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Multiparameter estimation is a general problem that aims at measuring unknown physical quan-
tities, obtaining high precision in the process. In this context, the adoption of quantum resources
promises a substantial boost in the achievable performances with respect to the classical case. How-
ever, several open problems remain to be addressed in the multiparameter scenario. A crucial
requirement is the identification of suitable platforms to develop and experimentally test novel effi-
cient methodologies that can be employed in this general framework. We report the experimental
implementation of a reconfigurable integrated multimode interferometer designed for the simulta-
neous estimation of two optical phases. We verify the high-fidelity operation of the implemented
device, and demonstrate quantum-enhanced performances in two-phase estimation with respect to
the best classical case, post-selected to the number of detected coincidences. This device can be
employed to test general adaptive multiphase protocols due to its high reconfigurability level, and
represents a powerful platform to investigate the multiparameter estimation scenario.

I. INTRODUCTION

Quantum metrology aims at exploiting quantum re-
sources to enhance the sensitivity in the estimation of
unknown physical parameters with respect to what can
be achieved with classical approaches [1, 2]. This field
of research is increasingly active and represents one of
the most promising applications of quantum information
theory [3–6]. In the single parameter case, the estimation
of an unknown physical quantity with classical resources
is bounded by the standard quantum limit (SQL), stat-
ing that the achievable error on the unknown param-
eter scales as ν−1/2, being ν the number of particles.
Such limit can be improved by adopting quantum re-
sources, defining the more fundamental Heisenberg limit
(HL) scaling as ν−1 [3–5]. Recently, the first uncondi-
tional violation of the SQL was reported in [7]. Given a
probe preparation, the optimal limit for single parame-
ter estimation can be always saturated by appropriately
choosing the performed measurement [8], and thus the
HL effectively represents the ultimate achievable preci-
sion limit.

A natural generalization of quantum metrology aims at
extending such results to the simultaneous estimation of
more than a single parameter. Indeed, the capability of
obtaining quantum-enhanced performances in the multi-
parameter case is particularly relevant [9], since a large
variety of estimation problems involve more than a sin-
gle physical quantity. Notable examples are phase imag-
ing [10–12], measurements on biological systems [13, 14],
magnetic field imaging [15], gravitational waves param-
eters estimation [16, 17], sensing technologies [18, 19],
quantum sensing networks [20], quantum process tomog-
raphy [21–24] and state estimation [25].

Although multiparameter estimation holds a broad
range of applications, there are still several open ques-
tions with respect to the single parameter case. For in-

stance, while the theoretical framework for the single-
parameter scenario is well established [26], few recipes
to saturate the ultimate bounds are known in the mul-
tiparameter case [1, 27–31]. Due to possible non-
commutativity of the quantum measurements required
to simultaneously optimize the estimation of different pa-
rameters [32], it may not be possible to optimally esti-
mate all parameters at the same time. In the case of
d compatible parameters, a reduction of resources by a
factor d can be obtained with respect to single individual
estimations [33]. On the one side, simultaneous multipa-
rameter estimation can surpass the individual optimized
strategies, but the definition of general quantum bounds
still requires additional investigations. On the other side,
several physical processes are characterized by dynamics
that require intrinsically the simultaneous treatment of
all relevant parameters.

In the last few years, several theoretical investiga-
tions on multiparameter estimation have been reported
[9, 31, 34–39], while experimental tests are surprisingly
few. These include the simultaneous estimation of phase
and its diffusion noise [40–42], phase and quality of the
probe state [43], the discrimination of an actual signal
from parasitic interference [44], and quantum-enhanced
tomography of an unknown unitary process by multipho-
ton states [21].

It is thus crucial to identify a specific scenario and a
corresponding suitable experimental platform to investi-
gate multiparameter estimation tasks. Such scenario is
provided by the multiphase problem, where the param-
eters to be estimated are a set of optical phases. Sev-
eral theoretical works have been reported in this direc-
tion [6, 20, 31, 39, 45–54]. Very recent results reported
necessary and sufficient conditions to define the optimal
projective measurements for pure states [31], with a sub-
sequent extension to general probe states [53]. Further-
more, generalized matrix bounds and optimal states have
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FIG. 1. Experimental apparatus. a, Layout of the integrated reconfigurable device. Three straight waveguide segments
are included between two multiport splitters UA and UB . The dynamical control of the phases is achieved by thermo-optic
phase shifters. Central inset: conceptual scheme of the interferometer. Top left inset: layout of the multiport splitters UA,B ,
each composed of three directional couplers (TA,B

1,2,3, green regions) and a dynamically reconfigurable phase (ϕTA,B , red). By
appropriately tuning ϕTA,B the two multiport splitters can be set to operate as balanced tritters. b, Parametric down-conversion
source for generation of single-photon and two-photon states. The dotted path is employed to inject classical light into the
device for the device alignment. The generated photons (p1 and p2) are coupled in single mode fibers and sent to the integrated
device. c, Coupling and detection stage. Photons are coupled to the device by an input fiber array (single-mode operation),
and collected with a second fiber array (multimode operation). For single-photon inputs, photon (p2) is directly measured to
act as a trigger. For two-photon inputs, both photons are injected in the interferometer, and the output state is measured
by adding a set of fiber beam-splitters to detect bunching events. (PDC: parametric down-conversion, SHG: second harmonic
generation, DM: dichroic mirror, HWP: half wave plate, PBS: polarizing beam-splitter, IF: interference filter, PC: polarization
controller, FBS: fiber beam-splitter, APD: avalanche photodiode.)

been defined in [55]. Nevertheless, no experimental real-
izations have been reported yet. The most suitable plat-
form to implement multiphase estimation tasks is pro-
vided by integrated multiarm interferometers injected by
multiphoton states [46]. Such platform presents several
advantages in terms of stability, tunability and compact-
ness of the devices [56–59].

In this work we report on an integrated three-mode in-
terferometer built through the femtosecond laser writing
(FLW) technique [14, 60], to implement quantum mul-
tiphase estimation tasks. Such device is composed by
two cascaded tritters [61] and includes six reconfigurable
thermo-optic phase shifters. We show that the device
achieves high fidelity of operation throughout the full dy-
namical range. Then, we demonstrate experimentally the
capability to achieve quantum-enhanced performances in
multiphase estimation by using two-photon input states
with respect to classical strategies, post-selected to the
number of detected coincidences. Finally, we show that
the same device can be employed to tune the input and
output transformation to investigate the role of measure-
ment operators in this scenario. The device reconfig-

urability can be exploited to implement general adaptive
multiphase estimation protocols [62–64], thus providing
a promising platform to develop appropriate methodolo-
gies for this task.

II. FABRICATION AND CHARACTERIZATION

The integrated device, working at 785 nm, is composed
as shown in Fig. 1a. The input state is prepared by a first
unitary (UA), where a reconfigurable thermo-optic phase
shifter is employed to perform fine tuning of the imple-
mented transformation. Then, the prepared state prop-
agates through three internal waveguides with dynami-
cal control of two independent phases between the three
paths, ensured by four thermo-optic phase shifters. Fi-
nally, the output state undergoes a second unitary trans-
formation UB , implemented with the same layout of UA,
that is employed at the measurement stage. When the
reconfigurable phases of UA and UB are set to ±π/2,
they act as balanced tritter, and the devices permit to
engineer a reconfigurable 3-mode Mach-Zehnder interfer-



3

FIG. 2. a-f, Two-photon probabilities P (23 → ij) as a function of the phase differences ∆φ1 and ∆φ2. The latter are varied
changing the dissipated powers on resistors R1 and R2. In all plots, dots are experimental data while surfaces are the theoretical
expectations from the circuit characterization process. Error bars are standard deviations due to the Poissonian statistics of
the measured single-photon counts and two-photon coincidences. The good agreement between model and experimental data
is quantified by the average R2 value over all output combinations 〈R2〉 = 0.835. In the model, photon indistinguishability of
V = 0.95 is taken into account.

ometer (see Supplementary Material).

A. Fabrication

The photonic chip was fabricated by FLW, adopting
a Yb-based cavity-dumped femtosecond laser oscillator
operating at the output repetition rate of 1 MHz, and
producing laser pulses of 300 fs duration and 1030 nm
wavelength. The substrate employed was a commercial
borosilicate glass (EagleXG, from Corning). The irradi-
ation parameters used for the waveguides inscription are
250 nJ pulse energy and 30 mm/s substrate scan speed.
The laser beam was focused 30 µm beneath the sample
top surface by means of a microscope objective with 0.6
NA. The waveguide shallow depth was chosen to obtain
an efficient control of the light phase by means of thermal
shifters positioned on top of the circuit. The polariza-
tion of the writing beam was linear and set perpendicular
with respect to the sample translation direction. With
this fabrication configuration we obtained single-mode
waveguides at the operating wavelength of 785 nm, with
1/e2 mode diameter of 7.2 µm × 8.4 µm and propagation

losses < 0.8 dB/cm for the vertically polarized mode.

The thermal shifters that control the tritter operation
and the interferometric phases were added to the pho-
tonic chip following the procedure presented in [56]. A
thin and uniform gold layer (thickness of ≈ 60 nm) was
sputtered on top of the glass sample after the inscription
of the waveguides. The gold layer was then patterned
by FLW, in order to define the electrical circuit and the
resistors above the waveguides, used as local heaters. As
irradiation parameters, we used the second harmonic (at
515 nm) of the same laser employed for the waveguide
writing, focused with a 0.6 NA objective on the glass sur-
face, with a pulse energy of 100 nJ and a scan speed of
2 mm/s. Each ablated line is scanned 8 times, in order to
avoid parasitic shortcuts within the circuit. The resistors
are fabricated with a width of 100 µm and a length in the
waveguide direction ranging from 5 mm to 7 mm , which
give resistance values in the range 60-100 Ω. Standard
electrical pins were directly glued on top of the circuit
terminations, in order to facilitate the connectorization
of our device with external power supplies.
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B. Characterization of the device

As a first step after the fabrication process, we have
characterized the integrated interferometer, in order to
determine the relevant static parameters (beam-splitter
transmittivies and internal phases when no voltage is ap-
plied) and the dynamical response of the device. In de-
tail, a voltage VRi

applied on the resistor Ri produces a
power dissipation PRi

= V 2
Ri
/Ri; the temperature gradi-

ent in the chip induces a different phase shift along each
optical path. Considering the combined action of multi-
ple resistors, the resulting phase shifts are given by:

∆φj =
6

∑

i=1

(

αjiPRi
+ αNL

ji P 2
Ri

)

, (1)

where ∆φj (j = 1, 2) are variations of the two indepen-
dent phases of the three-arm interferometer (see inset in
Fig. 1), namely ∆φ1 = ϕ1 − ϕref and ∆φ2 = ϕ2 − ϕref .
Furthermore, αij and αNL

ij are respectively the linear and
non linear response coefficients associated to the dissipa-
tion PRi

. The linear terms depend on all the geometric,
thermal, and optical properties of the device [56], while
non-linear terms are associated to variations in the resis-
tance value due to temperature increase.

The characterization procedure has been performed
with single-photon inputs, generated by exploiting a 785
nm photon-pair SPDC source, consisting in a type-II
BBO nonlinear crystal pumped by a 392.5 nm wave-
length pump field (see Fig. 1b-c). This allowed to mea-
sure the input-output probabilities P (i → j) from in-
put i to output j . A detailed explanation of the full
procedure and the corresponding results are reported in
Supplementary Material. The high quality of operation
of the device is confirmed by the average fidelity of the
device, calculated using the characterized parameters,
with respect to the set of achievable transformation in
which both the tritters are considered to be ideal. In-
deed, the fidelity 〈F 〉∆φ1,∆φ2

, averaged over the inter-
ferometer phase differences (∆φ1,∆φ2), reaches a value
〈F 〉∆φ1,∆φ2

= 0.963 ± 0.015. Here the fidelity is de-

fined as F = |Tr[Ũ(∆φ1,∆φ2)U
†(∆φ1,∆φ2)]|/m, where

U(∆φ1,∆φ2) and Ũ(∆φ1,∆φ2) are respectively the ideal
and reconstructed transformation for phases (∆φ1,∆φ2).
By exploiting the results of the characterization process,
it is possible to control arbitrary phase differences be-
tween the interferometer arms by applying a suitable
voltage on resistors Ri.

III. MULTIPHASE ESTIMATION ON A CHIP

After performing the characterization process, two-
photon measurements have been performed as a function
of phase differences ∆φ1 and ∆φ2, by setting transforma-
tions UA and UB as balanced tritters. Phases are tuned
by varying voltages applied to resistors R1 and R2. The
results are shown in Fig. 2 and are compared with the

theoretical predictions based upon the fit parameters ob-
tained from the characterization process. Two-photon
inputs are obtained by injecting both photons generated
by the source into the integrated device (see Fig. 1b-
c). Two-photon coincidences are then recorded between
the output detectors of the chip. The indistinguishability
of the photon pairs injected into the chip was estimated
from the visibility of a Hong-Ou-Mandel interference ex-
periment, which gave the value V = 0.95± 0.01.

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
/
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kl
)

a 1=1.745, 2= 0.349
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FIG. 3. Two-photon measurements P (23 → kl) for an input
state with a single photon on modes (2,3) as a function of
the relative time delay δτ , normalized over the photon Hong-
Ou-Mandel width σ. a, Phase values set at ∆φ1 = 1.745
and ∆φ2 = −0.349. b, Phase values set at ∆φ1 = 1.048 and
∆φ2 = 2.444. Points are experimental data, while dashed
lines are predictions from the reconstructed parameters. [Red:
output (1,2), Green: output (1,3), Blue: output (2,3), Black:
output (1,1), Cyan: output (2,2), Purple: output (3,3)]. Pho-
ton indistinguishability is introduced in the predictions by
mixing the probability with indistinguishable and distinguish-

able photons with a parameter e−(δτ/σ)2 . Error bars are stan-
dard deviations due to the Poissonian statistics of the mea-
sured two-photon coincidences.

As shown in Fig. 2, the measured two-photon out-
put probabilities present a very good agreement with
the theoretical model obtained by the reconstruction pro-
cess. This demonstrates the capability to control the de-
vice transformation by simultaneously operating on mul-
tiple thermo-optic phase shifters (additional independent
single-photon measurements are reported in Supplemen-
tary Material). The correct operation of the device is
also confirmed by the capability of preserving quantum
coherence during the evolution. In Fig. 3 we show the
coincidence detection measurements with two-photon in-
puts, as a function of the relative time delay δτ . The
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FIG. 4. Cramer-Rao bound Tr(I−1) for multiphase estimation with two-photon input states. a-c, CRB for the implemented
device evaluated from the reconstructed parameters. a, Input (1,2), b, Input (1,3) and c, Input (2,3). d-f, CRB for the ideal
three-mode interferometer. d, Input (1,2), e, Input (1,3) and f, Input (2,3). In the ideal interferometer case, points where the
Fisher information matrix is singular are not shown. Regions included within white closed curves highlight the presence of
improved performances with respect to the QCRB with two distinguishable single-photon inputs.

latter is varied through adjustable delay lines, thus allow-
ing to tune the degree of indistinguishability between the
two input particles. The reported data show a clear sig-
nature of quantum interference when tuning the regime
from indistinguishable to distinguishable particles.

A. Experimental multiphase estimation

The present device can be directly employed to test
and develop multiphase estimation protocols able to
reach quantum-enhanced performances. When dealing
with multiphase estimation in a (n + 1)-mode mul-
tiarm interferometer, the unknown parameters Φ =
(∆φ1,∆φ2, ...,∆φn) are the n independent phases rel-
ative to a reference arm. To perform their simulta-
neous estimation, an initial state ρ0, is prepared by
a unitary transformation UA and evolves through a
transformation UΦ that encodes the information on the
phases. Then, such information is extracted by a mea-
surement Π̂x. Finally a suitable estimator Φ̂(x) =

(∆̂φ1(x), ∆̂φ2(x), ..., ˆ∆φn(x)) provides an estimate of
the phases by exploiting the m measurement results
x = (x1, ..., xm). The phase sensitivity of an estimator,
given a choice of the measurement operators, is quan-

tified by its covariance matrix: C(Φ)ij =
∑

x
[Φ̂(x) −

Φ(x)]i [Φ̂(x) −Φ(x)]j P (x|Φ), with i, j = 1, ..., n. The
precision in multiparameter estimation experiment can
be evaluated as the trace of the covariance matrix, corre-
sponding to the sum of the individual errors, in the form
of the following chain of inequalities [1]:

n
∑

i=1

Var(∆φi) ≥
Tr

[

I−1(Φ)
]

m
≥ Tr

[

H−1(Φ)
]

m
, (2)

where I(Φ) is the Fisher information matrix, H(Φ)
is the quantum Fisher information matrix, and m is the
number of measurements. Optimal precision is achieved
when the equality is saturated. In a more general
form, such inequality should be written in matrix form

as C(Φ) ≥ I−1(Φ)
m ≥ H−1(Φ)

m , where the chain of in-
equality defines respectively the Cramer-Rao (CRB) and
the quantum Cramer-Rao (QCRB) bounds. Indeed, as
shown recently in [55], the full covariance matrix has to
be considered for a complete treatment of the sensitivity
bounds. In particular, a one-by-one comparison between
a desired target scenario (described by a Fisher informa-

tion matrix Î) and a given benchmark state (described

by Ĥ) can be performed by calculating the number of

positive eigenvalues of Î - Ĥ. This analysis provides the
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number of independent combination of the parameters
where a sensitivity enhancement can be achieved by us-
ing the target state.

0.01
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i)

10 20 30 40 60 100
m

0.07

0.1

0.15

0.2

0.3

(
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FIG. 5. Results of a maximum likelihood estimator for lo-
cal phase estimation at (∆φ1,∆φ2) = (−1.159, 2.810) with
input (2,3). Points: experimental data, obtained by averag-
ing over 100 random sequences of m coincidence events (2m
photons) drawn from the measured Nev = 1230 two-photon
events. Top plot: red dashed line corresponds to Tr(I−1),
black dashed line to the optimal sensitivity Tr(H−1) with 2m
distinguishable single-photon inputs, black dotted line to the
optimal sensitivity when the phases are estimated separately
with classical inputs. Bottom plot: green points (data) and

line (I−1)
1/2
11 correspond to δ(∆φ1), blue points (data) and

line (I−1)
1/2
22 correspond to δ(∆φ2).

To verify the performance of the implemented device
in this scenario, we have then evaluated the Fisher In-
formation matrix I with two-photon inputs from the re-
constructed parameters. Here, transformations UA and
UB are set as balanced tritters. The results are shown
in Fig. 4, and compared with the corresponding calcula-
tions from an ideal three-mode balanced interferometer.
We observe that, for all input states, regions can be iden-
tified that provide a value of Tr(I−1) lower than the op-
timal bound achievable with two distinguishable single-
photon inputs, quantified by the corresponding matrix
H [39, 46, 48]. While regions corresponding to quantum-
enhanced performances are smaller than for ideal device,
the minimum of Tr(I−1) achieved by the implemented
interferometer is close to the ideal value. Nevertheless,
by exploiting adaptive protocols such performances can
be extended to all pairs of phases if only a single region
performs better than with classical resources.

We have then verified that enhanced estimation can
be actually achieved by using an appropriate estimator.
In Fig. 5 we show the results for a maximum likeli-

hood (ML) approach in a local estimation framework for
(∆φ1,∆φ2) = (−1.159, 2.810) and input (2,3). The ML
approach provides an estimate of the phases by maximiz-
ing the likelihood function L(Φ) =

∏

k,l P (23 → kl)nkl ,
where nkl is the number of measured events on output
(k, l). We observe that the overall error on both parame-
ters, quantified by

∑

i Var(∆φi), drops below the bound
with the optimal separable inputs. More specifically, the
achieved performance, exploiting m two-photon events
(2m total photons) overcomes the scenario in which the
phases are estimated simultaneously (Hsim) or separately
(Hsep) with classical inputs having the same overall num-
ber of photons (2m) [39]. The obtained enhancement
with respect to a classical input is achieved in a post-
selected scenario. Furthermore, the estimation of both
parameters is achieved with comparable errors, thus lead-
ing to a symmetric estimation of the two phases. Finally,
we can also compare the sensitivities relative to the full
covariance matrices by using the approach of [55] dis-
cussed above. More specifically, we find that our system
(I) permits, for some pairs of phases, to obtain a sensi-
tivity enhancement in both the two linearly independent
combinations of the phases with respect to the scenario
where the parameters are estimated separately (Hsep) by
means of classical probes and also with respect to op-
timal simultaneous classical estimation (Hsim). Indeed,
both the matrix differences I −Hsep and I −Hsim have
two positive eigenvalues.

The obtained enhancement can be extended to all pairs
of phases by considering the application of adaptive esti-
mation protocols [46, 62–64]. This can be achieved with
our device by exploiting the additional resistors R3 and
R4 present in the circuit. The capability of performing
adaptive protocols is particularly crucial in this multi-
parameter scenario, where the achievement of optimal
[27–29] or symmetric [46] errors in all parameters are not
always achievable.

B. Tuning input and output transformations

The tunability of the device allows to implement dif-
ferent interferometers besides that composed by two cas-
caded tritters. This is obtained by varying the phases
in resistors RTA and RTB , and by exploiting the addi-
tional resistors R3 and R4 (see Supplementary Material
for the characterization of resistors in UA and UB). More
specifically, let us consider the layout of Fig. 6a. The ad-
ditional phases on R3 and R4 are employed to configure
the device such that UBUA = I (up to a set of output
phases). The implemented transformations UA and UB ,
different from balanced tritters, are reported in Supple-
mentary Material. This corresponds to tuning the device
transformation as the identity I for (∆φ1,∆φ2) = (0, 0).
This scenario is particularly relevant in the multiparam-
eter estimation context in order to saturate inequality
(2). Indeed, recent work [31], providing the conditions
for projective measurements to saturate such bound,
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has shown that such measurements include the projec-
tion over the initial state, thus requiring UBUA = I.
The results are shown in Fig. 6b-c. More specifically,
we observe that the single-photon input-output proba-
bilities P (i → j) closely resemble the identity matrix
(see Fig. 6b) at (∆φ1,∆φ2) = (0, 0), with a similarity

S = 1
3

∑3
i=1 P (i → i) = 0.979 ± 0.008. Similar results

are observed for two-photon inputs (see Fig. 6c), thus
showing the capability of tuning the input and output
transformations by exploiting the additional phases em-
bedded in the interferometer.

FIG. 6. a, Conceptual layout employed to tune the in-
put and output transformations UA and UB b, Experimen-
tal single-photon probability measurements (blue bars) at
(∆φ1,∆φ2) = (0, 0), compared with the identity correspond-
ing to the ideal case (red bars). c, Experimental two-photon
probability measurements for input (1,3) and output (1,3) as
a function of (∆φ1,∆φ2) by tuning voltages applied to resis-
tors R1 and R2. b-c, Transformations UA and UB are set to
reach the condition UBUA = I (up to a set of output phases)
as described in the main text.

C. Perspectives: improving sensitivity with

multiphoton inputs

Sensitivity in multiphase estimation with the imple-
mented device can be improved by changing the input
state. For instance, let us consider a three-photon in-
put where all modes are injected with a single photon.
By evaluating the quantum Fisher information matrix H
obtained after application of UA we obtain Tr(H−1) ≃
0.527, which is close to the value 0.5 obtained for an
ideal interferometer. The actual sensitivity after mea-

suring the output state by applying transformation UB

is quantified by the CRB Tr(I−1), shown in Fig. 7. We
observe that improved sensitivity can be achieved with
the implemented device, leading to minTr(I−1) ≃ 0.584,

lower than the bound ≃ 0.5 +
√
2/3 obtained by send-

ing three distinguishable single photons prepared in the
optimal state.

FIG. 7. Cramer-Rao bound Tr(I−1) for multiphase estima-
tion with a three-photon input state (1,2,3). a, CRB for the
implemented device evaluated from the reconstructed param-
eters, and b, CRB for the ideal three-mode interferometer.
In the ideal interferometer case, points where the Fisher in-
formation matrix is singular are not shown. Regions included
within white closed curves highlight the presence of improved
performances with respect to the QCRB with three optimal
distinguishable single-photon inputs.

IV. CONCLUSIONS AND DISCUSSION

In order to fully disclose the potential of multiparam-
eter estimation, several open problems are currently un-
der investigation, both from the theoretical and the ex-
perimental side. In this context it is crucial to identify
suitable platforms that can be employed to develop new
methodologies and to benchmark their performances.
In this article we have shown experimentally the capa-

bility of performing multiphase estimation in a reconfig-
urable integrated photonic chip realized via the femtosec-
ond micromachining technology. Within such platform,
the adoption of active thermo-optic phase shifters in a
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complex interferometric layout allows to investigate ex-
perimentally the simultaneous estimation of more than
one Hamiltonian parameter. By properly tuning the in-
put state, we have shown that such platform allows to
reach quantum-enhanced performances with respect to
what can be achieved with separable states, in a post-
selected scenario to the number of detected coincidences.
Furthermore, additional optical phase-shifters fabricated
in the device increase the number of available control pa-
rameters. In this way we provide an experimental demon-
stration of a benchmark platform for the paradigmatic
scenario of multiphase estimation in multimode interfer-
ometers.

Interesting perspectives can be envisaged starting from
the presented results. On the one side, enlarging the di-
mensionality of the system will enable the investigation of
a richer landscape [46]. On the other side, the capability
of fabricating devices with additional controlled phases
will allow to develop and test novel adaptive protocols
[46, 62–64], or to tune the detection operator searching
for the optimal measurement [31]. These ingredients can
be combined in the same platform to develop a novel
class of optimal protocols, allowing to efficiently extract

information on an unknown set of parameters with min-
imal resource commitment. Finally our platform is also
suitable for the inclusion of other integrated elements
allowing for all-in-chip processes: laser-written nonlin-
ear waveguides, generating single photons [65], and mi-
crofluidic channels, enabling actual sensing experiments
on fluid solutions [14]. This would allow all-in-chip mul-
tiphase estimation experiments, thus exploiting the po-
tential of the platform.
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This supplementary material contains a detailed the-
oretical analysis of the integrated device reported in the
main text, and a full description of the experimental pro-
cedure for its characterization.

I. DESCRIPTION OF THE INTEGRATED

DEVICE

The implemented device is an integrated three-arm
interferometer comprising two cascaded tritters, built
through the femtosecond laser-writing technique (FLW).
A tritter is a three-port beam-splitter, and can be real-
ized with different possible geometries. The FLW tech-
nique is suitable for a 3D realization of a tritter, that
consists of a directional coupler made by three waveg-
uides with a common coupling region [1]. Nevertheless,
in this article we realized the tritters embedded within
the interferometer by employing a 2D geometry. Indeed,
it is also possible to the decompose a tritter into cas-
caded two-mode beam splitters and a phase shifter [2],
as shown in Fig. 1 of the main text. This decomposi-
tion has the advantage of enabling the introduction of
active reconfigurable elements to obtain fine control on
the transformation.

The mathematical description of a tritter, in the loss-
less case, is given by a unitary matrix U (3) defined in
the three-dimensional Hilbert space of the spatial modes.

The matrix element of a symmetric tritter are U
(3)
i,i =

3−1/2 and U
(3)
i,j = 3−1/2eı2π/3 for i 6= j. The evolution of

the field operators is given by: b†i =
∑

i,j U
(3)
ij a†j , where

b†i (i = 1, 2, 3) are the output modes operators and the

a†j (j = 1, 2, 3) are the input modes operators.
Let us now discuss the decomposition of the unitary

matrix UA of the first tritter of the interferometer (Fig.
1 of main text). The first directional coupler mixes the
first two modes of the interferometer. Assuming a lossless
evolution, the reflectivity and transmission coefficients of
the coupler RA

1 and TA
1 are related according to RA

1 +
TA
1 = 1. Hence, the directional coupler is described by

the unitary matrix UA
T1
:

UA
T1

=





√

1− TA
1 i

√

TA
1 0

i
√

TA
1

√

1− TA
1 0

0 0 1



 . (1)

The second directional coupler mixes the second and the

third modes and is described by the unitary matrix:

UA
T2

=





1 0 0

0
√

1− TA
2 i

√

TA
2

0 i
√

TA
2

√

1− TA
2



 , (2)

where TA
2 is the transmission coefficient of the second

directional coupler. To obtain the tritter transforma-
tion, an additional phase shifter PSϕ

TA
that introduces

a phase ϕTA between the first arm and the other two is
required. Such transformation is described by the follow-
ing matrix:

PSϕ
TA

=





eiϕTA 0 0
0 1 0
0 0 1



 . (3)

Finally the first two modes interfere again in a third di-
rectional coupler UA

T3
, whose action is described by the

same matrix of Eq. (1) (with TA
3 as the transmission

coefficient). The first tritter is then described by a uni-
tary matrix obtained as an appropriate product of the
previously defined transformations:

UA = UA
T3

· PSϕ
TA

· UA
T2

· UA
T1

. (4)

The values of the transmission coefficients and the phase
shift to obtain a symmetric tritter described by U (3) are:
TA
1 = TA

3 = 1/2, TA
2 = 2/3 and |ϕTA | = π/2.

After the first transformation, the three phases embed-
ded within the three internal arms of the interferometer
(Fig.1 of main text) are described by the matrices:

PS1(ϕ1) =





eiϕ1 0 0
0 1 0
0 0 1



 ,

PS2(ϕ2) =





1 0 0
0 eiϕ2 0
0 0 1



 ,

PS3(ϕref) =





1 0 0
0 1 0
0 0 eiϕref



 ,

(5)

where the latter term is chosen as the reference phase.
The final transformation UB has the same form of UA,

Eq. (4), with transmission coefficients TB
1 , TB

2 , TB
3 and

internal phase ϕTB .

ar
X

iv
:1

90
4.

12
71

6v
1 

 [
qu

an
t-

ph
] 

 2
9 

A
pr

 2
01

9



2

0 50 100 150 200 250 300 350 400
time(s)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
P 1

,1
(m

W
)

a

b

c

b

c

56 57 58 59 60 61 62 63 64
time(s)

0.0275
0.0300
0.0325
0.0350
0.0375
0.0400

P 1
,1
(m

W
)

343 344 345 346 347 348 349 350 351
time(s)

0.0350
0.0375
0.0400
0.0425
0.0450
0.0475
0.0500

P 1
,1
(m

W
)

FIG. 1. a, Characterization of thermo-optic shifters thermalization after tuning the applied voltage, by measuring the optical
power P̃1,1(mW) from output 1 after injecting classical light in input 1. b, zoom for interval t ∈ [55.5; 64]s of transition
corresponding to an increase in the optical power. c, zoom for interval t ∈ [343; 352] s of transition corresponding to a decrease

in the optical power. Points: experimental data. Dashed curves: best fit with an exponential decay model f(t) = a+be−(x−c)/τ .
In both insets, the measured time constant is τ ∼ 0.3s.

The overall matrix U int of the interferometer is:

U int = UB · PS3(ϕref) · PS2(ϕ2) · PS1(ϕ1) · U
A . (6)

Therefore, the device is described by 11 parameters: the
transmission coefficients of the tritters directional cou-
plers TA,B

1,2,3, phases ϕTA,B embedded in UA,B , and the
three internal phases ϕ1, ϕ2 and ϕref of the interferome-
ter. The output probabilities for single- or multi-photon
states entering in the device can be thus calculated by
using the evolution in Eq. (6).

The six transmission coefficients are fixed and depend
on the coupling parameters between the involved waveg-
uides. Conversely, all the phases can be tuned by thermo-
optic phase shifters. Phases can be changed by applying
appropriate voltages on the corresponding resistors ac-
cording to Eq.(1) of main text. Six independent resistors
are present in the structure. Resistors RTA and RTB

are fabricated along the arms of the UA,B to directly
change ϕTA and ϕTB . Resistors R1−4 are distributed
along the three arms between the two tritters as shown
in Fig. 1 of main text. We observe that only two resistors
(namely R1 and R2) are necessary to have the full control
of the output probabilities. Indeed only two physically
relevant phases can be identified, corresponding to the
two phase differences with respect to the reference arm
∆φ1 = ϕ1 − ϕref and ∆φ2 = ϕ2 − ϕref . As discussed in
the main text, the other two resistors R3 and R4 can be
employed to add further control on the device, enabling
the implementation of adaptive protocols or the capabil-
ity of tuning the measurement operators so as to have
UB = (UA)†.

II. CHARACTERIZATION OF THE

INTEGRATED DEVICE

A. Characterization of tunable phase shifts

response time

As a first step towards characterization of the inte-
grated device, it is necessary to measure the response
time of the resistors after a modification of the ap-
plied voltage. This is required to evaluate thermalisation
mechanisms of the thermo-optic resistors, and therefore
to determine the waiting time after a voltage change to
obtain a stable optical phase. This analysis is reported
in Fig. 1. More specifically, we injected classical light in
input 1 and measured the time evolution of the optical
power emerging from output 1 by changing the applied
voltage during the acquisition. The overall results are
reported in Fig.1 a, while in Fig.1 b-c we focus on spe-
cific intervals. The transient regime can be described by
an exponential decay model, leading to a time constant
τ ∼ 0.3 s for our device. This constant includes all rel-
evant transient mechanisms leading to a phase change
in the device. To ensure a complete thermalisation of
the chip during measurements, we choose a waiting time
after voltage changes of 4 s ≫ τ before starting a new
acquisition.

B. Definition of the tritter phases

In the first stage of the characterization, according to
the notation in Fig. 1 of the main text, we are interested
in setting the phases ϕTA and ϕTB close to ±π/2 to im-
plement two ideal balanced tritters at UA and UB . In
this case, we exploit knowledge on the structure of U int
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FIG. 2. Measured input-output probabilities (points) and relative fitted curves (solid lines) as a function of the dissipated
power by resistor R1 (a-c), R2 (d-f), R3 (g-i) and R4 (j-l), where each resistor has been tuned separately. a,d,g,j: Input 1.
b,e,h,k: Input 2. c,f,i,l: Input 3. For each plot, output 1 corresponds to red points and lines, output 2 to green ones, and
output 3 to blue ones. Those data are fitted to retrieve the values of the device parameters.

to search for appropriate input-output configurations for
this characterization stage. Therefore we initially assume
ideal coupling parameters for the device only to set the

tritters phases. This is performed by following the three
steps described below.

Step 1 (Interferometer phase setting). – By measuring
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P (3 → 3), the output probability is independent of both
phases ϕTA and ϕTB , since path leading to this input-
output configuration do not propagate through the as-
sociated optical modes. Therefore this condition can be
used to set the internal phases to known values. The an-
alytical expression of the output probability P (3 → 3)
for an ideal interferomter in this configuration is:

P (3 → 3) =
1

9
{3− 2 cos(ϕ1 − ϕ2) + 2 cos(ϕ1 − ϕref)+

− 2 cos(ϕ2 − ϕref)} .
(7)

The internal phase difference can be set to ϕ1 − ϕ2 =
ϕ2 − ϕref = ±π/3 by minimizing this output probability
through tuning of the voltages applied to R1 and R2. In
our device, this is achieved for voltages values VR1

= 2.05
V and VR2

= 2.01 V.
Step 2 (UB transformation). – The input-output prob-

ability P (3 → 1) [or equivalently P (3 → 2)], is indepen-
dent of the phase ϕTA . Therefore, this configuration can
be used to set the phase ϕTB to a known value by tuning
the internal phases to the values found in step 1. The
analytical expression of the output probability in this
configuration is:

P (3 → 1|ϕ1 − ϕ2 = ϕ2 − ϕref = ±π/3) =

=
1

2
(1∓ sin(ϕTB )) .

(8)

Phase ϕTB is then set to±π/2 by minimizing such output
probability through tuning of the voltage applied to RTB .
This is achieved for a voltage value VR

TB
= 5.94 V.

Step 3 (UA transformation). – The final step is per-
formed to determine the transformation UA. This is done
by using the internal phases and the value of ϕTB found
in the previous steps 1-2. More specifically, by measuring
P (1 → j) [or equivalently P (2 → j)] for any j, this path
now depends on phase ϕTA . For instance, the analytical
expression of P (1 → 1) in this configuration is:

P (1 → 1|ϕ1 − ϕ2 = ϕ2 − ϕref = ±π/3, ϕTB = ±π/2) =

=
1

2
(1± sin(ϕTA)) .

(9)
Phase ϕTA is then set to±π/2 by minimizing such output
probability through tuning of the voltage applied to RTA .
This is achieved for a voltage value VR

TA
= 2.90 V.

In conclusion, the transformations UA and UB corre-
spond to balanced tritters for voltages VR

TA
= 2.90 V

and VR
TB

= 5.94 V. Hence, the multiarm integrated in-
terferometer chip implements a balanced reconfigurable
three-mode Mach-Zehnder interferometer.

C. Characterization of the thermal response

coefficients of the internal phases

The response of the relevant phases (∆φj , j = 1, 2) in
the interferometer is described by Eq.(1) of the main text.

Indeed, ∆φj depends on thermal response coefficients αji

and αNL
ji of the internal modes, where (j, i) indicates the

action of a voltage VRi
applied on the resistor Ri. Af-

ter setting the transformations UA,B to balanced tritters,
it is necessary to determine the complete set of relevant
chip parameters. More specifically, it is necessary to re-
construct the thermal response coefficients of the internal
phases and the relevant static parameters of the device
(internal phases at zero applied voltage and transmittiv-
ities of the directional couplers). In order to estimate
these coefficients, single photon measurements (see Fig.
2) are performed as follows. For each input i and output
j, probability P (i → j) is recorded by tuning the ap-
plied voltage to each resistor separately. In such a way,
the action of each resistor is characterized independently.

Parameter Estimated value

∆φ10 (rad) −0.355± 0.005

∆φ20 (rad) −1.441± 0.004

ϕTA (rad) 1.893± 0.002

ϕTB (rad) 1.866± 0.002

T
A
1 0.414± 0.001

T
B
1 0.415± 0.001

T
A
2 0.617± 0.001

T
B
2 0.625± 0.001

T
A
3 0.411± 0.001

T
B
3 0.438± 0.001

α11 (rad W−1) 24.35± 0.06

αNL
11 (rad W−2) −0.34± 0.12

α21 (rad W−1) 8.85± 0.05

αNL
21 (rad W−2) −0.66± 0.11

α12 (rad W−1) 0.72± 0.05

αNL
12 (rad W−2) −0.11± 0.08

α22 (rad W−1) 16.54± 0.03

αNL
22 (rad W−2) −0.55± 0.06

α13 (rad W−1) −23.54± 0.05

αNL
13 (rad W−2) −0.16± 0.10

α23 (rad W−1) −17.45± 0.04

αNL
23 (rad W−2) −0.66± 0.08

α14 (rad W−1) −26.65± 0.06

αNL
14 (rad W−2) 0.03± 0.14

α24 (rad W−1) −17.20± 0.05

αNL
24 (rad W−2) −1.21± 0.11

TABLE I. Best fit values and corresponding errors of the rele-
vant chip parameters obtained from the characterization pro-
cedure.
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This procedure corresponds to an overall amount of 36
independent input-output probability measurements.

All reconstructed curves are then simultaneously fitted
with the theoretical model U int of Eq. (6). This fit es-
timate all the relevant parameters described above, and
the two initial static relative phases ∆φ10 and ∆φ20 of the
internal interferometer arms when no voltage is applied,
for an overall amount of 26 parameters. During this pro-
cedure, it is necessary to give reasonable starting values
for all these parameters to enable the correct convergence
of the numerical minimization. Such starting values are
obtained as follows. According to the fabrication process
(see Fig. 1 of the main text) and to the first stage of the
characterization, true values of the tritter parameters can
be searched around their expected values:

ϕTA,B = π/2 + ∆ϕTA,B , (10)

T
A,B

1,3 = 1/2 + ∆TA,B
1,3 , (11)

T
A,B

2 = 2/3 + ∆TA,B
2 . (12)

Conversely, as starting points for the thermal response
coefficients we adopt the fundamentals harmonics ob-
tained by performing Fourier analysis on the measured
data. Hence, the output probabilities are expressed as a
linear combinations of sines and cosines, where the rela-
tive arguments depend on thermal response coefficients.
Note that the number of harmonics generated from each
measurement is bigger than the real one. This is ob-
served since each curve is measured on a finite range of
dissipated power. The analysis has been then restricted
by keeping those harmonics shared by all curves. More-
over, to assign each harmonic value to the appropriate
coefficient, we considered that each resistor has a greater
influence on the nearest modes. Then, the obtained re-
sults are employed as a starting point for the fitting pro-
cedure.

The value of χ2 after the characterization process is
evaluated as the squared difference between experimen-
tally measured probabilities and the predictions obtained
from the expected curve with best fit parameters, nor-
malized to the errors on the data. We obtained χ2 = 3795
with ν = 3258 experimental points. All resulting param-
eter values are reported in Tab. I with the associated
errors. We observe that phases ϕTA and ϕTB are set to
values ϕTA = 1.893 ± 0.002 and ϕTB = 1.866 ± 0.002
due to the non-ideality of the coupling parameters of the
tritter directional couplers. However, this difference with
respect to ideal π/2 does not correspond to additional in-
accuracy in the characterization process, since all actual
device parameters are recovered by the fitting procedure.

D. Verification of the characterization procedure

by simultaneously tuning the interferometer phases

∆φ1 and ∆φ2

After performing the characterization procedure, we
have then verified that the reconstructed parameters are

able to correctly predict the behaviour of the device and
the value of the applied phases ∆φ1 and ∆φ2. To this
end, we have collected an independent set of measure-
ments with single-photon inputs, by varying both phases
∆φ1 and ∆φ2 simultaneously and by setting the trans-
formation UA and UB as balanced tritters. The obtained
results are shown in Fig. 3, while two-photon measure-
ments are reported in Fig. 2 of the main text. We ob-
serve that the curves calculated from the reconstructed
parameters provide a good description of the measured
experimental data obtained by simultaneously tuning the
dissipated power in both resistors R1 and R2.

E. Characterization of the thermal response

coefficients of phases in UA and UB

During the initial characterization, the phases on RTA

and RTB (ϕTA and ϕTB ) are set to values near ±π/2
to realize balanced tritter as UA and UB . However, it
is necessary to fully characterize the thermal response
of those phases to exploit the full potential of the de-
vice. Therefore, we need to measure linear and non
linear thermal response coefficients of the two phases
(αTA , αTB , αNL

TA , αNL
TB ). Single photon measurements (see

Fig. 4) have been performed as in the previous charac-
terization to estimate those coefficients, namely by sep-
arately tuning the applied voltage on resistors RTA and
RTB . This procedure corresponds to an overall amount of
18 independent input-output probability measurements.
The set of unknown parameters to be determined also in-
cludes the two initial static phases ϕ0

TA
and ϕ0

TB
when

no voltage is applied on the corresponding resistors. Fi-
nally, The measured data are processed to obtain a best
fit of the 6 parameters. The obtained value of the χ2 is
6591 with 2418 experimental points. All resulted fitting
values are reported in the Table II. Characterization of
the dynamical response of resistors RTA and RTB can be
exploited to perform a fine tuning of the phases ϕTA and
ϕTB . Furthermore, this characterization procedure has
been then exploited to implement UA and UB transfor-
mations different from ideal balanced tritters (see Fig. 6
of the main text).

Parameter Estimated value

ϕ0
TA

(rad) 1.137± 0.002

ϕ0
TB

(rad) 0.914± 0.002

αTA (rad W−1) 9.06± 0.04

αNL
TA (rad W−2) −0.35± 0.12

αTB (rad W−1) 1.83± 0.03

αNL
TB (rad W−2) 0.75± 0.09

TABLE II. Best fit values and corresponding errors of param-
eters which describe the thermal response of the phases in UA

and UB .
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FIG. 3. Measured single-photon input-output probabilities P (i → j) as a function of phase differences ∆φ1 and δφ2, tuned
by simultaneously varying the dissipated power in resistors R1 and R2. Points: experimental data. Surfaces: curves obtained
from the characterized parameters and from the model of Eq. (6). a-c, Input 1, d-f, input 2 and g-i, input 3. For each input,
the three plots correspond to the three different output modes. The good agreement between model and experimental data is
quantified by the average R2 value over all output combinations 〈R2〉 = 0.965.

F. Implemented transformations UA and UB

Here we report the implemented transformations UA

and UB for the two-photon measurements reported in the
main text. The integrated chip structure allows to tune

its parameters ϕTA and ϕTB in order to set the input and
output transformation as balanced tritters, as described
by the characterization procedure discussed above. By
setting those parameters to the values discussed in Table
I, and by considering the characterized static values of
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FIG. 4. Measured input-output probabilities (points) and relative fitted curves (solid lines) as a function of the dissipated
power by resistor RTA (a-c) and RTB (d-f), where each resistor has been tuned separately. All other voltages are set to 0.
a,d: Input 1. b,e: Input 2. c,f: Input 3. For each plot, output 1 corresponds to red points and lines, output 2 to green ones,
and output 3 to blue ones. Those data are fitted to retrieve the values of the relevant parameters for resistors RTA and RTB

necessary to tune UA and UB .

TA,B
1,2,3 reported in the same table, the transformations

UA and UB are set respectively to:

UA =





−0.441 + 0.557ı −0.468 + 0.148ı −0.504
−0.466 + 0.150ı 0.494− 0.391ı 0.602ı

−0.505 0.601ı 0.619



 ,

(13)
and

UB =





−0.428 + 0.549ı −0.462 + 0.170ı −0.523
−0.484 + 0.149ı 0.475− 0.408ı 0.592ı

−0.509 0.605ı 0.613





(14)
These unitaries present a high value of fidelity FA,B =
|Tr[ŨA,B(U (3))†]|/m, where m = 3, with respect to a
balanced tritter U (3), namely FA = 0.9830± 0.0002 and

FB = 0.9863± 0.0001.
As discussed in the main text, the additional resistors

R3 and R4 can be employed to tune the input and out-
put transformations UA and UB to reach the condition
UBUA = I (up to a set of output phases). The measure-
ments reported in Sec. 3B have been collected by setting
the transformations UA and UB respectively as:

UA =





−0.368− 0.562ı 0.476 + 0.220ı −0.523 + 0.003ı
−0.499 + 0.202ı 0.431 + 0.417ı 0.002 + 0.592ı

−0.509 0.605ı 0.613



 ,

(15)
and

UB =





−0.392 + 0.564ı 0.452− 0.266ı −0.504
−0.487 + 0.191ı −0.390 + 0.460ı 0.605ı
−0.505 + 0.0147ı −0.080− 0.596ı 0.619



 .

(16)
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