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EXPERIMENTAL MEASUREMENT OF ELECTRON HEAT 

* DIFFUSIVITY IN .A TOKAMAK . 

J. D. Callen and G. L. Jahns 
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 

ABSTRACT 

The electron temperature perturbation produced by internal dis

ruptions in the center of the Oak Ridge Tokamak (ORMAK) is followed with 

a multi-chord soft x-ray detector array. The space-time evolution is 

found to be diffusive in ·character, wi ~h a .conduction coefficient larger 

by a factor of 2.5 - 15 than that implied by the energy containment time, 

apparently because it is a measurement for the small group of electrons 

whose energies exceed the cut-off energy of the detectors. 

A useful model for understanding the energy transport governing 

the behavior of tokamak discharges is a three-region plasma model. The 

central core region (r < aD, the disruption radius) suffers internal 

d . . 1 dl h f f d b 1 . 1srupt1ons repeate y as t e sa ety actor q rops e ow un1ty. Out-

side this core region there is typically a large "middle" region (con-

finement zone) where tearing modes, plasma turbulence and/or unknown 

processes are responsible for "anomalous" heat transport_, which 

·primarily determines the energy containment of the device. Finally, there 

is a "plasma edge" region (r > a ) dominated by atomic physics effects 
0 

such as radiation, impurity refluxing, charge-exchange, etc. 

* Research sponsored by Energy Research and Development Administration 

under contract with Union Carbide Corporation. 
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The internal disruptions inside a
0 

manifest themselves as sudden 

drops in the soft x-ray signal level, followed by slower recoveries, 

giving the characteristic sawtooth pattern evident in Fig. 1. The 

standard interpreta~ion 1 
of the sudden drop is that the electron 

temperature is decreasing as heat is rapidly lost from the central 

region.. This process results in a pulse of heat into the volume just 

outside the disruption radius, and predictably, as seen in Fig. 1, the 

x-ray signals outside a
0 

show a pulse-like increase at the time of the 

sudden decrease inside. By following the propagation of these perturba-

tions through the critical middle region
1 

we can
1 

directly and 

for the first time, examine the fundamental electron heat transport 

process in tokamaks. 

The soft x-ray system on ORMAK consists of nine silicon diffused-

junction diode detectors that view different fixed chords through the 

2 
plasma. The x-ray signal results from plasma bremsstrahlung and 

recombination processes, bo~h of which are strongly dependent on tempera-

ture and density. Thus, most of the radiation seen by a given detector 

comes from the small ~olume where the temperature and density have 

their largest values along the viewing chord; hence this is more of 

a point measurement rather than an average one. The detectors are 

arranged so that these points lie ~ em apart and are collima~ed so that 

their spatial resolution is about 1.7 em. The output current of the 

detectors is proportional to the net radiation power in the 2 or 3 to 

12 keV energy range, where the low-energy cut-off is selected by choice 

of beryllium foil thickness. 
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Figure 1 shows two examples·of the resulting x-ray signal on an 

expanded time scale that starts at 45 msec into the discharge, by which 

time steady-state conditions have been established. The principal 

features of the heat pulses for r > a are that· the times at which the 
D 

pulses peak are progressively delayed, and that the pulses are broadened, 

as they move out from the center. 

Since the soft x-ray detectors are only sensitive to energies above 

the cut-off energy E (~ 2 or 3 keV > T ), in order to model the pulse 
c e 

propagation we develop an electron heat balance equation appropriate for 

the high energy electrons. Assuming that the electron distribution 

function retains its Maxwellian character [estimated to be valid for 

time scales longer than the electron-electron collision time at that 

energy, T (E)~ 30- SO ~sec], restricting the energy moment integra
ee c 

tion of the relevant kinetic equation to energies above E , and keeping 
c 

only the heat conduction term, we find the appropriate electron heat 

balance equation to be 

.!_ ._L r r n X g oT e ] 
r or e e ar . ... 

Here, 

00 E 3/2 E /T 
c e 

(1) 

8 

3/n 

2 I dw w
4 

e -w 
4 

3/TI 
( T c ) e F.. >> T 

IE~;i 
c e e 

c e 

is the fraction of electron energy stored in.electrons with energy greater 

than E ; X (T ) is the electron heat conduction coefficient of the 
c e e 

Maxwellian electron component; and g(Ec/Te) is a generally unknown 
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function governing the appropriate energy moment for the anomalous 

electron heat conduction coefficient, which is unity for E -+ 0. 
c 

The observed temperature fluctuations are small (typically 

~T ~ 0.2 T ), so we solve a perturbation form of Eq. (1). Since the 
e e 

internal.disruptions apparently have their primary effect on the 

1 d h 1 ° 1 ff h d 
0 3 

e ectron temperature an ave 1tt e e ect on t e ens1ty, we assume 

T ., T -+ ~T with n unohangQd, and ol:'ttf.lin for the .linearized fo·rm 
e e e e . 

of Eq. (1) 

( 
3 
-n ?. . f': 

X a ~T 
~Te) = ~ _L r e 

r or ar 
(2) 

where 

X = X g [f - (E /T ) f'] -l 'v (E /T )a - S/ 2 X , E » T (3) 
ep e c e - c e e c e 

Here the prime on f denotes d1ffererttiation with n:!>pec:t to the 

argument and in the last approximate equality we have assumed that for 

a 
la:rge E /T , g "0

• (E /T ) . For neo(".J ::~ssical transport .• a is 3; for 
c e c e 

anomalous transport due to drift-waves and/or trapped-particle instabili-

ties a is unknown, but probably lies·in the range uf 1.5...:: a< 6. Cq. 

(2) is a heat diffusion equation in cylindrical geometry with a diffusion 

coefficient that differs from that of the background distribution by 

a complicated and in general unknown function of E /T . This is because the 
c e 

heat pulse propagation is inferred from a high-energy group of electrons. 

If we had retained in Eq. (1) the energy convection, ohmic heating, 

radiation and other more general effects on the electron heat balance 

equation, the other terms would not have altered Eq. (2) since the temporal 

and spatial gradients of the temperature perturbation are much larger 

than those in the equilibrium. 
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The internal-disruption effects are introduced through a heat-

pulse boundary condition: n X a ~T /arl = - ~Q ~ o(t - nt ) 
e ep e r=a

0 
n . o ' 

where ~Q is the electron energy density in each heat pulse, t is the 
0 

disruption repetition time, and for simplicity the heat pulses are 

assumed to be delta functions of time. Solving Eq. (2) by Laplace 

transform techniques,subject to the condition lim ~T .-+ 0 and the above . e 
r-+<"' 

heat pulse condition, the approximate solution for the spatial region 

of interest (a << r << 
D 

a) is found to be 

N 
exp{-

2 
- nt ) ]} aD ~Q r 3r /[8X (t 

ep 0 
~T (r,t) 'V 

e -n 
xep t - nt 

e n=O 0 

where N = [t/t ], the largest integer less than t/t . For a sin.gle 
0 0 

2 
isolated pulse (t >> 3r /Bx ) we have 

o ep 

are: 

~T 
c 

e 
- t /t 

p t 
p 

2 
3 r 

8 xep 

The important points to note about this heat diffusion solution 

1) the peak of ~T occurs at t = t , which is proportional to r
2 

e p 

and inversely proportional to X ; 2) at a given r, ~T (t) increases 
ep e 

(4) 

(5) 

smoothly to its peak in a time t and then decays roughly as t It there-
p p 

after;' 3) the maxima of ~T (t) vary inversely with / 
e 

a manifestation 

of energy conservation in the cylindrical expansion of the heat pulse. 

Before making comparisons with experiment, there are additional 

effects we must consider. First, since t is often a significant 
p 

fraction of the pulse repetition time t , we consider t >> t and tR.kc 
0 0 
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account of the summation in Eq. (4). Second, what is measured is the 

change in the soft x-ray 

2 
as long as ~T << T /E , 

e e c 

intensity (~I) and not simply ~T . However, 
e 

~I is proportional to ~T . Finally, we take 
e 

account of the fact that the signals from the detector array are put 

through a 100 Hz high-pass filter before display, by multiplying 

the Laplace transform·of ~T by the transform of the filter 
e 

function and using the convolution theorem to perform the inverse 

transform. 

The experimental data are co~pared with the diffusive model in 

Fig. 2. The first point, demonstrated in Figures 2a and 2b, is that 

tp agrees with the predicted asymptotic r
2 

dependence. Second, the 

pulse shapes follow calculated curves that include the effects of 

observed repetition rates and filtering (see Fig. 2c). Finally, Fig. 

2d shows that the maximum ~T decreases roughly as l/r
2

. Thus, within 
e 

the limits of statistical scatter inherent in these measurements, the 

data show reasonable agreement with the heat conduction model. It 

should be noted that due to the general irreproducibility of discharges 

with highly visible sawteeth,
2 

approximate profiles must be used when. 

converting the signal, ~I. to temperature values, ~T , for measurements e . 

such as the energy conservation of Fig. 2d. 

Alternative models for the pulse behavior have been considered, but 

no satisfactory ones found. Wave propagation cannot account for the 

smooth leading edge of the pulse, and would require max (~T ) to decrease 
e 

as r 
- 1/2 

, instead of the observed sharper fall-off. The data also 

do not fit with a ballistic or macroscopic plasma flow model since in 
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these.cases the temperature pulses should simply propagate out through 

the plasma, essentially unchanged. 

Thus, we conclude that the heat pulses produced by internal dis-

ruptions propagate out through the middle (confinement)region of ORMAK 

by a diffusive process, at least on length scales longer than about one 

centimeter. Providing X can be kept small enough, this bodes well 
e 

for the futur~ of tokamaks, which rely on this diffusive property for 

their favorable size scaling. 

Next, we compare the rate of this process with the gross electron 

2 
energy transport. Since t is found to be roughly dependent on r 

p 

(Figs. 2a,b), the inferred heat conduction coefficient x appears to 
ep 

be reasonably constant over the region observed. For comparison pur-

poses, if we assume that electron heat conduction with coefficient 

xe(Te) is the dominant heat loss term in ORMAK and that the disruptive 

and edge layers are thin (a
0

, Ia ~ a
0

l << a) then 

(6) 

where TEe is the electron energy containment time obtained by the usual 

method of dividing the stored energy by the power input (ohmic, plus the 

fraction of injection power to the electrons, minus the power transferred 

to the ions). The x determined from heat-pulse propagation is com
ep 

pared with the X determined from Eq. (6) in Fig. 3a. The comparison 
e 

shows that: 1) there is little correlation between X and X ; 2) Xep 
ep e 

exceeds xe by factors ranging from 2.5 to 15; and 3) ·both Xe and Xep 

substantially exceed the neoclassical values
4 

of.(l-10) x 10
2 

cm
2
/sec 

for these discharges. 



8 

In order to discover experimentally the relation of X to X , 
ep e 

which according to Eq. (3) should be solely a function of E /T , we 
c e 

would like to consider data having the same X . Somewhat fortuitously, 
e 

4 2 
most of the available data have nearly the same X c~ 2 x 10 em /sec-

e 

see Fig. 3a). By selecting these data and plotting the respective Xep's 

versus E /T + 1 (a normalized measure of the electron energy group 
c e 

dominating the signals), we obtain the plot shown in rig. 3b. lt shows 

that: 1) Xt;-p increases with E/Te; and 2) the relation for discharges 

with neutral injection is both more systematic than and different from that 

with no injection. Here, T at r/a ~ 0.5 has been taken to be half the 
e 

central value because of the lack of sufficient profile information. 

The d~finitive test of changing E for sequential discharges has not 
c 

yet been performed. Nonetheless, the degree of correlation·apparent 

in Fig. 3b, particularly for the cases with neutral injection, and the 

fact that the Xe obtained from extrapolation of the data to Ec~ 0 is 

4 2· 
reasonably consistent with the gross X ~ 2 x 10 em /sec, leads us to con

e 

elude that the difference between X and X is due to the fact that x 
. ~ e ~ 

is obtained from electrons with E > E » T . - c c By more extensive measure-

ments of the functional dependence of X onE /T such as those in Fig.3b, 
. ep c e 

one could apparently determine the energy dependence of the kernel of 

the anomalous electron heat conduction coefficient and thereby gain an 

important insight into the anomalous transport process in tokamaks. 

The authors are particularly grateful to J. L. Dunlap and J. H. 

Harris for their close experimental participation, to the TFR group 

(Fontenay-aux-Roses, France) for constructive communications on related 

work, and to J. L. Whitson for the numerical computations. They are 
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also grateful to R. A. Uandl, who first suggested the high energy 

group hypothesis for the difference between x and x , and to R. G. 
ep e 

Bateman, L. A. Berry, J. F. Clarke, H. C. Howe, M. Murakami, 0. P. 

Manley,· J .··A. Rome and K. T. Tsang for many useful discussions of 

this work. 
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FIGURE CAPTIONS 

Composite oscillograms of soft x-ray signals for two 

discharges. For both cases, the top trace gives the signal 

from one detector over the full time of the discharge; the 

rest of the signals are on an expanded timescale starting at 

45 msec, which falls in the middle of the full-time trace. 

The temporal variation in the signal (sharp fall inside, 

sharp rise outside) shows that aD is ~ 5 em for shot 11389 

and~ 8 ~m for shot 13477. The signals labeled s
0 

are poloidal 

magnetic field fluctuations from pickup loops. 

Comparison of data with the diffusive model: (a) Peak arrival 

time versus radial position. The. slope of the asymptote is 

3/(8 X ) and thus gives a measurement of·x 
ep ep 

(b) t versus 
p 

.... ·~·=:._-

r<. in normalized units for· a representative set of discharges. 

Each symbol corresponds to one discharge, for which X has been 
ep 

obtained from a plot such as Fig. 2a. So1id symbols are 

discharges with neutral beam injection, and open symbols are 

for no injection. (c) Graphical reconstruction of one set of pulses 

_(third from left in Fig. 1, shot 11389) compared with normalized 

computor-gcncra~cd pul5c 5hapc5. (d) Maximum ~T (normalized) 
e . 

inferred from x-ray signal level as a function of radius. 

(a) 

(b) 

Comparison of x with X obtained from T~ via Eq. (6). 
ep e r.e 

Dependence of X on the electron energy parameter 
ep 

4 2 
E /T + 1 for discharges with 1.8 ~X ~ 2.9 x 10 em /sec. 

c e e 
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