high Reynolds number applications27 and the use of a

turbulent eddy viscosity can be avoided.

Pipe flow affords the simplification of a priori knowledge that the optimal bases for modeling

the flow field in the homogeneous directions are the eigenmodes, which are the Fourier modes,

such that the flow can be represented as a summation of finite-amplitude traveling wave fluctuations

over a range of two-dimensional spatial wavenumbers and temporal frequencies about the turbulent

mean profile, with a natural connection to the gain analysis described previously. Another obvious

attraction of Fourier decomposition is the direct connection to the spectral measurements typically

made in real flows. At its heart, the analysis that follows seeks to establish the optimal basis for

decomposition in the inhomogeneous wall-normal direction, or the radial coherence associated with

particular traveling waves. The analysis has been compared to proper orthogonal decomposition,

which is a well-known technique for decomposing velocity field data to optimally capture the

energy. While there is a superficial correspondence, our analysis differs in that the decomposition is

predictive, since it is applied to the NSE and not pre-existing data.

A. Formulation for the analysis

Our analysis begins with the non-dimensional NSE for fully developed, incompressible pipe,

∂t ũ = −∇ p − ũ · ∇ũ + Re−1∇2
ũ, ∇ · ũ = 0. (1)

We retain the boundary layer terminology by fixing y = 1 − r, and u, v(= −v′) and w as corresponding

to the streamwise, wall-normal and azimuthal velocities such that ũ = (v′, w, u), as shown in

Figure 2. The Reynolds number is defined as

Re =
Ubulk D

ν
,

where ν is a constant viscosity, D is the pipe diameter (equal to 2R), and the bulk, volume-averaged

velocity is Ubulk. We also introduce the Karman number,

R+ =
Duτ

2ν
.

Here, uτ =
√

τw/ρ is the friction velocity, τw is the mean wall shear stress, and ρ is the density.

The NSE are invariant under translation in t (time), x and θ . In view of these symmetries, we

Fourier transform in time and the two homogeneous spatial directions, introducing for convenience

the wavenumber/wavespeed triplet K = (k, n, c) with k = k′R, n = n′R and wavespeed c = ω/k,

with ω = ω′ R/u0|y+=R+ (where the prime denotes the dimensional variables and u0|y+=R+ is the

centerline velocity), and let K · x = kx + nθ − ωt (notationally convenient). In addition, we specially

define K0 as (k, n, ω) = (0, 0, 0) and note that uK0
(u0) is the turbulent velocity field averaged over

space and time. Thus K with all positive elements refers to a downstream traveling wave (helical in

the cylindrical pipe geometry). As yet, only the wall-normal direction remains untransformed; the

problem is to find a suitable basis for these functions of r. The velocity field (and forcing field) is

expressed as a sum of harmonic, radially varying traveling waves,

u(r, x, θ, t) =
∑

n

∫ ∞

−∞

∫ ∞

−∞
uK (r )ei K ·xdkdω. (2)

We define u and f as

u = ũ − u0, (3)

f = −u · ∇u, (4)

with uK(r) and fK(r) the (radially varying) Fourier coefficients thereof.
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The NSE assuming fully developed flow (i.e., real elements of K) can then be written in a

divergence-free basis as

−iωuK = LK uK + fK , (k, n, ω) �= (0, 0, 0), (5)

0 = f0 − u0 · ∇u0 + Re−1∇2
u0. (6)

Note that in this formulation, the linearized Navier-Stokes operator, LK , naturally involves the

turbulent mean; yet we have performed no (linearized) stability analysis around a fixed point. Thus

the uKs are exactly the Fourier coefficients of the turbulent fluctuations relative to the mean profile

at all y. Previous work concerning analysis of LK and globally optimal perturbations has typically

employed a turbulent viscosity to account for the turbulent transport that would be excluded by a

linearization procedure. In this analysis, the treatment of f explicitly accounts for this phenomenon,

so the resolvent contains only the turbulent mean velocity profile itself.

A trivial manipulation of Eq. (5) gives the response of the flow at a particular wavenumber com-

bination subjected to harmonic forcing fK arising from the interaction between other wavenumbers,

uK = HK fK = (−iωI − LK )−1
fK , (7)

where HK is known in the literature as the resolvent.32 Using the form for LK given in Meseguer

and Trefethen,33 we can write

HK =

⎡

⎢

⎣

i(ku0 − ω) − Re−1 D −2inr−2 Re−1 0

2inr−2 Re−1 i(ku0 − ω) − Re−1 D 0

−∂r u0 0 i(ku0 − ω) − Re−1(D + r−2)

⎤

⎥

⎦

−1

(8)

with D = ∂2
r + r−1∂r − r−2(n2 + 1) − k2, and the states being the radial, azimuthal, and axial

velocities expressed in a divergence-free basis. Thus Eqs. (5) and (6) can be visualized as the block

diagram in Figure 3, forming a complete representation of the NSE in this basis. The resolvents,

HK , can be derived from the NSE and are interconnected through the nonlinear terms. Note that (as

stated in the caption) while an input-output relationship can be written for all K, uK �= 0 for a finite

range of K in real flows.

u · ∇u

Equation 5

HK1

HK2

FT(k, n, ω) IFT(k, n, ω)

f

u

f0(r)

fK1
(r)

fK2
(r)

fKi
(r)

uK1
(r)

uK2
(r)

uKi
(r)

u0(r)

FIG. 3. A block diagram showing the network of resolvents, HK , acting on radially varying traveling waves of different

wavenumber and frequency. An input-output relationship can be written for all K, but uK �= 0 for a finite range of K in real

flows. FT and IFT denote the Fourier transform and inverse Fourier transform, respectively. u0 and f0 describe the equation

for the turbulent mean profile.

Downloaded 06 Jun 2013 to 131.215.71.79. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions



031301-7 McKeon, Sharma, and Jacobi Phys. Fluids 25, 031301 (2013)

Although the resolvents are linear, the nonlinear forcing internal to the system is explicitly

retained so this is not a linearized analysis. Additional effects of the nonlinearity are bound up in

the use of the turbulent mean velocity profile in the resolvent. Thus the analysis is fundamentally

different from linear stability analysis: it concerns the response of a forced system (in reality lightly

forced because the leading singular values in general give rise to large amplification), where the

forcing is required to sustain a response in a linearly stable system. Thus, concepts relevant to the

study of disturbances in inviscid, linearized laminar flow can be extended to the turbulent case, with

the understanding that in the latter case the waves are lightly damped and would asymptotically

decay in the absence of forcing f.

Figure 3 describes an interconnected series of linear sub-systems with resolvents of known form.

Thus the formulation of Eqs. (5) and (6) lends itself naturally to separate analysis of the individual

sub-systems associated with each K, under the constraint that the correct amplitudes for each uK

are required to sustain the (assumed) mean velocity profile in the fully connected system. Without

satisfying this constraint associated with the excitation of all uK through the nonlinear term, progress

can still be made in terms of determining the radial distributions of velocity for each K, since the

linearity of the system allows for simple amplitude scaling of the response mode shapes. In effect,

then, we can consider unstructured (unit) forcing of each sub-system, in knowledge that the output

response modes can be linearly superposed to return to a representation of the full velocity field

subject to the constraint that the response mode amplitudes must ultimately satisfy Figure 3. This is

another significant advantage of our approach: the ability to dissect the flow into manageable “lumps”

(linear sub-systems) that can be analyzed in isolation and then simply reassembled. Further, this

formulation proves amenable to approximation of the resolvent at each K that leads to a significant

reduction in complexity using standard linear systems techniques.

B. Optimal low-rank approximation of the resolvent for inhomogeneous coordinates

The symmetries associated with the pipe geometry imply that the resolvent is normal under

the integrals over the wall-parallel coordinates and time (see Sharma and Mckeon25 for further

discussion on this point). In these homogeneous directions, then, the forcing and response modes are

equal, orthogonal and are the Fourier modes, which then represent the appropriate choice for basis

functions. However, this is not true in the wall-normal direction: the presence of the wall leads to

the loss of symmetry with the implication that the forcing and response modes are no longer equal

and the fluctuations may now gain energy from the interaction with the mean flow. The potential

for momentum production due to this interaction is quantified by this loss of orthogonality. Since

the resolvent is not normal with respect to the integral in this direction, the Fourier basis is no

longer the optimal choice under the energy norm. We seek a basis that is optimal with respect to the

magnitude of response to forcing in order to continue our gain-based analysis. To find this basis, we

use the singular value decomposition (SVD). For the reader less familiar with the SVD, we give a

brief example of its underlying action and interpretation in the next two paragraphs which the more

accustomed reader may safely skip.

The SVD is a well-known matrix decomposition that splits any matrix M into the product

M = ASB* where A is a unitary matrix (AA* = A*A = I), S is a diagonal real matrix, and B is

the conjugate transpose of another unitary matrix, all of appropriate dimension, as in the example of

Figure 4. The diagonal elements of S, σ i, are ordered such that σ i ≥ σ i + 1 and are called the singular

values. When applied to statistical data, the SVD is commonly known as principal component

analysis, Karhunen-Loéve decomposition, or proper orthogonal decomposition (POD). Comparison

across application domains is not very meaningful however, since the object of optimization is quite

different.

The singular values contained in the diagonal matrix S quantify the underlying dimensionality

of the mapping being decomposed. Where σ 2 is small compared to σ 1, as in the simple example in

Figure 4, the full mapping of a unit circle at input to an ellipse at output is well approximated by

the lower-dimensional mapping to a line. This example illustrates the use of the SVD to find lower-

rank approximations to linear mappings between higher-dimensional spaces. The SVD generalizes to

apply to linear operators on Hilbert spaces34 where it becomes known as the Schmidt decomposition.
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a

b 1

b 2

σ1 1

σ2a2

σ1a1

−σ1a1

FIG. 4. An illustration of the effect of matrix M on the unit circle (left plot mapped to centre plot). The singular values are

the radii of the resulting ellipse and the singular vectors give the rotation of the ellipse. ai are the columns of A and bi are

the columns of B. In this illustration, the matrix M =
[

0.5 0.9

−0.5 2

]

has the singular value decomposition M = ASB* with

A =
[

0.3761 0.9266

0.9266 −0.3761

]

, S =
[

2.2089 0

0 0.6564

]

, B =
[

−0.1246 0.9922

0.9922 0.1246

]

. The rightmost plot shows the effect of

the optimal rank-1 approximation M̃ to the mapping M on the unit circle, where M̃ = A

[

2.2089 0

0 0

]

B
∗.

Hopefully by now the application of the SVD in our context becomes obvious: since we hold

that turbulence can be captured by a low-order amplifying process, we must find the “best” low-rank

approximation to the resolvent, where what is meant by “best” is quantifiable in a defined sense. The

result is simply a truncation of the Schmidt decomposition of the resolvent, or the identification of

the right singular vectors (inputs) that give rise to the most amplified left singular vectors (outputs).

The relative amplification factor for unit input amplitude is given by the associated singular value.

We term the left and right singular vectors the velocity response and forcing modes, respectively;

the first singular forcing modes are the most significant in that they can be expected to dominate the

full observed response at a given K if the resolvent is truly low rank. We confirm this assumption

in the results shown below, noting that the true output from each resolvent will be the product of

forcing amplitude and singular value.

The SVD of the resolvent before Fourier decomposition is imposed would itself naturally result

in a decomposition into the (optimal) Fourier basis in the symmetric directions for the reasons

discussed earlier. For simplicity, we take that stage as given and consider the optimal low rank

approximation only in the inhomogeneous, wall-normal direction.

The SVD of the resolvent for a particular K can be written in terms of the forcing (φ) and

response (ψ) modes associated with the response of the flow as follows:

(−iωI − LK )−1 =
∞

∑

l=1

ψl K (r )σl K φ∗
l K (r ) (9)

with the orthogonality condition

(φl K (r ), φmK (r ))r = δlm, (ψl K (r ), ψmK (r ))r = δlm, (10)

where ( · , · )r indicates the inner product over r, such that the sets of both forcing and response modes

are normalized with respect to the energy integrated over the radius of the pipe and are orthogonal.

The singular values are sorted, with σ l, K ≥ σ l + 1, K ≥ 0. For stable LK , this decomposition exists for

real ω. It is also unique up to a pre-multiplying unitary complex factor on both bases corresponding

to a phase shift and up to the ordering in l of σ lKs, hence we fix the relative phases with respect to

the first coefficient.
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˜
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˜

FIG. 5. Block diagram for Eqs. (11) and (12) referring to the linear equations projected onto the forcing and response

modes. Diagram (a) depicts the “true” resolvent and (b) depicts the Schmidt decomposition of the resolvent. The rank-1

approximation is depicted in (c). This approximation can be performed for each lower sub-system in Figure 3.

The basis pair defined by φlK and ψ lK can be used to decompose arbitrary forcing and the

resulting velocity at any particular frequency/wavenumber component K, such that

fK (r ) =
∞

∑

l=1

φl K (r )χ̃l K , (11)

uK (r ) =
∞

∑

l=1

σl K ψl K (r )χ̃l K , (12)

where the χ̃ ’s correspond to the coefficients of projection of the forcing onto the forcing modes.

The radial shape of harmonic forcing that gives the largest disturbance energy (given unit forcing

amplitude) at a particular K is fK = φ1K, with a gain of σ 1K. The next largest arises from fK = φ2K and

so on, at a particular wavenumber pair and frequency. The corresponding flow response modes are

given by the related uK = ψ1K, ψ2K, etc. This decomposition of general input forcing is illustrated

in Figures 5(a) and 5(b).

At this stage, the analysis is complete in the divergence-free basis, in the sense that no modeling

assumptions have been made, other than that the velocity field is statistically homogeneous in x, θ ,

and t. Linearity of the system implies that the resolvent can be analyzed under unstructured forcing,

i.e., isolating individual resolvents as shown in Figure 5(a), but the appropriate amplitudes of the

velocity response modes must be determined before the connected, self-sustaining representation

of Figure 3 can be reassembled (the topic of ongoing work). The optimal low-rank approximation

to the resolvent is defined to arbitrary accuracy related to the number of singular modes included.

There is a further technical assumption that the resolvent is compact. The simplest approximation

is rank-1, in which the resolvent is modeled using only the first singular modes (Figure 5(c)); this

approximation is likely to be good if σ 1K ≫ σ lK for all l > 1. While the assumption that a rank-1

approximation is sufficient to model wall turbulence is quite strong to begin with, it is one of the

key outcomes of this formulation that it yields surprisingly good agreement with observations from

real flows for the vast majority of observed K combinations. Of course, a higher-rank approximation

may simply be made by the same process, should higher fidelity be required.
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C. Response of radially varying traveling waves and the connection

with critical layer theory

The singular response modes were computed using a MATLAB implementation of the decompo-

sition described in equations in Sec. II B and the numerical scheme and divergence-free basis for

pipe flow proposed by Meseguer and Trefethen,33 modified for a turbulent mean flow as in McKeon

and Sharma.1 Full details of the computational approach can be found in these two papers and, for

brevity, are not repeated here. The computational expense is exceedingly low, even for analysis of

Reynolds number up to R+ = 1.97 × 104, the highest Re study we have performed to date.

McKeon and Sharma1 investigated the variation of the characteristics of the radially varying

traveling waves over a range of K and made some observations with respect to variation with

singular value. Recall that the σ l gives the amplification, and complex functions φl and ψ l give the

wall-normal variation of the amplitude and phase of the forcing and response mode, respectively

(where the phase of the response mode is relative to the forcing). In particular, the orthogonality

requirements given in Eq. (10) require an increase in the number of maxima in the radial amplitude

function uK(r) with increasing l (with analogy to the orthogonality of Fourier modes), as shown in

the comparison of velocity response modes with increasing l in Figure 2 of McKeon and Sharma.1

(An example of the variation of singular values with l is shown in Figure 3 of that paper.) The

combination of the increasing complexity of such structures and the rapid drop-off in singular value

observed with increasing l support the rank-1 hypothesis for a wide range of K; in the rest of this

paper, we consider only the output of the rank-1 model of the NSE at each K value (Figure 5(c)),

which we call the first velocity response modes.

We summarize the general features of the first velocity response modes in Figures 6 and 7,

for a particular (k, n) = (1, 10) at R+ = 1800. Figure 6(a) shows the wall-normal variation of the

location of the peak magnitude of the streamwise velocity perturbation with increasing wavespeed

c, compared with the local turbulent mean velocity profile u0. The variation with c of the associated

first singular value, σ 1 is shown in Figure 6(b); note that for this K (and a wide range of K in general),

the magnitude of the first singular value is extremely large, meaning that only very small forcing

amplitude will be required to observe a strong velocity response.
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FIG. 6. (a) Variation of the location of the peak streamwise velocity with increasing wavespeed, c, for the first velocity

response mode with (k, n) = (1, 10) at R+ = 1800 (solid line). The turbulent mean profile normalized by the centerline

velocity, u0/u0|y+=R+ , at this Reynolds number is also shown in dotted gray for reference. (b) The corresponding first

singular values.
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FIG. 7. Representative velocity response mode shapes for the “attached,” “attached and critical,” and “critical modes,”

shown for conditions corresponding to points (i)–(iii) in Figure 6, i.e., (k, n) = (1, 10), c = 0.25, 0.67 and 0.85, and

R+ = 1800. (Top) u(y+); (middle) v(y+); (bottom) uv(y+).

Three different types of modes can be identified in Figure 6(a). The velocity response mode

shapes uK corresponding to these three classes of velocity response modes, identified here by (i)-(iii),

are shown in Figure 7. The variation of the azimuthal component is not shown since it is simply

determined from the summation of left- and right-going propagating waves described earlier and the

continuity equation, and is out of phase with u in both streamwise and azimuthal directions. When

c is small in region (i), the peak magnitude in all components stays at an approximately constant

wall-normal distance, y+ = yuτ /ν. We term these “attached modes,” because the footprints of the

modes reach down to the wall. For large c in region (iii), the location of the peak amplitude tracks the

local mean velocity, i.e., c = u0(y) and there exists a critical layer. The mode is localized around the

critical layer, such that these “critical modes” rapidly become detached from the wall with increasing

c. Some special significance will be given to the class of attached, critical modes (ii), i.e., the slowest

convecting modes that achieve critical status.

Note also that the Reynolds stress associated with the velocity response modes exhibits slightly

different behavior, lifting from the wall to provide a radially localized distribution with contributions

at K0 and 2K.

We will not comment here on the first singular forcing mode shapes corresponding to the velocity

response modes shown in Figure 7, beyond saying that the forcing occurs locally to the velocity

response in a radial sense, and that understanding which pairs of other Ks supply a component

of forcing in these directions is equivalent to understanding how to close the block diagram of

Figure 3.

The physics underlying these distinct classes of response modes can be identified by returning

to the full rank resolvent of Eqs. (7) and (8) (and noting that the scaling phenomena observed are

reflected in the rank-1 approximation). There are two distinct mechanisms by which the resolvent

can lead to large amplification:1 the non-normality associated with the v∂r u0 term coupling the

Downloaded 06 Jun 2013 to 131.215.71.79. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions



031301-12 McKeon, Sharma, and Jacobi Phys. Fluids 25, 031301 (2013)

radial perturbation to the mean shear (requiring a mode covering a wider range in the wall-normal

direction, since it is powered by the differential in velocity over r), and a critical-layer type response

where locally c ≃ u0(yc) giving high gain. The former effect is well understood to lead to energy

extraction from the mean flow under other formulations. In the latter case, the diagonal terms in

the resolvent become extremely large at the location where c = u0(y) with large Reynolds number.

The concept of a critical layer in wall turbulence has received much less attention, with the notable

exception of the analysis by Sreenivasan.35 This phenomenon occurs when the resolvent at this

location becomes large because, at high enough Reynolds number, the response at the critical layer

to forcing is almost singular; the relevant eigenmodes approach neutral stability in the inviscid limit.

A review of the body of work on critical layers in laminar flow is given by Maslowe36 and Schmid

and Henningson.11 There are some essential differences to the current development: we address the

turbulent case, we maintain the presence of the nonlinear forcing term and (specific to pipe flow)

the wall-normal velocity and vorticity in the Orr-Sommerfeld formulation of the problem do not

decouple in cylindrical coordinates.11 However critical layer concepts are useful, and qualitative

connections are made between the theory and turbulent flow in Cartesian geometries in McKeon

and Sharma.1

D. Closing the loop: An explicit treatment of the nonlinearity

The linear selection mechanism explains much of the form of the structure of real flow; however

the nonlinearity is also important. Though it is not the focus of this work, we will briefly discuss

it here for the case of a discretised field, i.e., discrete K. Using the resolvent decomposition of

Eqs. (7), (9), (11), and (12), expressing the fields in terms of the coefficients with j, a, b indexing

over all lK, we get

u =
∑

j

χ jψ j =
∑

j

ψ jσ jφ
∗
j f jφ j , (13)

where

f j =
∑

a,b

(

−ψa · ∇ψb, φ j

)

r
χaχb =

∑

a,b

N jabχaχb. (14)

Here, χ j are the coefficients describing the projection of the velocity field onto the velocity response

modes, χ j = σ j χ̃ j , and Njab is the coupling between any three traveling wave singular modes. Note

that Njab = 0 where Fourier modes are triadically incompatible. The full nonlinear problem can then

be reduced to the solution of

χ j =
∑

a,b

σ j N jabχaχb. (15)

The modeling question is the magnitude and sparseness of both Njab and σ j. Notice that high gain

σ j can compensate for low (but non-zero) Njab and the quadratic property of f can determine the

amplitudes. Since σ j and Najb are calculated from the NSE, this system of equations together with

the assumed mean velocity profile constitutes a complete description of turbulence with transient

behavior removed. Sparseness makes this representation very efficient.

We see that self-sustaining mode combinations are possible if the nonlinear forcing term re-

sulting from the interaction of component velocity modes is not orthogonal to the forcing modes

required to sustain it. We could reasonably look for solutions to (15) to find self-sustaining mode

combinations. Such a truncation would give a low-order, discrete representation of (15). This is the

subject of ongoing work.

This view also gives an interesting insight into the equivalent of the cascade in the inhomoge-

neous spatial direction. In this direction, because of the distribution across r of the modes, there is

a non-local (distributed) interaction with the mean shear. This possibility of extracting energy from

the velocity profile is mathematically captured by the non-normality. The critical layer response, by

contrast, is localized in r.
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The triadic interaction in homogeneous isotropic turbulence (or the t, x, and θ directions)

is well understood; the mechanisms for energy transfer have now been effectively extended to the

inhomogeneous directions by the analysis. The nonlinearity, in addition to transferring energy across

ω, k, and n, subject to the rules of triadic interaction, may also transfer energy across response modes

in y, subject to the three-way interaction Njab and the singular values σ j. The ability of a mode to

drive others in the wall normal direction, essentially the wall-normal cascade, is determined by the

localization of the mode in that direction, which in turn determines Njab.

E. Where to look in 3D spectral space?

In the absence of a solution to Eq. (15) that identifies the modes required to sustain the turbulence

with Njab �= 0, our analysis at this stage is guided by the range of K observed in real flows (although

note that ongoing work suggests that this region of K space corresponds well to the range where the

first singular values have large magnitude, e.g., Ref. 37). This localization and high response at the

critical layer dictates that the turbulent flow’s energy is concentrated around a thin “spine” in (k, n, ω,

l) space, where l is the singular value index, which essentially describes a low-dimensional attractor

in this space. This will also be discussed in forthcoming work. As such, we briefly review work that

has characterized the scales and wall-normal variation of the three-dimensional, spatio-temporal K

spectrum (which in its entirety is still a relatively uncommon result) and has thus informed our work.

The statistics and spectra of the turbulent fluctuations have been historically well studied, such

that results including the Reynolds-number independence of the near-wall cycle and the energetic

importance of the very large scales emerging with increasing Reynolds number are now well

established. However, the classification of coherent structures and their connection to velocity

statistics can be said to be a more recent focus, significantly enabled by advances in computational

and experimental diagnostic technology. The essential structural features of wall turbulence have

been listed recently by Smits, McKeon, and Marusic.38 In order of increasing streamwise scale, this

list consists of near-wall streaks of streamwise velocity, hairpin vortices, large scale motions (LSM)

believed to correspond to organization of hairpin vortices into packet structures, and very large

scale motions (VLSM) with streamwise extent on the order of ten times the outer lengthscale. The

temporal frequency is most simply addressed through the range of convection velocities observed in

the flow.39–42

Assuming the approximate universality of spectra between canonical flows documented by

Monty et al.43 and the range of scales described in Smits, McKeon, and Marusic38 and references

therein, conservative estimates of the energetically active K = (k, n, c) ranges are then 0.1 < k

< 2πR+/100, 2π /0.1 < n < 2πR+/10, and 10/u
+
0 |y+=R+ < c < 1. Practically, the sum of K and its

complex conjugate, and both left- and right-going waves (±n) must be considered in order to obtain

real-valued amplitudes and avoid a non-zero mean spanwise velocity, respectively. In what follows,

we constrain our interrogation of the resolvent analysis to these values and document well-known

features of wall turbulence that are captured by the rank-1 approximation to the resolvent.

III. REPRODUCTION AND EXTENSION OF STATISTICAL AND STRUCTURAL RESULTS

IN UNPERTURBED WALL TURBULENCE

An array of quantifiable features of wall turbulence have been well described in the extensive

wall turbulence literature, including velocity statistics, spectral information, and organizations of

coherent structure, even if their Reynolds number scaling and dynamical importance still remain

sufficiently elusive to preclude effective low order modeling. Of course, even observing these features

at high Reynolds number presents severe experimental and numerical challenges, but assimilation

of the characteristics of all such recognizable results is required for a full understanding of wall

turbulence.

Our analysis naturally leads to information related to velocity spectra and distribution of statistics

in the wall-normal direction, and we will present selected results in this section. We also target the

different classes of structures listed in Sec. II E above, demonstrating that the analysis has the
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potential to unify the statistical and structural observations of wall turbulence and lead to inferences

about the key underlying physics.

We note that experimental studies typically interrogate data based on averaging conditional

on some characteristic typical to the structure to be examined. For instance, Dennis and Nickels44

average conditional on a swirl criterion to identify hairpin vortices, yielding the scale distribution in

K and y associated with the structure. In contrast, we work in the opposite direction: specifying K

and yielding the wall-normal distribution of the velocity of the response modes, which we associate

with coherent structure.

A. Near-wall cycle

The structure and dominant dimensions associated with the autonomous, near-wall cycle of

turbulence have been known since the seminal experiments of Kline et al.45 Significant study of

the dynamics of the flow in this region, performed by, e.g., Waleffe,46 Jiménez and Pinelli,47 and

Schoppa and Hussain48 using low Reynolds number data, revealed the well-known quasi-streamwise

vortex and streamwise velocity streak structure, while experiments in the atmospheric surface layer49

have demonstrated the Reynolds number independence of the streak spacing in viscous units at the

near-wall scales identified above, namely, λ+
x ≈ 1000 and λ+

z ≈ 100. Comparison with the structure

arising from our analysis requires the specification of an additional parameter, the phase velocity, c.

For the dominant wavelengths associated with the near-wall cycle, the first singular mode is critical

and attached to the wall, as identified in Figure 7, when c+ = 10 − 15, the minimum convection

velocity associated with energetic disturbances.

The wall-normal distribution of the streamwise component of the first singular mode with

K = (2π R+/1000, 2π R+/100, 10/u
+
0 |y+=R+ ) is essentially Reynolds number-independent, as

shown by the distributions of the amplitude over an order of magnitude in Reynolds number in

Figure 8(a). In fact, this independence emerges directly from the Cartesian coordinate version of

critical layer scaling1 for modes with K constant in inner units in a region where the mean velocity

profile is self-similar in inner units, i.e., for sufficiently high Reynolds numbers. The first singular

velocity response mode captures this scaling and thus postdicts from a low rank approximation to

the NSE that the location of the near-wall cycle activity should be Reynolds number independent.

Similar results can be obtained for outer scaling modes.1

The velocity components are distributed in such a way as to create a periodic array of alternating

streamwise velocity streaks accompanied by streamwise-aligned vortices in the cross-stream plane,

which are elevated slightly from the wall with increasing downstream distance. See Figure 8(b)

and Figure 1 from McKeon, Sharma, and Jacobi,50 for a cartoon of the structure associated with

this near-wall mode. There is a strong resemblance to a system of quasi-streamwise vortices and

streaks of streamwise velocity, with the simplicity of this representation made possible because of
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FIG. 8. (a) Distribution of streamwise energy over the pipe radius for the near wall mode with

K = (2π R+/1000, 2π R+/100, 10/u
+
0 |y+=R+ ). Reynolds numbers: — 75 × 103, −− 150 × 103, ··· 410 × 103, · − · 1 ×

106. (b) Shape of the first singular mode representative of the dominant near wall motions. Color denotes isosurfaces of

streamwise velocity (streaks), where red and blue correspond to high and low velocity, respectively, relative to the mean flow

(heading into the page), and the white arrows show the sense of the in-plane velocity field.
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FIG. 9. Wall-normal variation of (a) amplitudes of the three velocity components and (b) corresponding phases in multiples

of 2π for the VLSM response mode with K = (1, 10, 2/3) at R+ = 1800. The lines denote −o −: u, −: v, −× −: w.

Solid/dashed horizontal line shows the location of the critical layer.

the absence of decorrelation associated with the many other (less-energetic) K modes that are active

in this region of the flow.

Thus we see that, first, the rank-1 approximation to the resolvent generates velocity response

modes that display the scaling, distribution, and structure consistent with the state of understanding

concerning the near-wall cycle. Second, a modified critical layer analysis provides scaling consistent

with observations of wall turbulence.

B. Characteristics of the very large scale motions

Similar success can be obtained by studying the first singular velocity response mode at the K

combination believed to correspond to the VLSMs. Figure 9 shows the response mode amplitude and

phase associated with K = (1, 10, 2/3), selected by McKeon and Sharma1 to best match a series of

observations of VLSMs in the literature that are incomplete in terms of the three parameters required

for input to our analysis. Irrespective of the exact values selected, the general form of this mode

is similar to the attached critical mode shown in Figure 6, namely, streaks of streamwise velocity

with a small inclination from the wall and associated cross-stream vortices, in agreement with the

observations of Hutchins and Marusic51 and Chung and McKeon.52 The strength of each of these

features, common to attached critical modes, depends on the aspect ratios given by the ratios of k,

n, and c, where the last dictates an approximate wall-normal scale associated with the wall-normal

distance to the critical layer. Consequently, the cross-stream component is weak for the VLSMs.

Of particular interest are the distributions of the wall-parallel components of the mode. Near the

wall, in the region that gives the mode its “attached” designation, the phase of the mode monotonically

decreases, leading to the aforementioned small angle of inclination to the wall. However, further

from the wall the amplitude is smaller, but there is essentially zero phase variation in the wall-

normal direction. Not only does this behavior mirror the expected phase variation beyond the π

phase jump associated with classical critical layer theory,36 but it is also in good agreement with

cross-correlation results in the literature that had remained somewhat puzzling.52–54 Guala, Metzger,

and McKeon54 observed similar shapes in the two-point cross-correlations, Rxx (r+
x , y+, y+

re f ), in the

near-thermally-neutral atmospheric surface layer, with temporal records transformed to the spatial

domain using Taylor’s hypothesis. The expected near-wall structural angle was observed with a

reference location, y+
re f , close to the wall, while a sufficiently large y+

re f led to effective capture of

a region of weaker correlation with reduced phase variation far from the wall. Interestingly, Chung

and McKeon52 found similar behavior of the velocity field in LES of long channels conditioned on

the occurrence of large-scale negative and positive velocity excursions, with the same dependence

on the wall-normal location of the condition. Note that while there is some ambiguity concerning the

interpretation of streamwise scale from both the cross-correlation results and conditional average

procedures, it is clear that the dominant scales are of the order of several boundary layer thicknesses
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long in the streamwise direction. It also seems that the general variation of phase in the wall-normal

direction described above is a common feature that can be more easily isolated by these techniques

as the Reynolds number increases and the peak amplitude of the LSM/VLSM both increases and

occurs further from the smaller-scale near-wall activity. We note also that the mode shown in

Figure 9 has a non-negligible amplitude over at least 30% of the radius, in which distance the change

in mean velocity is approximately 80% of the centerline velocity, underscoring the underlying reason

for the failure of Taylor’s hypothesis for very large streamwise scales.43

For K = (1, 10, 2/3), a simple prediction of the scaling of the peak location in streamwise

amplitude, y+
c , can be made, where y+

c is understood to track with reasonable fidelity the wall-

normal location of the critical layer. McKeon and Sharma1 showed that the wall-normal location

where the response mode with (k, n) = (1, 10) first attains attached critical status occurs at c = 2/3,

independent of Reynolds number, and that this location lies within the region of logarithmic scaling

of the mean velocity. The latter observation allows expression of the y+
c in terms of the local mean

velocity at the critical layer, two-thirds of the centerline velocity, solely by taking advantage of the

log law and Reynolds similarity of the outer flow:

1

κ
ln y+

c + B =
2

3

(

1

κ
ln R+ + B + C

)

. (16)

Here κ is the von Kármán constant, and B and C are the additive constants associated with the mean

velocity in the log region and the constant wake function. Solution of Eq. (16) with standard values

for the constants1 leads to the prediction of

y+
c = 0.8R+2/3, (17)

which appears to be well-borne out by examination of the experimental data of Morrison et al.28

(Figure 13 of McKeon and Sharma1).

Despite the difficulties applying critical layer analysis to turbulent pipe flow identified earlier,

it is worth mentioning a related result that is at least encouraging. McKeon and Sharma1 observed

that classical critical layer analysis yields a scaling with R+2/3 for the critical layer in the upper

branch solution for neutrally stable modes, along with the more recognizable R+1/2 for the wall layer

in both upper and lower branches. The critical layer in the lower branch scales with R+1/5. That

the exponent from the classical analysis is in agreement with the scaling of the VLSM energetic

peak gives hope that the c = 2/3 for the VLSM determined observationally from our analysis is

a fundamental theoretical result. However, the comparison of the variation of the location of the

VLSM peak in the boundary layer data of Guala, Metzger, and McKeon54 and (a proxy for it) from

Mathis, Hutchins, and Marusic55 shown in Figure 16 of McKeon and Sharma1 with the pipe result of

Eq. (17) gives a hint that this behavior (the branch choice) may not be independent of flow geometry.

C. Hairpin vortices and structural organization

Our discussion of self-organization of coherent structure and its relationship with energetic

large scale motions afforded from resolvent analysis begins with reference to the classical structure

of the critical layer described by Kelvin, which hints at the origins of hairpin vortices. Figure 10

shows a sketch of the periodic, closed streamline structure seen by an observer moving at the critical

FIG. 10. Kelvin’s cats’ eyes (also called Kelvin-Stuart vortices): structure at the inviscid, laminar critical layer as observed

by an observer moving at the critical velocity.
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velocity associated with a classical, inviscid (two-dimensional) critical layer. The three-dimensional

wavenumbers expected from observations of wall turbulence (as opposed to the two-dimensional

perturbations that emerge as the most unstable in linearly unstable laminar flow via Squire’s theorem)

suggest that any structure derived in the turbulent case will be more complex: at the very least,

the superposition of left- and right-running velocity response modes suggests a three-dimensional

vorticity variation, which we will show below appears to represent the commonly-drawn outline of

a hairpin vortex.

A fundamental concern with considering coherent vortical structure in a turbulent field asso-

ciated with a strong mean shear is the challenge of objective identification of rotation over shear.

Recent reviews of this problem are given by, e.g., Jeong and Hussain56 and Chakraborty, Balachan-

dar, and Adrian;57 for the simplified flow fields associated with the linear superposition of velocity

response modes investigated here, all common identifiers give similar results, hence we choose to

work with swirl, λ, which is given by the magnitude of the imaginary part of the complex conjugate

eigenvalue pair associated with the velocity gradient tensor. This is, as are all the common diagnos-

tics, a nonlinear function of velocity (a characteristic that leads rapidly to structural complexity, as

we will show below). Therefore, while the velocity response modes can be linearly superposed to

obtain approximations to the full velocity field of increasing veracity, a faithful representation of

the full swirl field can only be obtained by summation of all active velocity response modes (with

the correct amplitudes). However, our aim here is to show that the recognizable foundations of the

structure observed in full flow can be traced to resolvent analysis, and specifically that phenomena

such as evolving packets of hairpin vortices arise naturally from the resolvent analysis as studiable

sub-units.

Figure 11 shows an isosurface of the swirl field associated with K1 = (6, 6, 2/3), a critical mode

in the terminology of Sec. II C that is just detached from the wall. Sharma and McKeon25 selected

this response mode as one of a triadically consistent set that includes the VLSM (we summarize the

full corresponding swirl field below). A periodic array of pro- and retro-grade hairpin-like vortices

is found, where prograde implies rotation in the classical sense with a contribution to −uv, and the

opposite for a retrograde vortex. This is as expected since the response modes represent the velocity

distribution relative to the local mean velocity and there can be no mean contribution to the mean shear

from the response mode. These coherent vortical structures can be understood phenomenologically

FIG. 11. The periodic array of pro- and retro-grade hairpin vortices associated with near-wall velocity response modes at R+

= 1800, identified by an isosurface of constant swirling strength at 50% of the absolute maximum value, color-coded with

the local (model) azimuthal vorticity. Red and blue denote rotation in and counter to the sense of the classical (prograde)

hairpin vortex, respectively.
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to be the three-dimensional equivalent of Kelvin’s cats’ eyes. Reference to Figure 7 confirms that the

associated Reynolds stress is localized around the critical layer and detached from the wall, making

the characteristics of this mode consistent with the foundational elements of Townsend’s attached

eddy hypothesis.

The swirl function identifies regions of rotational motion, but it is susceptible to contamination

by local shear gradients in the sense that the absolute value of the swirl can be either increased or

decreased by the simultaneous presence of shear. Most notably, the positive shear associated with

the mean profile can be shown25 to increase (suppress) the swirl value associated with prograde

(retrograde) hairpin vortex heads. This is a thresholding problem: rotational motion is still captured

for both senses of vortex rotation, but the usual thresholding techniques applied to velocity fields lead

to a systematic under-accounting of retrograde vortices. McKeon, Sharma, and Jacobi50 explored this

phenomenon in the context of this work with respect to observations of swirl in the streamwise/wall-

normal plane of a zero pressure gradient turbulent boundary layer, while Carlier and Stanislas58

documented earlier the general characteristics of the distributions of pro- and retro-grade hairpin

vortices.

In the context of exploiting the resolvent analysis to demonstrate recognizable structure, we

explore further the effect of local shear associated with combinations of velocity response modes. An

energetic VLSM, for example, can be viewed as enforcing a periodic, enhanced and reduced local

Reynolds number on the smaller motions, accompanied by positive and negative shear, ∂uK/∂y. In

this sense, it can be considered to be an inactive motion in the terminology of Townsend. A similar

effect occurs in the other velocity components and gradient directions, but the strongest of these is

the wall-normal gradient of streamwise velocity, at least for the large scales which have long been

associated with vortex organization in the literature. Thus the distribution of hairpin vortices with

a particular K, which is periodic in the absence of other modes, will be modified by local shear

associated with the linear superposition of any other (sufficiently energetic) velocity modes, and this

modification gives rise to the self-organization of vortical structures familiar in the literature.

This phenomenon is described at length in Sharma and McKeon,25 but we demonstrate the

complexity of vortical structure that can arise under the superposition of three modes in Figure 12.

The three modes K1 = (6, 6, 2/3), K2 = (1, 6, 2/3) (VLSM), and K3 = (7, 12, 2/3) are triadically

FIG. 12. Isosurfaces of constant swirling strength (33% of maximum value) for the “ideal packet” at R+ = 1800, color-coded

by the local (model) azimuthal vorticity. Red and blue denote rotation in and counter to the sense of the classical hairpin

vortex or prograde and retrograde vortices, respectively.
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consistent in K and overlapping in the y direction, and will be phase-locked in the sense that the

identical wavespeed means that there is no relative motion between the modes and therefore no

evolution of the packet. Sharma and McKeon25 selected relative mode amplitudes consistent with

experimental observations, specified a π /2 phase difference between the large-scale envelope of

the two shorter modes and the VLSM in the streamwise sense and aligned the peak streamwise

intensities in the azimuth, in order to generate the complex swirl distribution shown in Figure 12,

which is recognizably a packet of hairpin vortices. Three prograde vortices with two retrograde ones

sitting downstream and above the main packet can be clearly identified, along with some weaker

vortices of both senses below the packet. The prograde hairpin heads occur further from the wall with

increasing streamwise direction and are collocated with the inclined interface between positive and

negative streamwise velocity fluctuation imposed by the VLSM (the location of maximum shear),

giving the packet its distinctive shape. We find the complexity of coherent structure arising from

even the idealized arrangement of only three modes to be striking.

This assembly of modes was deemed an “ideal packet” by Sharma and McKeon25 because of

its lack of evolution (matched wavespeeds) and spatial alignment. Note that this is developed as

an example of structure from the resolvent analysis that can be simply interrogated rather than a

structure that we expect to observe in a real flow. Relaxing any of the alignments or superposing

more velocity response modes will disrupt the coherence of such a packet, such that isosurfaces

of the swirl diagnostic identify the canes and arches generally observed in moderate Reynolds

number wall turbulence. Permitting a range of wavespeeds leads to packet evolution in space and

time. However, Sharma and McKeon25 speculate that this combination of modes is dynamically

important and likely to be self-sustaining, in addition to being triadically compatible, and termed it

a “turbulence kernel.” It should be understood that the Reynolds stress associated with the correct

assembly of velocity response modes supports the (currently assumed) mean velocity profile, but in

the resolvent interpretation this comes from the mean contributions to the −uv distribution rather

than the concentration of stress associated with the hairpin heads, both of which can be observed in

the bottom panes of Figure 7. The resolvent analysis offers a different explanation for the source of

the Reynolds stress from that offered by the attached eddy hypothesis. In the latter, the distribution

of eddies effectively describes the mean velocity profile and the scaling of the velocity fluctuations.

A simple superposition of first singular modes gives clear insight into a mechanism of self-

organization in wall turbulence. In crude terms, the local variations of shear associated with the

linear superposition of velocity modes bias the identification of structure to the edges of regions of

energetic large scale streamwise motion (the zones of constant momentum of Adrian, Meinhart, and

Tomkins59), implying that coherent vortex structure is most likely to be observed around streamwise

streaks of low velocity, as shown, e.g., in the elegant conditional averaging of time-resolved particle

image velocimetry (PIV) by Dennis and Nickels.60 Perhaps, then the well-known organizational

characteristics of LSMs and VLSMs in terms of the observed preferential wall-normal and spanwise

locations of hairpin vortices flanking large scale energetic motion can be at least partially attributed

to the choice of nonlinear diagnostic for measuring swirling motions.

D. Summary of results regarding unperturbed wall turbulence

The agreement between response modes and observations of the real flow detailed above

suggests that the low rank approximation to the NSE afforded by the first singular response modes

over the range of wavenumbers and frequencies observed in real flows is a useful tool for modeling

wall turbulence and illuminating dominant flow dynamics. It is important to stress that the dynamics

of the flow are captured and explained by the analysis. More information on the organization of the

flow, essentially the amplitudes and relative phases of the velocity response modes, appears to be

available from consideration of the triadic interactions such as those presented by our turbulence

kernel; this is beyond the scope of the current manuscript, but is explored in Sharma and McKeon.25

Another benefit of using the systems paradigm is the potential for carrying over closed-loop

control thinking and technology to explore the possibilities for turbulence control in the presence of

an almost ideal model. We explore strategies for control in Secs. IV A–IV D.
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IV. EXPERIMENTAL MANIPULATION OF THE TURBULENT BOUNDARY LAYER USING

DYNAMIC ROUGHNESS ACTUATION

Bewley61 observed that “coordination of simulation-based modeling and control design is largely

an unsolved problem.” The key difficulty is that, by design, the dynamics of the uncontrolled system

are often quite different from the controlled. This makes an experimental demonstration showing

that it is possible to use the approach to provide a deterministic change to wall turbulence essential

to evaluating the use of the resolvent framework in modeling forced-flow dynamics.

A strategy for incorporating what is, in essence, open-loop control via our analysis can be

identified in Figure 3, where external forcing is used to over-stimulate a single K component of the

linear system. The low rank nature of the resolvent suggests that the exact radial form of the forcing

is not essential so long as there is a component in the most amplified direction (φK, 1), since this

is what dominates the response. In the context of the fully coupled Navier-Stokes system, this is

conceptually analogous to adding a tracer to the system, highlighting the energy transfer that takes

place as a consequence of nudging the turbulence away from its natural self-consistent state, and

thus is interesting in its own right as well as providing proof that the effect of the external forcing

can be predicted through the analysis described above. Harnessing the sensitivity of flow itself to

individual forcing inputs provides an optimal method of “tickling” the flow.

The practical attraction of wall-based actuation for real-world applications is strong, although

this will necessarily lead to non-optimality of the forcing associated with imperfect coupling from

the wall to the body of the flow (discussed further below). Many methods of actuating the flow

from the wall exist, as reviewed recently by Cattafesta and Sheplak,62 however the need to isolate

individual K modes in a continuous, practically implementable surface suggested the use of a

dynamic roughness: distributed surface roughness elements with a temporally varying amplitude.

Consider the “active eggbox” wall shown in Figure 13, a geometry with single wavenumbers in

the streamwise and spanwise directions. When actuated at a single frequency, ω, it provides a

harmonic temporal variation in amplitude. Such a surface is capable of coupling directly with the

flow in a way consistent with the resolvent analysis, under the assumption that the downstream-

traveling component of the upstream- and downstream-traveling wave combination that is linearly

superposed to give the standing wave at the wall is preferentially amplified. This is consistent

with our understanding of the characteristics of wall turbulence and the singular values obtained

by McKeon and Sharma.1 An initial demonstration of such coupling was provided by McKeon,63

who enforced a linearized equivalent boundary condition (effectively wall transpiration) in direct

numerical simulation (DNS) of fully developed turbulent channel flow to show that the resulting

disturbance shape could be predicted using only the mean velocity profile as input.

While conceptually simple, the practical implementation of dynamic roughness requires some

careful design, although advances in the field of smart materials offer hope for future developments

of large-area morphing surfaces. In this section, we review the results of Jacobi and McKeon24 who

employed a simplified version of a fully developed morphing surface over a limited wall area in

FIG. 13. An example of a morphing surface geometry capable of simple interaction with the resolvent analysis: an “active

eggbox” that introduces a single K. A roughness geometry described by single wavenumbers in the wall-parallel directions

(k, n) is actuated at a single frequency, ω, leading to harmonic temporal variation in amplitude.
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order to produce forcing amenable to the resolvent analysis described above, adapted for the zero

pressure gradient turbulent boundary layer.

A. Turbulent boundary layer excitation using a dynamic roughness impulse

The experiments of Jacobi and McKeon24, 64 employed a simple top-hat (two-dimensional)

spatial impulse of dynamic roughness as a proxy for a fully developed morphing surface. In practice

this is an array of small spanwise ribs with amplitude varied harmonically in time. This geometry

allows significant experimental simplifications, while affording a unique perspective by leveraging

a substantial knowledge base in wall-bounded flows that have been knocked out of equilibrium by

deterministic perturbations. The literature on turbulent boundary layers under general perturbation

by spatially impulsive changes in surface geometry, roughness, pressure gradient, and other factors,

as well as fully developed flow over two-dimensional roughness elements is reviewed in Jacobi and

McKeon24, 64 and will not be repeated here in the interests of brevity. We stress, however, that the

previous studies considered static perturbations as opposed to the dynamic amplitude variation that

will be described below.

The essential details of the experimental study follow (full details of the facility, operating

conditions and measurement techniques can be found in Jacobi and McKeon24, 64). The experiments

were performed in a low free-stream turbulence, incompressible, zero-pressure-gradient turbulent

boundary layer. The basic roughness geometry for these experiments is shown in Figure 14. The

roughness impulse consists of four spanwise bars of k-type roughness, each 1.57 mm thick, 1 mm

tall (above the surface of the wall, in the case of the static roughness perturbation experiment), and

separated (interstitially) by 6.35 mm, illustrated in Figure 14. The entire patch extends for 25.3 mm

in the streamwise direction, or approximately 1.5 times the mean boundary layer thickness (δ99) of

the unperturbed boundary layer, denoted δ0. The flat plate itself was modified to allow the roughness

elements to pass through slots, in order to allow the roughness to be mechanically actuated by a

dc motor with a piston and crank-shaft assembly mounted outside the wind tunnel and operating

at a fixed frequency of 30 Hz. An almost perfect sinusoidal variation of amplitude from flush with

the surface to peak amplitude of approximate height 1.64 mm and root mean square (rms) of 1.16

mm is obtained, as determined by a linear encoder which is also utilized to phase-lock velocity

measurements to the position of the oscillating roughness. The peak oscillating amplitude is fixed

in order to maintain an approximate match between the rms amplitude of the dynamic perturbation

and the constant amplitude of the static roughness elements, which were studied in companion

experiments.

The selection of wavenumber/frequency combination, K, for study was based on spectral con-

siderations described below and on the practicality of implementing the perturbation. The spanwise

wavenumber, n, is fixed by the spanwise uniformity of two-dimensional roughness. PIV measure-

ments confirm the two-dimensionality of the downstream flow. The streamwise wavenumber k

λ
x
 = 7.14

k = 1

x

y

x/δ
0
=3-5 x/δ

0
=35-38

x/δ= 0.1 1.1 2.3 3.4 5.0 8.5, 12.3, 16.8, 24.1

PIV PIV

Hotwire

x/δ≈3 x/δ≈8 x/δ≈24

FIG. 14. A schematic of the arrangement of the flat plate, the roughness strip, and the diagnostic locations; not to scale. The

internal layers are also marked in order to provide an idea of their relative sizes and development rates. The first internal layer,

δ1 grows rapidly; the second, δ2, grows slowly. The mean boundary layer thickness (δ99) at the location of the roughness

in the unperturbed flow is denoted δ0. The three key measurement locations highlighted in the subsequent discussion are

marked with black lines.
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is a fixed function of the roughness impulse and flow parameters; the roughness geometry de-

scribed above leads to a streamwise wavenumber of λx ≈ 18.70 or k = 0.336. Note that non-

dimensionalization for the boundary layer results is performed using the boundary layer thickness

just upstream of the roughness impulse, δ0 in Figure 14, and the freestream velocity. The wavespeed

is then assigned by the rotation frequency of the DC motor, which was picked to target the lower

end of the range of naturally-occurring frequencies in the boundary layer. The resulting convection

velocity coefficient is 0.464 − 0.066i (where the imaginary component is due to the decay of phys-

ical disturbances), which places the critical layer at y+ ≈ 0.04 for the unperturbed velocity profile

at the first streamwise measurement location. Thus the actuation introduces a perturbation with K

reminiscent of a synthetic, two-dimensional very large scale motion.

This assignment of wavenumbers can be performed only because of the strength of a roughness-

type impulse on the flow. Roughness type perturbations are much stronger than those produced by

the vibrating ribbons used in early transition experiments like that of Schubauer and Skramstad,65

as well as the comprehensive study on perturbation of the turbulent boundary layer performed by

Hussain and Reynolds.66–68 In fact, the roughness-type impulse was used in Jacobi and McKeon64

precisely because it serves so effectively to disrupt the equilibrium condition of the turbulent

boundary layer. Moreover, the simple geometry of two-dimensional roughness elements provides

experimental simplification and, importantly, more control over the perturbation wavenumber set

(k, n, ω). While the non-equilibrium flow makes reconciliation of the experimental results with the

theory more challenging, as described below, it still provides a useful demonstration of the approach.

In what follows, we present a selection of point and field measurements of the flow field

made downstream of the roughness at streamwise locations using single normal hot-wires and

streamwise/wall-normal aligned PIV. The streamwise stations are marked in Figure 14 and corre-

spond to Reynolds numbers in the unperturbed flow between Reθ = 2560–4070 or δ+ = 910–1200

(note the difficulty of making even an empirical determination of the friction velocity in a boundary

layer out of equilibrium).

B. Non-ideal forcing: Separation of roughness effects and dynamic forcing

Jacobi and McKeon64 characterized the boundary layer downstream of the roughness geometry

described above with a constant (time-independent) amplitude matched to the rms amplitude for the

dynamic case in order to provide a baseline roughness perturbation condition. Of course the dynamic

and static effects are unlikely to be able to be linearly superposed, given the spatial inhomogeneity

of the change in boundary condition. Note however, that in the case of fully developed, spatially

periodic roughness, a static perturbation corresponds conceptually to a spatially varying mean flow

and the excitation of a spread of temporal frequencies associated with local separation and flow

variation around the roughness elements. We briefly review the key features associated with the

statically perturbed boundary layer in order to introduce the reader to the influence of this undesired

effect with respect to the dynamic results that follow.

The static impulse of roughness produces a significant modification of the mean flow field, ob-

served in the mean velocity profile, higher order statistical moments of the velocity fluctuations, and

structural features of the boundary layer, including the distribution of vorticity. Certain phenomena

are important very near the roughness (for both the static and dynamic perturbations), including a

complex recirculation zone immediately downstream of the last roughness element and the possibil-

ity of the addition of coherent structure associated with vortex shedding over the elements, etc. The

former effect is avoided by taking data sufficiently far downstream, while any effect associated with

the latter is not sufficiently strong to be distinguishable from the outward displacement of incoming

near-wall turbulence activity due to the presence of the perturbation. In addition, the impulse of

roughness generates the two internal layers within the boundary layer marked in Figure 14. Internal

layers are produced at the transition between boundary conditions, from a smooth to rough wall and

again from a rough to smooth wall, and represent the extent to which the new boundary condition

has influenced the nearby flow. Only when the internal layers have grown to the edge of the bound-

ary layer can the flow be said to approach the equilibrium corresponding to an unperturbed flow;

this growth is known to be slow (consistent with the cartoon of Figure 14) such that the return to
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equilibrium takes tens of boundary layer thicknesses, with the exact value dictated by the strength

of the roughness perturbation.

One important effect identified by Jacobi and McKeon64 is the region of elevated mean shear

in the perturbed case (relative to the unperturbed mean velocity profile) that occurs in the region

between the internal layers, deemed a stress bore after the study (albeit of a different non-equilibrium

flow) by Smits, Young, and Bradshaw.69 Not only does the stress bore manifest itself in surplus mean

shear between the two internal layers, but it also produces an increase in mean turbulence intensities

in precisely the same region. A velocity scale based on this modified local shear can be shown

to collapse the streamwise turbulence intensities downstream of the roughness. In summary, the

return of the flow to equilibrium following the transitions in wall boundary condition occurs over a

significant downstream distance and is strongly related to the existence of the stress bore.

When the roughness was actuated dynamically, nearly all of the same features of the stress

bore were observed, along with additional flow features associated specifically with the periodic

oscillation. The combination of these two effects—the stress bore associated with the roughness

impulse itself and the periodic oscillation introduced into the flow by the mechanical actuation—

makes separating the periodic effect difficult when examining the turbulence statistics. However,

employing a spectral perspective provides significant insight into the effects of both static and

dynamic perturbations; the statistical and spectral signatures of these non-ideal effects are identified

in the spectral results shown below.

The premultiplied, composite spectrum of the streamwise velocity fluctuation is shown in

Figure 15 for the unperturbed flow at the furthest downstream measurement location (or, equivalently,

the highest Reynolds number) and for the perturbed flow downstream of the static and dynamic

impulses at the three measurement locations identified in Figure 14. Taylor’s hypothesis has been

employed to convert from the frequency domain to the wavelength domain using the local mean

velocity, for reasons of convention. Under both static and dynamic perturbation, incoming near-wall

turbulence activity is displaced away from the wall by the two-dimensional roughness, resulting

in a broadband increase in turbulence energy away from the wall contained within the stress bore

identified earlier. Moreover, downstream of the perturbation, the signature of the near-wall cycle

is less strong, indicating that the region within the second internal layer can be likened to a newly

established boundary layer over the smooth wall condition downstream of the impulse. In addition to

the displacement effect associated with the stress bore, the flow under dynamic perturbation shows a

coherent signature of the input forcing frequency across most of the boundary layer to downstream

distances in excess of 20δ. Besides the fundamental frequency of the forcing, a number of harmonics

were also observed, which decayed rapidly with increasing streamwise distance and as such are not

considered in detail here.

The persistence of the linear response of the fundamental frequency far downstream suggests

a successful coupling between the forcing and an innate mode of the underlying base flow. Phase-

locked velocity measurements provide a natural means by which this particular mode (frequency)

within the turbulent boundary layer can be isolated and visualized; we use this technique to identify

both linear and nonlinear aspects of the response of the boundary layer to the dynamic forcing.

C. Identification of the dynamic perturbation through phase-locking

The strong signature across the boundary layer at the forcing frequency for a considerable

downstream distance indicates that the excited perturbation is strong and coherent, and that it decays

relatively slowly. It also makes the recovery of its characteristics possible via phase-locking of the

instantaneous velocity signal from the hotwire or PIV to the encoder measurement of the vertical

position of the roughness. Adding an applied harmonic forcing f̆k of amplitude ǫ to Eq. (7) gives

uK + ǫŭK = HK (fK + ǫ f̆K ), (18)

where, due to the linearity of the resolvent, we see that the first order effect should be proportional

and at the same wavenumber. Of course, the mean velocity profile will adjust and therefore affect

the resolvent. For now, we identify this effect through experimental measurements.
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FIG. 15. Composite spectra for the unperturbed and perturbed flows. Ten contour levels, equally spaced across the color bar,

are indicated. Top row: unperturbed case, measured at Reθ = 4040. Middle row: static roughness perturbation; bottom row:

dynamic perturbation. For the latter two rows, left to right is the direction of increasing streamwise distance downstream

from the impulse, at approximately x/δ = 3, 8, 24. The mean internal layer locations, when distinguishable, are denoted:

−− first internal layer, and ··· second internal layer, following Figure 14. The solid white lines in the dynamically perturbed

case indicate the location of the (local) critical layer.

The instantaneous velocity field that results from the addition of the applied harmonic forcing

can be decomposed into a component associated with the external forcing itself, ŭK , the velocity

associated with the natural forcing (i.e., the natural nonlinearities in the flow), u, and the underlying

time-averaged velocity field, u0. This type of phase-locked decomposition was first proposed by

Hussain and Reynolds66 and was employed in Jacobi and McKeon24 using different notation, where

the time-averaged field was represented by U, the phase-locked (periodic) velocity component

associated with forcing at K was denoted uK, and the turbulent fluctuations about the periodic

component as u′. The fluctuating component (denoted u′ in the earlier studies, now u to be consistent

with the theoretical discussion) then includes the motions of all wavenumbers in the forced flow field

besides the external forcing itself. These two equivalent forms of the phase-locked decomposition

of the externally forced velocity field are shown in Eq. (19),

ũi = (U + uK + u′)i ,

ũ = (u0 + ŭK + u).
(19)
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FIG. 16. Phase-locked maps of the streamwise component of the velocity field measured from the hotwire over an average

period (abscissa t ∈ [0, 2π ]) in outer units (ordinate y/δ) at the three streamwise locations indicated in Figure 14. (a) The

periodic component, ŭK . (b) The rms of the fluctuating component, u, with the mean value subtracted. The mean internal

layer locations, when distinguishable, are denoted: −− first internal layer, and ··· second internal layer. The solid green lines

indicate the location of the critical layer, ascertained from the maximum amplitude of the streamwise velocity mode.

Phase-locked measurements at different streamwise locations also allow determination of the

precise streamwise wavenumber, k, corresponding to the periodic (but decaying) velocity component,

namely k = 0.336 + 0.048i.24

The downstream variations of a mean period of the streamwise and wall-normal velocity

components, ŭK and v̆K , are shown in Figures 16(a) and 17(a), respectively. The locations of the

internal layers and the critical layer corresponding to the input conditions are identified by the

horizontal lines. For both velocity components, the mode shapes are well defined, with distinctive

variations across the boundary layer. The streamwise component mode shape shows a very shallow

downstream inclination (rapid phase variation) near the wall, which transforms into an upstream

inclination in the region past the second internal layer. Far downstream, the streamwise component

mode shape appears to be uniformly inclined in the downstream direction. The (weaker) wall-normal

component mode shape shows very little phase variation across the boundary layer. The critical layer

location tends to occur in close proximity to the second internal layer, and grows away from the

wall more quickly than the internal layer, thus moving further into the region of the stress bore with

increasing downstream distance. Near the location of the critical layer, the phase of the streamwise

component mode shape appears to be constant for a noticeable wall-normal extent, in between the

regions of downstream inclination near the wall, and upstream inclination near the first internal layer.

Interestingly, the footprint of the forcing also manifests itself in a periodic variation of the

amplitudes of turbulent fluctuations at other scales, as shown with the time-mean removed in

Figures 16(b) and 17(b). The phase-locked variation of the rms of the fluctuations—u and v—

display distinctive and well-defined mode shapes that are correlated with the periodic signals, ŭK

and v̆K in a manner that varies in a non-trivial way with wall-normal location.

The persistence of the well-defined large scale mode at the input frequency confirms the

dominant linear effect predicted by the resolvent analysis, while its imprint on the fluctuating

components can only be due to nonlinear effects, either associated with the imperfect nature of the

input forcing (with respect to the single K, shape of f̆K – less likely, or the coupling from the wall to

the flow) or spectral organization induced by the excited large scale. A similar imprint of the energetic

very large scale motions on small-scale turbulence in unperturbed boundary layers was identified

by Bandyopadhyay and Hussain70 and further developed in the context of a proposed amplitude-
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FIG. 17. Phase-locked maps of the wall-normal component of the velocity field measured from the PIV over an average

period (abscissa t ∈ [0, 2π ]) in outer units (ordinate y/δ) at the first downstream location indicated in Figure 14, x/δ ≈ 4.

(a) The periodic component, v̆K , and (b) the rms of the fluctuating component, v, with the mean value subtracted. The mean

internal layer locations, when distinguishable, are denoted: −− first internal layer, and ··· second internal layer. The solid

green lines indicate the location of the critical layer, as measured from the hotwire measurements at the equivalent streamwise

location.

modulating effect of large-scale motions on the envelope of small-scale motions by Mathis, Hutchins,

and Marusic.55 Those analyses isolate the large-scale component from the instantaneous streamwise

velocity signal (by low-pass filtering) and correlate it with an envelope of the remaining small-scale

component, revealing a wall-normal variation of the cross-correlation that has been interpreted as

an apparent amplitude modulation. Chung and McKeon52 observed that this trend in the correlation

between the two signals can be more naturally considered in terms of a phase shift, where they

are in-phase near the wall where the correlation is high and positive, and half a cycle out-of-phase

(anti-correlated) away from the wall, where the correlation is high and negative. Recent work25

suggests that the location of the π /2 phase shift corresponds to the location of the critical layer

associated with the VLSM described in Sec. III B.

Our investigations into the apparent amplitude-modulation effect in order to consider the re-

lationship between large- and small-scale motions in terms of the relative phase between them in

both unperturbed and perturbed flows are ongoing,25, 71 but the results lie outside the scope of this

review. However, for the purposes of expanding on the claim made earlier that the actuation input

excites a synthetic very large scale motion, we note that the phase description of the large-to-small

scale interaction in the perturbed case has distinct similarities with the equivalent characterization

of the unperturbed flow, but with modifications concentrated on the regions where dynamic forcing

and roughness effects are expected. In particular, a similar phase variation is shown with respect

to the location of the critical layer of the input perturbation rather than the unperturbed VLSM,

as can be qualitatively observed in Figure 16. Note that correlating ŭK with the envelope of u is

approximately equivalent to the more usual correlation of a Fourier-filtered large scale with the

envelope of small-scale activity in this case because the forcing corresponds to the very smallest

wavenumbers that contain non-negligible energy in the boundary layer.

D. Predicting the synthetic large-scale motion

The foregoing phase-locked analysis of the experimental data provides qualitative encourage-

ment that a mode innate to the turbulence can be excited by the dynamic roughness. However a

quantitative implementation of the resolvent analysis requires treatment of the semi-infinite (rather

than closed) domain associated with the turbulent boundary layer, the streamwise inhomogeneity

(non-parallel nature) of the flow, and the finite spatial extent of the original impulse along with the

non-equilibrium effects of the stress bore (discussed above). Nevertheless, the resolvent analysis

introduced in McKeon and Sharma1 can be applied to the boundary layer flow with the following

straightforward modifications.
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The NSE under the boundary layer approximation can be rewritten using streamwise/wall-

normal streamfunctions, ζ (x, y, t)k, as the divergenceless basis under the assumption of a two-

dimensional flow response, justified by the spanwise uniformity of the roughness impulse and the

resulting downstream flow. Additional assumptions are required concerning locally parallel flow

and a fully-developed response of the boundary layer to impulsive forcing in order to justify the

use of Fourier modes as the optimal bases in the wall-parallel and temporal directions. Then the

streamfunction can be written in terms of propagating waves with amplitude ϕ(y)K, as shown

in Eq. (20),

ζ (x, y, t)K = ϕ(y)K ei K ·x, (20)

leading to the resolvent formulation of Eq. (21), where ĤK denotes the resolvent relating forcing

and streamfunction

ϕ(y)K = ĤK (fK + f̆K ). (21)

As described above, the precise wavenumber triplet can be obtained in a straightforward manner,

but the choice of mean velocity profile to use in the resolvent formulation presents a significant

difficulty. Using the perturbed velocity profile tends to better predict the mode shapes in a general

sense, as would be expected since the perturbed profile reflects the mean effect of the stress bore.

However, the difficulty in extending the perturbed profile to the wall (necessary for the computational

domain) was judged24 to necessitate use of the unperturbed velocity profile in order to have confidence

that the predictions were the result of experimental observations and not a numerical artifact from

connecting an experimental profile to the wall (another issue associated with the non-equilibrium

flow resulting from the use of a spatial impulse of roughness). As will be shown below, a direct

consequence of the unperturbed profiles failing to capture the effect of the stress bore is that the

predictions of the velocity response mode shapes tend to be most deficient precisely in the region of

the stress bore, between the mean edges of the two internal layers.
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FIG. 18. The amplitude and phase of the velocity modes from the experiment and the resolvent analysis. The amplitude

variation is shown in the middle pane. ŭK (y, t) is shown on the lower-left axes: — from the resolvent analysis using the

unperturbed velocity profile; − · − from the resolvent analysis using the perturbed velocity profile; x/δ = 0.1 +; 2.3 × from

the experimental hotwire measurements. vK (y, t) is shown in gray on the upper-right axes: — from the resolvent analysis

using the unperturbed velocity profile; — from the experimental PIV measurement with PIV window centered at x/δ ≈ 4.

The left pane indicates the phase of ŭK (y, t), and the right pane indicates the phase of v̆K (y, t). The (a) marks a distinctive

variation in phase which, to our knowledge, is a robust feature of all Orr-Sommerfeld type solutions. The location of the

internal layers have been marked for the streamwise component: −−− the first internal layer; ··· the second internal layer.
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FIG. 19. Comparison of the resolvent calculations and phase-locked measurements. (Top) Maps of the calculated most-

amplified singular mode over an average period (t ∈ [0, 2π ]). ŭK (y, t) and v̆K (y, t), left and right. (Bottom) The corresponding

experimentally measured maps at x/δ ≈ 2.3, as in Figure 16(a).

The amplitude and phase profiles of the first singular mode of the resolvent operator formu-

lated under the experimental conditions demonstrate encouraging agreement with the phase-locked

velocity decomposition of the experimental data (Figure 18). The resolvent analysis captures the

location of the peak amplitude in both the streamwise and wall-normal velocity modes, as well

as the phase of the wall-normal mode. Within and even slightly beyond the second internal layer,

the resolvent method provides a reasonably accurate prediction of the experimentally excited large

scale motion. A noticeable divergence of the phase of the streamwise velocity occurs, however, in

precisely the region between the two internal layers in which the stress bore distorts the mean shear.

The effect of this distortion is easily seen in Figure 19, which shows the variation of predicted and

observed streamwise and wall-normal velocity over a mean period. The predicted mode shapes tend

to be inclined downstream consistently across the boundary layer, much like the experimental modes

measured very far downstream from the perturbation, but the synthetic large scale observed nearer

to the perturbation shows an upstream inclination far from the wall. In other words, the synthetic

large scale appears warped by the presence of the stress bore, and this warping due to the flow

non-equilibrium is not captured by the resolvent calculations.

A schematic of the shape of the excited streamwise velocity response, ŭK , including the location

of the critical and internal layers is given in Figure 20. Although the method is significantly limited

by the presence of the stress bore, which occurs as a direct consequence of the choice of actuation
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FIG. 20. A sketch of the physical form of the experimentally observed mode shape, emphasizing the distortion produced by

the stress bore, as well as the location of the internal and critical layers. This sketch of spatial variation can be compared with

the temporal experimental observations presented in Figure 16.

mechanism, the results are extremely promising in the region dominated solely by an approximation

to the dynamic forcing required by the idealized resolvent analysis. Particularly encouraging is the

extended downstream persistence of the excited mode (the low decay rate), which suggests that

a significant relaxation of the actuator spacing requirements suggested by Gad-el Hak3 may be

obtained by using spatially discrete forcing. Along these lines, note that the first singular value

associated with this predicted mode has a magnitude σ 1 = 2–5 × 103,24 implying that only a tiny

component (in the most amplified f̆K direction) of the relatively strong forcing input is responsible

for the large (finite) amplitude of the observed velocity mode. In other words, while the coupling

between the input forcing and the flow itself is important for the observed persistence of the synthetic

large scale, it was not optimized by the actuation described here. Design of a more efficient coupling

utilizing a subtler, less disruptive means of perturbing the flow may well be possible, subject to the

requirement of overwhelming the natural internal forcing. A topic of ongoing investigation is the

selection of the optimal three-dimensional wavenumber/frequency combination(s) needed to meet

control objectives such as a change in the turbulent skin friction, or deterministic manipulation of

the turbulent spectrum. Both of these problems come with measurement challenges associated with

the identification of the correct wall shear stress, either as the objective or as an input to the friction

velocity required for scaling purposes, and the distribution of energy in K = (k, n, ω) and y.

V. CONCLUSIONS

A. Summary

We have reviewed the connected analysis and observations of McKeon and Sharma,1 Jacobi and

McKeon,24 and Sharma and McKeon,25 with the intent of giving a phenomenological justification

for the use and success of a systems approach in understanding and controlling wall turbulence. Of

particular note is the faithful connection to observed results and the potential for informed, minimum

effort control. The frequency-domain interpretation, essentially a decomposition into propagating

waves in the homogeneous directions, leads to a self-sustaining system in which the Navier-Stokes

nonlinearity acts as a feedback mechanism to excite a set of sub-systems with highly directional

amplification. The formulation can appear somewhat controversial because in important respects

it is a linear analysis of a flow that is known to be nonlinear, but, as shown in Figure 3, this

representation is complete in the divergence-free basis. In essence, the nonlinearity is accounted for

implicitly through the assumption of the turbulent mean velocity profile and explicitly as providing

a forcing at all wavenumber/frequency combinations, which is required to sustain the turbulent

fluctuations.

Our discussion has focused on the (linear) resolvent operator relating the nonlinear interaction

between scales and the velocity response modes at each wavenumber/frequency combination. The

resolvent contains an analytical description, derived from the NSE, of the linear contents of Clauser’s

Downloaded 06 Jun 2013 to 131.215.71.79. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions



031301-30 McKeon, Sharma, and Jacobi Phys. Fluids 25, 031301 (2013)

black box. To a large extent, its form determines the form of the lower-dimensional attractor guiding

turbulent flow.

Much of the analytical development described here has been devoted to determining the appro-

priate basis for the inhomogeneous wall normal direction. In the spirit of a gain analysis, we used

the singular value decomposition, which ranks input forcing distributions (right singular vectors) at

a particular wavenumber/frequency combination, K, in terms of the amplification described by the

singular values. The observed output will be a product of the amplitude of forcing and singular value

summed over the singular values. At heart, the decomposition yields a basis for coherence in the

wall normal direction.

The success of the first singular velocity response modes (left singular vectors) in describing a

range of observed features in unperturbed high Reynolds number wall turbulence demonstrates that

the resolvent can be considered low rank over the range of K observed in real flows, and rank-1 in

many cases, with little error. In particular, the rank-1 approximation appears capable of providing

coupled insight into the existence and organization of coherent structure within the framework of

the distribution of fluctuating velocities, which we believe to be a first for a NSE-based analysis.

We demonstrated successful coupling of a simple wall actuation scheme that respects the K

formulation of the theory to turbulent boundary layer flow, making use of the robustness property of

the system to excite a single velocity response mode despite non-ideal actuation. We propose that

this serves as a first step towards implementing practical closed loop control and note the success of

using non-continuous forcing (in a streamwise sense) to excite persistent, slowly decaying structure

in the flow, a phenomenon which may ease spatial distribution concerns associated with distributed

actuation. In contrast to the usual nature of control problems in which the system must be (usually

imperfectly) modeled in order to obtain a beneficial change to the output, our formulation raises

the intriguing possibility of imposing a desirable mean velocity profile (thus fixing the form of

the resolvents throughout the system) and determining the forcing distribution, over a range of K,

required to sustain it. The linearity allows the linear superposition of forcing disturbances to excite

multiple modes.

We believe that the resolvent formulation represents a promising approach towards the pre-

and post-diction of the behavior of wall turbulence, for understanding the essential dynamics of a

perturbed flow, effecting control, and developing low order models.

B. Limitations of the approach

We include here a brief description of the limitations of the resolvent analysis, both in its current

formulation and in terms of extension to other flows.

A key limitation in the current analysis lies in the lack of information that emerges concerning

relative amplitudes and phases between modes. This is a consequence of the use of unstructured

forcing and the decomposition being optimized for “gain.” Other choices of decomposition can give

weight to relative phase information, including the sector-bounding analysis mentioned earlier,30, 31

which will be more important where the critical layer mechanism is less dominant and non-normality

drives the modes. This would seem to correspond to regions where Taylor’s hypothesis fails. The

amplitudes can be determined by establishing the requirements on self-sustaining sub-systems put

forward in Eq. (15). The velocity response modes contain information analogous to the power

spectral density, in that amplitude and spatial localization can be determined by the SVD.

The first singular response modes appear to capture many features of wall turbulence, but our

ongoing work suggests that the strict rank-1 approximation may be insufficient to capture details

of the globally most energetic Fourier modes projected out of DNS of turbulent pipe flow. These

Fourier modes span a significant portion of the pipe radius, leading to a relatively large integral

contribution to the turbulent kinetic energy despite a local amplitude distribution that is a fraction

of that from other K values. As such, the wall-normal coherence of these modes can be identified by

proper orthogonal decomposition. The failure of the rank-1 approximation for this class of mode is

associated with its extended radial span. A low-rank approximation (with rank greater than one but

nonetheless less than ten) still appears to capture the majority of the energy content. We believe that

the absence of this type of radially tall coherence in the rank-1 approximation is responsible for the
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absence of “bulges” or LSM in our analysis. Again, we associate these with modes for which phase

is important.

The gain formulation of the SVD means that the results are in essence weighted to capture the

most energetic streamwise velocity component for the majority of K combinations. The success of the

rank-1 approximation in capturing the other velocity components, and in particular the wall normal

velocity, requires additional investigation. The Reynolds stress profiles associated with the first

singular response show promising agreement with the attached eddy hypothesis and experimental

observations, but a good approximation to this distribution will be required in order to sustain the

(currently assumed) mean velocity profile.

With respect to application of our analysis to other canonical flows, the spatial inhomogeneity

associated with a boundary layer also suggests the possibility of fundamentally different behavior

to fully developed flows, particularly if the locally parallel approximation is not good.

Lastly, we note that the current level of sophistication in this approach does not support modeling

based on coherent structure, a method that has been a focus of research aimed at finding low

order models for wall turbulence motivated by the importance of structure to momentum transport,

concentration of Reynolds stress, etc. Our work to date identifies the complexity of coherent structure,

associated with a nonlinear diagnostic, in an otherwise linear model. In essence, a full description

of all energetically active modes may be required to observe the full dynamics and evolution of

coherent structure, which would probably preclude simple low order modeling.

C. Future trends

A manuscript such as this presents a useful vehicle for describing potential opportunities for

the development of our analysis; we conclude by briefly outlining possible future developments

ranging from further interrogation and modeling of the current formulation to extension to account

for increasing flow complexity.

We believe that features of wall turbulence beyond those described in Sec. III are amenable to

description using our analysis. For example, there appears to be a strong relationship between the

wall-normal profiles of skewness and the amplitude modulation coefficient, in particular with respect

to triadically consistent K combinations that include the VLSM motion.25 These two measures can

then be interpreted as giving information about the relative phases between velocity response modes,

one of the missing pieces of our analysis to date, as identified above.

We have also noted the likely potential of the resolvent analysis to treat rough walls, or at least

those with periodic geometries. Under this scenario, admitting a spatial variation of the mean flow

and perhaps excitation of a range of frequencies due to local flow separation seem to be conceptually

simple extensions likely to give insight into roughness-induced changes to the flow.

An important next step will be to “close the loop,” in the sense of determining the amplitudes of

the velocity response modes observed in (projected out of) real flows that are required to fulfill the

condition of self-sustenance implied by the full NSE formulation of Figure 3. Once these amplitudes

have been identified, a full description of energy transfer pathways and scaling with Reynolds number

can be obtained. Extraction of energy from the mean flow, spatial transport, spectral transfer, and local

triadic interactions responsible for sustaining the flow all follow from examination of the resolvent

and energy gradients. The existence of self-sustaining turbulence kernels, or limited combinations of

modes that are capable of self-exciting via triadic interaction, is a topic of current study. Well-known

examples exist in the literature without the coherent propagating wave interpretation, but additional

such solutions seem likely.25 We note also the likely connection between this kind of development

and nonlinear traveling wave solutions identified for transitional pipe flow.7 Closed-loop control,

given a sufficiently good model, also seems a logical next step.

As noted in Sec. V B, our analysis begins by assuming a mean velocity profile which must be

sustained by the combined action of the perturbations about it. Although the resolvent associated

with the mean velocity is contained in the formulation via the K0 mode, a means of approximating

it and identifying the sensitivity of the response modes to deviation from the true profile would be

useful, to say the least. Towards this end, one of the authors has investigated a two-dimensional,

three-component (“2D/3C”) model which appears to isolate the appropriate dominant nonlinear
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mechanism governing the mean velocity72, 73 Future advances seem feasible. In this vein, we note

that all the turbulent mean profiles we have encountered lead to stable LK . With appropriate tribute

to Malkus,74 we conjecture that the turbulent mean velocity profile u0 always leads to stable LK , to

avoid a singular resolvent response.

We have described here how a straightforward analysis permits significant simplifications in

complexity, dimension, and interpretation of the NSE. The most important of these may be the

low dimensionality and sparse nature of the formulation, which open the door to the use of state-

of-the-art mathematical tools including compressed sampling and techniques for low rank matrix

approximation of linear operators.31 A first study in a turbulent channel,37 enabled by an efficient

randomized algorithm for the approximation of the SVD of low rank operators,75 gives encouraging

results with respect to utilizing the low rank nature of the resolvent for both prediction and modeling

purposes: it appears that a very good approximation to the distribution of streamwise turbulent

intensity (the dominant contributor to the turbulent kinetic energy) can be obtained using only the

first singular mode and extraordinarily simple assumptions about the amplitude distribution in K

space. The approximately sparse nature of the modes identified as being active in real flows in

the frequency domain naturally leads to consideration of compressive sampling as a tool for data

reduction, a subject of ongoing work.

Finally, we propose that the success of the resolvent analysis described here for incompress-

ible, Newtonian flow in canonical flow configurations suggests promise for generalization to more

complex flows. In particular, work is ongoing to consider adaptation of the formulation to consider

rough-wall, non-Newtonian, and compressible flows, and spatial inhomogeneity. The analysis in

canonical geometries is aided by the fact that there is only one inhomogeneous direction. However,

we note that the requisite machinery—namely, forming the linear operator LK , shift-and-invert,

and the singular value decomposition—have all been implemented in the context of global modes

and transient growth in complex geometries.76–79 Therefore, the extension to flows with complex

geometries should proceed similarly. This will facilitate understanding and control of a broad range

of practical and applied flows.
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47 J. Jiménez and A. Pinelli, “The autonomous cycle of near-wall turbulence,” J. Fluid Mech. 389, 335–359 (1999).
48 W. Schoppa and F. Hussain, “Coherent structure generation in near-wall turbulence,” J. Fluid Mech. 453, 57–108

(2002).
49 J. C. Klewicki, M. M. Metzger, E. Kelner, and E. M. Thurlow, “Viscous sublayer flow visualizations at Rθ ∼ 1500000,”

Phys. Fluids 7, 857–863 (1995).
50 B. J. McKeon, A. S. Sharma, and I. Jacobi, “Predicting structural and statistical features of wall turbulence,”

arXiv:1012.0426.

Downloaded 06 Jun 2013 to 131.215.71.79. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.858386
http://dx.doi.org/10.1063/1.858663
http://dx.doi.org/10.1017/S0022112006000607
http://dx.doi.org/10.1017/S0022112008004370
http://dx.doi.org/10.1017/S0022112010003629
http://dx.doi.org/10.1063/1.1398044
http://dx.doi.org/10.1017/S0022112005004295
http://dx.doi.org/10.1063/1.858309
http://dx.doi.org/10.1063/1.870437
http://dx.doi.org/10.3389/neuro.09.031.2009
http://dx.doi.org/10.1017/jfm.2011.375
http://arxiv.org/abs/1301.7580
http://dx.doi.org/10.1017/S0022112003007304
http://dx.doi.org/10.1017/S0022112004008985
http://dx.doi.org/10.1126/science.1186091
http://dx.doi.org/10.1063/1.3662449
http://dx.doi.org/10.1142/S0218127409023615
http://dx.doi.org/10.1146/annurev.fluid.38.050304.092139
http://dx.doi.org/10.1016/S0021-9991(03)00029-9
http://dx.doi.org/10.1146/annurev.fl.18.010186.002201
http://arxiv.org/abs/1302.1594
http://dx.doi.org/10.1146/annurev-fluid-122109-160753
http://dx.doi.org/10.1017/S0022112069002072
http://dx.doi.org/10.1017/S0022112069002072
http://dx.doi.org/10.1017/S0022112071001290
http://dx.doi.org/10.1017/S0022112008003352
http://dx.doi.org/10.1007/s00348-011-1117-z
http://dx.doi.org/10.1017/S0022112009007423
http://dx.doi.org/10.1017/S0022112010006324
http://dx.doi.org/10.1017/S0022112067001740
http://dx.doi.org/10.1017/S0022112067001740
http://dx.doi.org/10.1063/1.869185
http://dx.doi.org/10.1017/S0022112099005066
http://dx.doi.org/10.1017/S002211200100667X
http://dx.doi.org/10.1063/1.868763
http://arxiv.org/abs/1012.0426


031301-34 McKeon, Sharma, and Jacobi Phys. Fluids 25, 031301 (2013)

51 N. Hutchins and I. Marusic, “Large-scale influences in near-wall turbulence,” Philos. Trans. R. Soc. London, Ser. A 365,

647–664 (2007).
52 D. Chung and B. J. McKeon, “Large-eddy simulation investigation of large-scale structures in a long channel flow,” J.

Fluid Mech. 661, 341–364 (2010).
53 M. Tutkun, W. K. George, J. Delville, J.-M. Foucaut, S. Coudert, and M. Stanislas, “Space-time correlations from a 143

hot-wire rake in a high Reynolds number turbulent boundary layer,” AIAA Paper 2008-4239 2008.
54 M. Guala, M. J. Metzger, and B. J. McKeon, “Interactions within the turbulent boundary layer at high Reynolds number,”

J. Fluid Mech. 666, 573–604 (2011).
55 R. Mathis, N. Hutchins, and I. Marusic, “Large-scale amplitude modulation of the small-scale structures of turbulent

boundary layers,” J. Fluid Mech. 628, 311–337 (2009).
56 J. Jeong and F. Hussain, “On the identification of a vortex,” J. Fluid Mech. 285, 69–94 (1995).
57 P. Chakraborty, S. Balachandar, and R. J. Adrian, “On the relationships between local vortex identification schemes,” J.

Fluid Mech. 535, 189–214 (2005).
58 J. Carlier and M. Stanislas, “Experimental study of eddy structures in a turbulent boundary layer using particle image

velocimetry,” J. Fluid Mech. 535, 143–188 (2005).
59 R. J. Adrian, C. D. Meinhart, and C. D. Tomkins, “Vortex organization in the outer region of the turbulent boundary layer,”

J. Fluid Mech. 422, 1–54 (2000).
60 D. Dennis and T. Nickels, “Experimental measurement of large-scale three-dimensional structures in a turbulent boundary

layer. Part 2. Long structures,” J. Fluid Mech. 673, 218–244 (2011).
61 T. Bewley, “Flow control: New challenges for a new Renaissance,” Prog. Aerosp. Sci. 37, 21–58 (2001).
62 L. I. Cattafesta and M. Sheplak, “Actuators for active flow control,” Annu. Rev. Fluid Mech. 43, 247–272 (2011).
63 B. J. McKeon, “Turbulent channel flow over model “dynamic” roughness,” in IUTAM Symposium on the Physics of

Wall-bounded Turbulent Flows on Rough Walls. Proceedings of the IUTAM Symposium, July 2009, edited by T. Nickels

(Springer, 2010), pp. 87–92.
64 I. Jacobi and B. J. McKeon, “New perspectives on the impulsive roughness perturbation of a turbulent boundary layer,” J.

Fluid Mech. 677, 179–203 (2011).
65 G. Schubauer and H. Skramstad, “Laminar-boundary-layer oscillations and transition on a flat plate,” Technical Report

No. 9595 (NACA, 1943).
66 A. Hussain and W. Reynolds, “The mechanics of an organized wave in turbulent shear flow,” J. Fluid Mech. 41, 241–258

(1970).
67 A. Hussain and W. Reynolds, “The mechanics of an organized wave in turbulent shear flow. Part 2: Experimental results,”

J. Fluid Mech. 54, 241–261 (1972).
68 W. C. Reynolds and A. K. M. F. Hussain, “The mechanics of an organized wave in shear flow. Part 3. Theoretical models

and comparisons with experiment,” J. Fluid Mech. 54, 263–288 (1972).
69 A. Smits, S. Young, and P. Bradshaw, “The effect of short regions of high curvature on turbulent boundary layers,” J. Fluid

Mech. 94, 209–242 (1979).
70 P. R. Bandyopadhyay and A. K. M. F. Hussain, “The coupling between scales in shear flows,” Phys. Fluids 27, 2221–2228

(1984).
71 I. Jacobi, “Structure of the turbulent boundary layer under static and dynamic roughness perturbation,” Ph.D. dissertation

(California Institute of Technology, 2012).
72 D. F. Gayme, B. J. McKeon, A. Papachristodolou, B. Bamieh, and J. C. Doyle, “Streamwise constant model of turbulence

in plane Couette flow,” J. Fluid Mech. 665, 99–119 (2010).
73 J.-L. Bourguignon and B. J. McKeon, “A streamwise-constant model of turbulent pipe flow,” Phys. Fluids 23, 095111

(2011).
74 W. V. R. Malkus, “Outline of a theory of turbulent shear flow,” J. Fluid Mech. 1, 521–539 (1956).
75 N. Halko, P. G. Martinsson, and J. A. Tropp, “Finding structure with randomness: Probabilistic algorithms for constructing

approximate matrix decompositions,” SIAM Rev. 53, 217–288 (2011).
76 A. S. Sharma, N. Abdessemed, S. Sherwin, and V. Theofilis, “Optimal growth of linear perturbations in low pressure

turbine flows,” in IUTAM Symposium on Flow Control and MEMS, edited by J. F. Morrison (Springer, London, 2008), pp.

339–343.
77 N. Abdessemed, A. S. Sharma, S. J. Sherwin, and V. Theofilis, “Transient growth analysis of the flow past a circular

cylinder,” Phys. Fluids 21, 044103 (2009).
78 A. Sharma, N. Abdessemed, S. Sherwin, and V. Theofilis, “Transient growth mechanisms of low Reynolds number flow

over a low-pressure turbine blade,” Theor. Comput. Fluid Dyn. 25, 19–30 (2011).
79 V. Theofilis, “Global linear instability,” Annu. Rev. Fluid Mech. 43, 319–352 (2011).

Downloaded 06 Jun 2013 to 131.215.71.79. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1098/rsta.2006.1942
http://dx.doi.org/10.1017/S0022112010002995
http://dx.doi.org/10.1017/S0022112010002995
http://dx.doi.org/10.1017/S0022112010004544
http://dx.doi.org/10.1017/S0022112009006946
http://dx.doi.org/10.1017/S0022112095000462
http://dx.doi.org/10.1017/S0022112005004726
http://dx.doi.org/10.1017/S0022112005004726
http://dx.doi.org/10.1017/S0022112005004751
http://dx.doi.org/10.1017/S0022112000001580
http://dx.doi.org/10.1017/S0022112010006336
http://dx.doi.org/10.1016/S0376-0421(00)00016-6
http://dx.doi.org/10.1146/annurev-fluid-122109-160634
http://dx.doi.org/10.1017/jfm.2011.75
http://dx.doi.org/10.1017/jfm.2011.75
http://dx.doi.org/10.1017/S0022112070000605
http://dx.doi.org/10.1017/S0022112072000667
http://dx.doi.org/10.1017/S0022112072000679
http://dx.doi.org/10.1017/S0022112079001002
http://dx.doi.org/10.1017/S0022112079001002
http://dx.doi.org/10.1063/1.864901
http://dx.doi.org/10.1017/S0022112010003861
http://dx.doi.org/10.1063/1.3640081
http://dx.doi.org/10.1017/S0022112056000342
http://dx.doi.org/10.1137/090771806
http://dx.doi.org/10.1063/1.3112738
http://dx.doi.org/10.1007/s00162-010-0183-9
http://dx.doi.org/10.1146/annurev-fluid-122109-160705

