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A review of previous experimental measurements of squeeze film damper
(SFD) forces is given. Measurements by the authors of SFD pressure fields and
force coefficients, for circular centered orbits with ¢ = 0.5, are described

and compared with computer predictions. For Reynolds numbers over the range
2-6, the effect of fluid inertia on the pressure fields and forces is found to

be significant.

Introduction

Squeeze Film Dampers (SFD) have been the subject of numerous experimental

investigations since their development in the early 1960's to attenuate
turborotor vibration in aircraft engines. A number of investigators have

compared measured pressure fields and/or transmitted forces with predictions

based on approximate or limiting geometry solutions to the Reynolds equation

for incompressible inertialess flows. Correlation between test and experiments
has ranged from good to excellent in some cases to poor in other instances.

Among the most important considerations that have been shown to be of

considerable influence on the measured pressure profiles and forces are: oil

feed mechanisms, use of end seals to prevent axial leakage, level of inlet

pressure supply and cavitation pressure of the lubricant, coupling of the

damping device to the rotordynamics of the system and, in some circumstances,

fluid inertia effects. The review of past experimental work on SFDs treats

only the reported investigations for circular centered orbits (CCO). Other

types of investigations, although important but less relevant to the subject of

the present study, are mainly oriented to determine the overall behavior of

rotor systems supported in SFD's.

Thomsen and Anderson [1] studied the range of damping available from the

squeeze film by varying the radial clearance and oil viscosity in a test rig.

For a centralized preloaded SFD, the damping coefficient was obtained by

measuring the deflection in the radial supports of the bearing housing.

Comparison with a linearized theory, valid for small amplitude CCO, showed good
agreement and independence of the damping coefficient from rotor speed and

amplitude of vibration. A significant contribution (although no measured data
is presented) is the statement that the measured radial stiffness is much lower

than the measured static stiffness, showing the substantial effect of the added
mass effect on the oil film forces.
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Vance and Kirton [2] carried out an experimental study of the hydrodynamic

force response of a damper with end seals. A controlled orbit test rig,

independent of the interactions with the rotor bearing systems, was developed.
The pressure field was measured around a journal performing circular centered

orbits, and then integrated to determine the force components of the squeeze

film. Comparisons show fair agreement with the long bearing theory.

Paradoxl cally, Iarger-than-predi cted dimensionless pressures and forces were

measured for a light viscocity oil and smaller-than-predicted pressures and

forces were measured with high viscosity oil. An attempt to explain the first

case was made by suggesting that the damper coul d be operating in the Taylor

Vortex regime. However, the Taylor Vortex regime arises in rotational Couette

type flows, and is considered to be a natural convection process resulting from

centrifugal forces. The phenomenon would not be expected at all in a SFD. The

discrepancy from Reynolds (long bearing) Theory should be attributed to other

phenomena, such as oil inlet conditions, which may have caused distortion in

the pressure field, or it is possible that the large radial clearance used

could have induced significant fluid inertia effects.

Tonnesen [3] obtained damping coefficients by measuring the force

impedance of the squeeze film in a test rig for small amplitude centered
motions. The measured force coefficients were constant over a considerable

speed range provided the transmitted force was below a certain level. As the

oil supply was increased, agreement with the full film short SFD theory was

found excellent for low frequency motions. With zero supply pressure, the

damping capacity of the SFD disappeared and large forces were transmitted to

the supports. For offset motions, the correlation was generally poor and

misguiding.

Feder, Bansal, and Blanco [4] made an experimental study of a damper with

a low L/D ratio (0.3), end seals with negligible leakage, and with oil supplied

through small holes in an annular groove at the ends of the damper. A smaller
clearance ratio than in reference [2] was used, In this way, the effects of

fluid inertia and the lubricant inlet on the squeeze film pressure distribution

were minimized. Excellent agreement of measured values with the long bearing

theory was reported. Measured pressure profiles and forces were found strongly

dependent on the inlet and lubricant cavitation pressures.

Miyachi et. al. [5] conducted measurements of the viscous damping

coefficient for a damper with L/D=O.2 and several types of inlet and outlet

conditions. The results were compared with numerical predictions from a FEM

code. Using simple end plate seals and small inlet holes, as well as a central

groove, the measured damping coefficients were much higher than predicted, even

in the case of an open ended SFD. For small amplitude motions, and using

O-ring and piston ring seals at the ends of the SFD, the measured damping

values were consistently higher than predicted, perhaps due to the inherent

damping capacity of the end seals. Certainly the end conditions, at the

boundaries of the damper are more complicated than the models incorporated in
current theories.

Fluid Inertia Studies

The effect of fluid inertia on squeeze film forces has been largely

overlooked by rotordynamicists and lubrication engineers, even though
theoretical analyses which account for fluid inertia at moderate Reynolds
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numbers have predicted 1arge dt screpanctes from classical 1ubrtcatton theory.
These analyses have raised controversial issues that must be resol ved by
experimental evl dence.

To date, several different measurements of fluid inertial forces in

squeeze film configurations have been reported in the literature, but these

investigations have mainly been concerned wlth small amplitude motions of
journal about the centered position.

Fritz [6] performed analyses and tests to investigate the added mass and

damping forces of a fluid in a thin annulus surrounding a rotor vibrating due

to unbalanced forces. Comparison of test and theory gave measured added mass

values 25% lower than predicted. The discrepancy was attributed to the axial

leakage through the end seals of the test rig. Results also showed the extreme

importance of the fluid forces in determining the critical speeds of the rotor.

Chen et. al. [7], and Yang [8] measured the added mass and damping forces
for vibrating rods in confined viscous fluids. Results from the damped free

oscillations of the rod were compared with numerically predicted results.

Correlation of experiment with theory is excellent although the clearance

ratios tested were higher than those usually found in lubrication applications.

Mulcahy [9] derived finite length corrections for the fluid forces acting
on a central rigid rotor translating periodically in a finite length annular

region of confined fluid. Predictions for the added mass are quite

satisfactory and within 2.3% of the measured data. Damping showed a variation

of 10%, a deviation considered acceptable given the usual scatter encountered

in measuring damping values.

There have been some recent efforts dlrected toward the experimental
determination of fluid inertia forces for large amplitude CCOs. In this case

the analytical problem becomes more complicated since the full nonlinear

Navler-Stokes equations are to be considered. If cavitation is present, a

clear isolation of damping and fluid inertia forces is no longer possible.

Since damping forces increase rapidly with the orbit radius and are likely to

dominate added mass forces, at least for the Reynolds numbers currently found

in practice, experimental measurements of fluid inertia forces is more

difficult in these operating regions. Tecza et. al. [lO] reported

experimental results which strongly support the existence of large inertia

forces, although inferences must be drawn from the dynamic behavior of the

rotor system rather than a direct measurement of damper forces.

Tichy [11] presented measured results which show a substantial effect of

fluid inertia in the damping force at quite moderate Reynolds numbers. A

tightly sealed damper with an L/D ratio of .15 was used in the experimental

work. The journal was constrained to describe CCOs of about 20% and 50% of the

radial clearance. Cavitation of the fluid was not allowed. For small Reynolds
numbers (<1), the measured film forces were 30% lower than the values from the

inertialess solution of the infinitely long bearing theory. These results are

opposite to those of Feder [5] referred above. Tichy argues that end leakage is
playing an important role in damper behavior.

In Tichy's experiments with Reynolds numbers over the range 2-9, the

measured fluid film forces were substantially higher than the values predicted
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by the theories which account for fluid inertia effects in the flow. These

measured results would be in the right direction if the phase shift between the

purely viscous damping and added mass forces increased as the inertial

parameter Re increased. However, virtually no change is detected in the phase

angle. This striking result means that the total fluid force is always

opposite to the journal motion. The added mass effect would thus be almost
nul I.

This paper reports experimental pressure measurements made by the authors to
determine the influence of fluid inertia in squeeze film dampers. The test rig

employed is a modification of the one used by Vance and Kirton [2]. The

modifications were made to improve the accuracy of the measurements and to

understand better the test results. The basic concept of the test apparatus is

to provide a journal with a known constrained motion within an annular

clearance filled with oil, so the characteristics of the squeeze film can be

studied independently of the dynamics of the rotor system.

Test Apparatus and Instrumentation

A schematic view of the SFD Test rig is shown in Figure i. The relevant

parameters and basic geometric characteristics of the test rig are given in

Appendix 1. The relatively large radial clearance of the squeeze film in the

test apparatus is designed to produce significant fluid inertia effects on the

film forces at low whirling frequencies.

The journal is mounted on the eccentric lobe of a stiff shaft running on ball

bearings with solid steel supports. The shaft is driven through a flexible

coupling by an electric motor at a fixed rotational speed of 1770 rpm.

The outer damper bearing housing is supported by bearing index plates using
locational fits in order to allow it to rotate through 360 degrees. The

journal is prevented from rotation by 4 axial pins, equally spaced, which enter

from the end of the journal into a loose fit in the bearing index plates. The

ends of the journal are sealed against these plates using O-rings. The axial

flow, or amount of leakage, passing the seals is practically zero (none was
ever observed).

Oil is supplied to the SFD through a circumferential groove located in the
central plane of the bearing housing. The lubricant supply can be varied

by using pressurized air and a pressure regulator connected to the supply tank.

For the experimental tests reported here, the inlet supply pressure was

adjusted to 830 KPa (120 psig) so as to maintain a positive pressure throughout

the squeeze film. Cavitation was thereby prevented and a full 360 degree film

was developed as shown by the measured pressure waves.

Measurement of the dynamic pressure distribution in the oil film was chosen

here over a direct measure of the transmitted forces since the former provides
a more direct check of the SFD theories and does not introduce external

effects, such as inertia of the housing or forces generated by the end seals.

In the axial direction, 3 holes equally spaced 11.11mm(7/16 in) were machined

on one side of the central groove. The pressure transducers installed in these
holes are designated from end to middle as PT1 to PT3 and correspond,

respectively, to the axial distances Z1 to Z3 measured from the closest edge of

the groove.
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In order to detect if significant changes in the pressure field can be
observed at the same axial location but different circumferential position,
three holes separated by 120 ° were tapped at axtal location Z2. The measured
differences were negligible in preliminary tests with CCO. Thus, as theory
indicates, the pressure field around the Journal is the same as the dynamic
pressure measured at a fixed point for a complete revolution of the shaft and
only one pressure transducer is necessary to make the measurement.

Two proximity probes, gO degrees apart and installed midway between the
ends of the bearing, are used to measure the journal center motion and

accurately determine the orbit shape and radius. In all the tests performed,

it was determined that the orbital motion was circular and centered (CCO)

within small tolerances (see Appendix 2).

The pressure transducers are of quartz type and the gap probes are of the
eddy-current type. The characteristics of these transducers are given in
Appendix 2.

The fluid temperature is measured at the axial location Z2 with a type T

thermocouple which is in contact with the lubricant. Oil viscosity is
determined from prior measured viscometer data for a range of temperatures, and

algebraic expressions are obtained for the fluid viscosity in terms of its

temperature using ASTM D-341 formulae.

Two different kinds of oils have been used to date in the experimental
procedures: SAE 30 oil (ISO 100) and a silicone fluid (ISO 32). The viscosity

versus temperature formula obtained are given in Appendix 2.

Figure 2 shows the instrumentation arrangement. The output voltage of the
proximity probe (PP) and the pressure transducers (PT) pass through a signal

conditioner calibrated to give a voltage output in the range between +-5 volts.

After this operation, the dynamic signals go to an 8 bit analog/digital
converter to finally be processed in a desktop computer. At the same time, the

oil temperature is read, and the orbit shape and the voltage signal from one of

the pressure transducers are displayed and stored in oscilloscopes.

With CCOs and provided the effect of inlet/outlet mechanisms is minimal,

the film pressure wave is synchronous with rotor speed and fixed relative to

the rotating shaft. Therefore, the measured pressure vs. time waveform

could be transformed to a pressure vs. angle relationship. Thus, at the axial

location of measurement Zi, experimental fluid film radial and tangential

forces and force coefficients are determined by numerical integration of the

measured pressure profile for one rotor revolution. Appendix 3 contains the

parameters employed to define the dimensionless pressure, p, and film forces
and force coefficients at the axial location Zi of measurement.

In the experimental procedure, typically 60 pressure data points were
taken for a rotor revolution at the location of measurement, and which

corresponds to a data point for every 60 of rotor rotation. This number is

considered to describe with detail the film pressure wave and provide
calculated film forces with exactitude.

3??



Results and Discussion

Parallel to this experimental investigation, a finite element code was
developed to calculate the pressure field, film forces and dynamic force

coefficients for finite length SFDs describing circular centered orbits [12].

The analysis, strictly valid for small Reynolds numbers, includes the effect of

fluid inertia. Both temporal and convection terms are retained in

the nonlinear flow equations which are solved iteratively. Different kinds of

inlet and end boundary conditions such as local or global type end seals are
incl uded.

The SFD test rig has a length to diameter ratio, L/D, equal to 0.84, a

central groove and O-rings at the journal end. Due to these characteristics,

neither the long SFD nor short SFD models can be used for comparison with the

experimental results.

The following observations, which are relevant to understand the nature of
the measured results, were made along the experimentation:

a) Pressure field variations at the same axial location but different

circumferential positions were found to be insignificant. This result is a

direct consequence of the smallness of the inlet orfice which allowed the

pressure waves to be independent of the circumferential location.

b) No oil leakage occured at the damper ends due to the effective sealing
action of the O-rings: hence, any through or global axial flow was prevented.

Therefore, as measurements confirmed, the region of largest pressures was

closer to the damper end walls (at Z1) and decreased as the central groove

location was approached.

c) It is a well known practice to assume the pressure is uniform and equal to

the supply pressure in a grooved region. However, throughout the

experimentation it was found the pressure at the central groove differed

considerably from the simple assumption used in practice. Furthermore, the

measured pressure gradient in the squeeze film lands was much less than the

linear relation expected for a SFD model with uniform pressure at the groove.

By simple geometric similarity and assuming no axial flow and curvature

effects, the ratio of pressures in the groove to those in the film lands should

be approximately equal to 1/25. However, the observed pressure values at the

groove were considerably larger and approximately equal to 1/3 of the film

pressure at axial location ZI. These unexpected results can be attributed to

the effect of fluid inertia, since at the groove region the Reynolds number is

25 times larger than in the film lands. A Bernoulli type effect and steep

pressure gradients are inferred to occur at the interface between the groove

and the squeeze film lands.

Thus, the condition of uniform pressure at the inlet of the squeeze film

lands was thought to be too simple to be used in the theoretical treatment.

The groove acts as a second squeeze film damper and its interface with the

squeeze film lands should be provided in terms of flow continuity rather than

in pressures due to the Bernoulli type effect most likely to occur in this

region. Hence, the groove-squeeze film interface was modelled assuming a local

flow constraint was present at the groove edges [13]. This boundary condition
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relates the local balance of the axial flow with the pressure drop across the
film discontinuity through an End coefficient, _, which ts a parameter in the
flow solution. A value of en_efftctent, _-0, represents a uniform axial
film geometry; while as _ approaches -, a uniform pressure at the groove ts
obtained,

This type of ad-hoc procedure has also been used in the experimental work

reported In [i0]. In it, a damper with inlet and drain grooves was modelled as

if it was locally sealed so as to obtain closer agreement between measured and
predicted forces.

m

From a parametric study performed, values of the end coefficient, CL, in

the range from 0.2 to 0.3 were found to _redict film pressures which closely
matched those at 21. Then, a value of CL=0.25 was subsequently selected to

predict film forces and compare with the experimental results at axial
locations Zl and 22.

At this point, a brief explanation of the effect of fluid inertia on the

film pressures for the full film solution is thought to be necessary.

Consider, as in Figure 3a, a journal contrained to perform circular centered
orbits of dimensionless radius e/c and frequency u. If fluid inertia is

neglected in the analysis, Figure 3b shows the predicted dynamic pressure wave

p observed at circumferential position A and Z2 as the journal center describes

a complete orbit. The purely viscous dynamic pressure is in phase with the

film thickness velocity, i.e. is zero when the gap time rate of change is zero

(at _t=O,_,2_, etc.) The pressure is anti symmetric with respect to the line

_t=_ and the same level of peak positive and negative pressures are obtained.

The inclusion of fluid inertia gives rise to an additional pressure field
which is in phase with the acceleration of the film thickness H. Figure 3b

shows the pressure wave solely due to fluid inertia for increasing values of

the squeeze film Reynolds number. Minimum and maximum pressures are given at

-t=O and _ where the gap acceleration has its extreme values. The purely

inertial pressure field is symmetric with respect to the line _t=_.

Figure 4 shows the addition of the purely viscous and inertial pressure
waves for increasing values of the Reynolds number. The significant effect
that fluid inertia has on the film pressures is clearly seen; at the minimum

film locations (_t=0,2=,4=) the dynamic pressure has a negative value, while at

the maximum gap locations the pressure gets above the zero pressure line. For

increasing Reynolds numbers, the peak negative pressures p increase in an
absolute sense, while the maximum peak positive pressure p stays relatively

constant.

Figures 5, 6 and 7 show a comparison between the measured and predicted

pressure waves at 22 for Reynolds numbers equal to 2.54, 4, and 5.137,

respectively. The experimental pressure waves show clearly the effect of fluid
inertia as outlined above, and the good comparison with the finite element

predictions is typical of most measurements. Measured pressures at locations

Zl and Z3 are similar in form to those at 72, and are not reproduced here for

brevity.

Figure 8 shows the peak experimental dynamic pressures p at the axial
locations of measurement as the Reynolds number, Re, increases. The
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predictions for the SFD rode1 with a _C=0.25 are also tncluded In the figure,
and it ts seen the predicted axtal pressure drop follows approximately the
measured pressure drop.

Fluid film forces and force coefficients at the axtal locations of
measurement, Zi, are determined by integration of the measured pressure profile
for one rotor revolution. Figures 9 and 10 show, as the Reynolds number
increases, the direct damping and inertia force coefficients, _ and
calculated from the experimental pressure data. The damping coefficients range
between 65% to 85¢ of the damping value for the long SFD model. Comparison
with the predictions is regarded as satisfactory considering the limitations of
the model employed. The inertia coefficients show a better agreement with the

predictions, although discrepancies exist for the largest Reynolds number
tested. Figure 10 also tncludes predicted values of Drr for a SFD model which
only accounts for temporal inertia terms in the flow model [14]; comparison
with the experimental results emphasizes that a large error in inertia force
predictions are made if a linearized model is used in damper design.

Figures 11 and 12 show the total dimensionless film force f and the force
phase angle obtained from the force coefficients given in Figures 10 and 11.
is the angle of the resultant force f and measured from the maximum film
thickness. The predictions from the SFD model with CL=0.25 are in an average
sense close to the values calculated from the measured pressures. The effect

of fluid inertia in the experimental results is seen to be significant
specially in regard to the force phase angle which shows a 20 _ shift, at the
highest Re, when compared to the 90 ° value derived from lubrication inertialess
theories.

Conclusions

The effect of fluid inertia on the pressure field and film forces in a

squeeze film damper test rig with circular centered orbits has been measured

experimentally for one value of the dimensionless orbit radius (e/c=O.5).

Large levels of pressures were observed at the damper central groove and

its influence on the measured pressures in the squeeze film lands Is of

paramont importance in the damper p,erformance. The groove-squeeze film

interface was modelled by assuming a balance between the local axial flow and

pressure drop across the interface. An end coefficient, CL=0.25, was

determined to reproduce satisfactorily the measured pressure field.

Comparison of the experimental results with predictions from a non linear

finite element SFD model are regarded good considering that fluid inertia

renders the problem close to untractable even by numerical means. Major

discrepancies are attributed to the limi ration of the fluid flow model employed

and which is strictly valid for low values of the squeeze film Reynolds number.

Previous analyses of fluid inertia effects on SFDs, which take into

account only temporal terms [14], are shown to be in error for prediction of
fluid inertia SFD forces.

The experimental measurements have shown that there is an urgent need to

develop better theoretical boundary conditions which will account for the local

detailed effects of fluid inertia and film geometry.
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APPENDIX 1

Components of squeeze ftlm damper test rig. Nominal dimensions and general
c haracteri stl cs.

Angular speed of
eccentric shaft: 185.35 rad/sec (1770 rpm)

Journal Diameter:

Length :

Bearing Diameter:
Radial clearance:

Orbit radius :

Dimension

IZl.OOU mmLS.0Oo inJ
119.702 mm(4.712 in)

130.175 mm(5.125 in)

1.587 mm(i/16 in)

0.794 mm(1/32 in)

Central groove

depth :
width :

6.350 ram(l/4 in)

12.700 mm(1/2 in)

Inlet orifice :

Diame ter: 0.400 mm(1/64 in)

Axial distance

from edge of

central groove to

pressure transducers
to PT1 (Zl):

to PT2 (Z2):

to PT3 (Z3):

42.773 mm(1.684 in)

31.554 mm(1.242 in)

20.570 mm(O.810 in)

ZlR

0.657

O.485

0.3157

Dimensionless orbit radius: _ = e/c = 0.50
Dimensionless clearance ratio:_ =c/R = 0.025

Damper test rig L/D ratio: 0.8425

Note: For parameter L/D, groove width has not been considered in calculation.
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APPENDIX 2

1. Characteristics of quartz pressure transducers:

Average sensitivity:

Lineari ty:

Range :

0.7251 mv/KPa (4.99 my/psi)
0.2% of full scale

0 - 6895 KPa (0 - 1000 psi)

2. Characteristics of proximity system:

Scale factor:

Linearity:

Range:

7.865 V/ram (200 my/rail) + 0.4%

0.15% of full scale

1.143 - 3.81 mm (45 - 150 mils.)

3. Oil viscosity formulae and range of viscosities and squeeze film Reynolds
numbers tested:

viscosity _ in centistekes:

log[log(_+0.7)] = a + b Iog[1.8 T("C) + 492]

Factor SAE 30 oil Silicone fluid

a -TI)-TO-_ESr'Z_ 3.87822

b -3.542052 -1.31010

r* 0.997500 0.99530

Specific gravity at
21°C(70°F) 0.8710 0.960

Range of tested oil
temperatures 25 - 44 °C 25 - 37 °C

Range of measured
oil viscosities 226 - 85 cst 100 - 79 cst

Range of tested

Reynol ds numbers 2 - 5.50 4.7 - 5.9

r*: denotes the correlation of linear regression analysis

of experimental data.

4. Dimensional tolerances of the test rig and its orbital motion for circular
centered orbits.

Radial clearance (c): 1.618 mm(0.0637 in) maximum
1.584 mm(0.0624 in) minimum

Dimensiolness orbit radius (e/c): 0.51072 maximum
0.48972 minimum

Dimensionless journal center offsets: _x/c = 1.223 x 10 -5

6y/c = 615.521 x 10-s
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APPENDIX 3

Definition of dimensionless pressure and force coefficients at axial locations
of measurement

Squeeze film Re_,nolds number: Re = ='c /v

Dimensionless pressure: p(e,z) = p/Cp; Cp = p w R'/c z

Radial and tangential dimensionless fluid film forces:

fr = Fr/Cf " Y_p • cos e de d_
0

ft = Ft/Cf = I _ • sin e de dB

N

=___" fr i AB

N

=l=_ fti aB

= z/L, Cf = p = L R S/c =, N: N°of axial locations of measurement

fr i and fti are local dimensionless film forces at Z i, the axial location of
measurement, and given by:

fri=O_(e, Bi)'cos e de; fti=O_(e, Bi)'sin e de

Total film force: fi=[(fri)=+ (fti)] 2 _/=

Force phase angle: ¢i+ 90 ° + tg-_(fri/fti)

measured from maximum gap location

m N

Local damping, Ctti, and inertia, Drrl, force coefficients at the axial
location Z i of measurement are defined as:

Ctti = -fti/¢
m

; Drri = fri/¢

Global dimensional values of the force coefficients are given approximately by:

N

Ctt = -Ft/(_e) = _ L R'/C' _ C-t-ti ABi
i=I

Drr = -Fr/(- _2e) = _ '"L R'/c s _ D_i ABi

1=1
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Figure 2. Schematic drawing of Instrumentation for SFD test rig.
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Re varies L/D=.84, CL=O.25, z/R=.4857

/
/

orbit radius o/c=O.5

\

Figure 4. Predicted total dimensionless pressure vs. time for SFD

model: L/D=O.84, CL=0.25, at axial location Z2.
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Experimental and predicted results.

Re=2.54.
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SFD(CCO):Fu11 film , orbit radius e/c-B.5
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SFD(CCO):Fu]! _t lm , orbit rudius e/c-B.5
20

%-

IJ
U
L

O
%-

m

4-,
O

p-

19

L8

L7

16

15

14

L3

12

L1

10

Prodlo$od boul_o foPI

I./n-.m4 _,.-.u
---.-- mZl, .... tZ!

• 0

0

0

0 0

0 0

0

Oo

m

o o

Ooo

o
o

o oo o
o 8

0

From measured

pressures at:

c_ : Zi

o : Z2

O : Z3

I I I I I

0 1 2 3 4 5 6

Squeeze Ti lm Reyno|ds Number Re

Figure II. Dimensionless fluid film forces f vs. Reynolds number.
Experimental and predicted results.

395



SFD(CCO):Full film , orbit radius e/c-_.5
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Figure 12. Force phase angle @ vs. squeeze film Reynolds number.
Experimental and predicted results.
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