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Experimental observation of photonic nodal line
degeneracies in metacrystals
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Nodal line semimetals (NLS) are three-dimensional (3D) crystals that support band crossings

in the form of one-dimensional rings in the Brillouin zone. In the presence of spin–orbit

coupling or lowered crystal symmetry, NLS may transform into Dirac semimetals, Weyl

semimetals, or 3D topological insulators. In the photonics context, despite the realization of

topological phases, such as Chern insulators, topological insulators, Weyl, and Dirac

degeneracies, no experimental demonstration of photonic nodal lines (NLs) has been

reported so far. Here, we experimentally demonstrate NL degeneracies in microwave cut-wire

metacrystals with engineered negative bulk plasma dispersion. Both the bulk and surface

states of the NL metamaterial are observed through spatial Fourier transformations of the

scanned near-field distributions. Furthermore, we theoretically show that the NL degeneracy

can transform into two Weyl points when gyroelectric materials are incorporated into the

metacrystal design. Our findings may inspire further advances in topological photonics.
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R
ecent progress in the research on topological phases of
matter has led to the exciting findings of Chern insulators1,
topological insulators2,3, Weyl semimetals4–6, Dirac semi-

metals7, etc. The concept of nontrivial topological physics in
solid-state systems has been extended to photonic systems, with
particular interests focusing on achieving one-way disorder-
immune surface states (SSs). Optical analogs of quantum Hall
effect8,9, quantum spin Hall effect10–12, and valley Hall effect13–16

have been realized in various two-dimensional (2D) photonic
crystal systems. In three-dimensional (3D) photonic systems,
there has been growing attention on Weyl degeneracies17,18, 3D
Dirac points19, and photonic weak topological insulators20. One-
way backscatter immune SSs, the so-called Fermi arcs, have been
observed at the interface between a photonic Weyl system and a
topologically trivial medium21. Among various topological pho-
tonic systems, metamaterials represent a unique effective medium
approach for studying topological behaviors of electromagnetic
waves, and have attracted growing research interest in recent
years. For topological metamaterials, a simple homogenous model
can greatly facilitate the investigation of important properties of
the topological phases, and the topologically protected SSs are
usually tightly confined to the interface due to the deep sub-
wavelength unit cell of the structure22. Recently there has been
realization of topological insulators10–12,20, Weyl
degeneracies17,23, and Dirac degeneracies24 in the metamaterial
and metacrystal systems.

As a precursor of many novel topological phases, nodal line
semimetals (NLS) have triggered a remarkable level of research
interest since its first discovery in 201125. NLS are topological
semimetals with one-dimensional ring-shaped nodal line (NL)
degeneracies in the 3D Brillouin zone26. In the condensed-matter
systems, NLs have been recently found to exist in graphene
networks27, spin–orbit metal PbTaSe2

28, alkaline earth metals29,
and a number of other material systems30–32. A salient feature of
the NLS is that an eigenstate adiabatically transported along a
closed loop threading the NL gains a ±π Berry phase, leading to a
Zak Phase difference between the inside and outside of the ring33.
Interestingly, NLS can transform into Weyl semimetals34, Dirac
semimetals35, and 3D topological insulators36 when spin–orbit
coupling or other symmetry-lowering mechanisms are intro-
duced. Recently, nodal-chains37, nodal-links38, and nodal-knot39

semimetals are found to exist in solid-state systems. In contrast to
the tremendous progress toward experimental demonstration of
NLS in condensed-matter systems, there has been no report on
experimental realization of NLs in the photonics regime40.

In this communication, we report the experimental realization
of a clean NL in a cut-wire metacrystal, which may provide a
fertile ground for investigating not only the interesting topolo-
gical features such as drumhead SSs and topological phase tran-
sitions between NL and Weyl degeneracies, but also a number of
other interesting optical properties, for instance, resonance scat-
tering41 and negative refraction. Our study for the first time
introduces NL degeneracies into the metacrystals and metama-
terials, which may pave the way to exploration of the associated
unusual optical phenomena.

Results
Design of the metacrystal. Serving as one of the most basic
building blocks of photonic metamaterials42, cut-wire resonators
provide a Lorentzian-shaped resonance in permittivity along the
wire, which have been utilized to realize hyperbolic metamater-
ials43, negative refractive index materials44, and metasurfaces45.
Noticeably, nonlocal effects are strong in wire-consisted meta-
materials, which usually result in a positive dispersion for the
longitudinal bulk plasmon (LP) mode along the wire46. Here, by

introducing glide symmetry into the cut-wire metamaterial
design, we realize a negative dispersion for the LP mode, which
plays a key role in the formation of NL degeneracy in this work.
The NL metacrystal is formed by stacking planar metallic cut-
wire elements into a 3D array, as shown in Fig.1a. The meta-
crystal unit cell, with a dimension of 4.5 × 4.5 × 2 mm3, consists of
two mutually orthogonal I-shaped metallic cut-wire resonators
lying in the x–y plane. The space group index of the metacrystal is
P4/mbm (number 127), which exhibits two glide symmetries
perpendicular to the main axis47. Comsol is used to simulate the
photonic band structure of the metacrystal, with the results given
in Fig. 1d. Along the in-plane directions, the lowest three bands
are formed by two transverse modes—the transverse electric (TE)
and the transverse magnetic (TM) modes, and a LP mode. The
TE mode, having electric fields only in z-direction, exhibits a
negligible interaction with the metallic cut wires, and therefore
possesses a nearly linear dispersion of a large slope before
reaching the Brillouin zone boundary. On the other hand, the TM
mode strongly interacts with the cut wires in the x–y plane,
leading to a larger-effective index and consequently a smaller
dispersion slope than the TE mode. The negatively dispersed LP
mode, whose macroscopic electric field aligns with its wave vec-
tor, linearly intersects the TE mode at 16 GHz at points U and Y
along Γ–M and Γ–X lines, respectively, serving as a strong indi-
cation of the presence of a degeneracy ring. The orthogonality
between the LP and TE modes is guaranteed by the mirror
symmetry of the system, and stays immune to any mirror sym-
metry preserved perturbations (Supplementary Note 6 and Sup-
plementary Figure 6). The 3D-simulated band structure in the x–
y plane’s Brillouin zone with kz= 0 is shown in Fig. 1b. Note that
the lowest band formed by the TM mode is not included in the
plot for easy visualization. The 3D band structure confirms the
ring degeneracy between the LP and TE modes. For non zero kz,
the ring degeneracy is gapped (Fig. 1c), further confirming the
characteristics of a NL9.

Besides the orthogonality between the LP and TE modes, the
negative dispersion of the LP mode also plays a key role in the
formation of a NL in the Brillouin zone. Here the negative
dispersion is achieved by imposing the glide symmetry onto the
metacrystal design, leading to the degeneracy between the LP and
TM modes at the Brillouin edge. As shown in Fig. 1a, the
structure is invariant under two-orthogonal glide symmetry
operations: Ĝx : x; y; zð Þ ! 1=2� x; 1=2þ y; zð Þ and
Ĝy : x; y; zð Þ ! 1=2þ x; 1=2� y; zð Þ. In combination with the
time-reversal symmetry operator Θ, the new composite anti-
unitary operators ĜxΘ and ĜyΘ guarantee doublet degeneracy for
all bands along the (kx,y= ±π,kz= 0) high symmetry lines, which
is analogous to the Kramer’s pair for spinful electrons48. Here the
TM and LP modes form a pair at the Brillouin zone boundary, as
they can be transformed into each other by the in-plane group
operations.

To confirm the existence of NL degeneracy, we numerically
obtain the equi-frequency surface (EFS) at 16.325 GHz, which is
slightly above the NL frequency (Fig. 1e). As expected, the EFS is
in the form of a single torus in the whole Brillouin zone. It was
reported recently that due to the diminishing surface area of the
EFS at the Weyl frequency, a resonant scatterer embedded inside
a photonic Weyl material could exhibit diverging resonance
scattering cross-sections near the Weyl frequency37 governed by
an inverse square law. In contrast, the surface area of the EFS of a
NL material has a linear dependence over the frequency close to
the NL frequency (Supplementary Table 1). Thus, the NL
metacrystal is expected to exhibit engineered electromagnetic
scattering with scaling law different from that of Weyl materials.

A Hamiltonian formalism of the metacrystal is established to
describe the dispersion close to the NL (Supplementary Note 1
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and Supplementary Figure 1). The electric field polarizations
calculated by the Hamiltonian are given in Fig. 1f, serving as a
manifestation of the ±π Berry phase of the NL. Specifically, going
through a loop threading the NL on the EFS, the polarization
state returns to the initial state but experiences a rotation of π.
Interestingly, this polarization structure is reminiscent of that on
a conical refraction ring surrounding the Dirac cone (Hamilton’s
Diablo) in biaxial birefringent crystals49. The ±π Berry phase
through a loop threading the NL is confirmed numerically by
using the Wilson-loop method50 based on the Hamiltonian
formalism of this strongly dispersive metacrystal51 (Supplemen-
tary Note 3 and Supplementary Figure 3).

To account for the negatively dispersive LP mode, we
empirically set the plasma frequency as a function of the in-

plane momenta as ωp ¼ 1� α2 k2x þ k2y

� �

, where α controls the

slope of the LP mode. The effective Hamiltonian concerning only
the LP and TE modes constituting the NL in vicinity to the NL
frequency is expressed by

H¼

ffiffiffiffiffiffiffiffi

ω2
1

2εsη

s

σxkzþ

ffiffiffiffi

1

εs

r

1þ2α2kNL
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η
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where σx,z are Pauli matrices,ω0 is the cut wires’ resonance
frequency, ω1¼1�α2k2NL;η¼ω2

NLþω2
0þω2

1, ωNL is the NL’s
angular frequency, kNL is the NL’s radial direction’s momentum,

and kr is the momentum along the radial direction with respect to
kNL (Supplementary Note 5 and Supplementary Figure 5).
Obviously, this equation resembles 2D Dirac points with π Berry
phase, again confirming the existence of the NL and its Berry
phase feature.

Experimental observation of NL degeneracy. To experimentally
detect the NL degeneracy, a metacrystal is fabricated by using the
standard printed circuit board technique. The fabricated sample is
shown in Fig. 2a. A total number of 30 layers are stacked up to
form the bulk metacrystal. Within each layer, there are 66 by 66
unit cells.

A microwave near-field scan system27 is employed to detect
both the bulk states and the SSs of the NL metacrystal. In the
measurement of the bulk states (Supplementary Note 2), a z-
polarized electric dipole is placed at the center of the bottom
surface of the sample serving as the source, while another z-
oriented dipole probe scans the top surface of the metacrystal to
measure the Ez field component. Evanescent tails of states in the
bulk metacrystal can be collected by the probe dipole close to the
surface. The source and probe dipoles are connected to a vector
network analyzer (VNA) to measure both the magnitude and
phase of the field. The real part of the measured instant field
distribution in the real space at 16.325 GHz, which is slightly
above the NL frequency, is shown in Fig. 2b. Circular wave fronts
propagating along the radial direction are observed, indicating
highly isotropic in-plane wave propagation. After Fourier
transformation of the real space pattern, we obtain the projection
of the EFS onto the surface Brillouin zone, which is given in
Fig. 2c. The measured projected EFS exhibits an annular shape of
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Fig. 1 A single nodal line realized in cut-wire metacrystals. a Schematic of the metacrystal. The unit cell size is a= 4.5mm, h= 2mm. The size of the I-

shaped copper cut-wire resonators is l= 1.1a, d= 0.5a. The widths of all wires are 0.1a, and the thicknesses are 35 μm. The substrate material is Teflon,

whose permittivity is 2.1, with a loss tangent around 0.00028. The band structure of the metacrystal at zero and non zero kz are given in b and c,

respectively. d Band structure of the metacrystal at high symmetry lines. Nodal line (NL) is formed between the second and third band at 16 GHz at crystal

momentum U and Y. e The equi-frequency surface of the metacrystal exhibits a torus shape at 16.325 GHz, which is slightly above the NL frequency around

16 GHz. No other states are present in the Brillouin zone. f Polarization states on the NL calculated by an effective medium analysis. The area surrounded

by the dashed line corresponds to the same area in e. Berry phase of the NL is well manifested by the nontrivial winding of polarization states
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finite width, which is consistent with the projection of a torus. For
comparison, the numerically simulated EFS is given in Fig. 2d,
which agrees reasonably well with the experimental result.

Furthermore, the spatial Fourier transformation is conducted
over a broad frequency range between 12 and 20 GHz, which
yields the information about the band structure of the metacrystal
(Supplementary Note 2 and Supplementary Figure 2). Experi-
mentally measured spatial Fourier components at the four
different momentum cuts illustrated in Fig. 2d are presented in
Fig. 3b, e, h, k. For the momentum cut intersecting the NL (lines
α, β, and γ in Fig. 2d), cone-like dispersions are observed, with the
cones’ tips touching at around 16 GHz (Fig. 3b), confirming the
linear band crossings forming the NL. The simulation results of a
z-direction stacked 30-layers metacrystal are given in Fig. 3a, d, g,
j (white dashed lines). The simulation and experimental results
agree reasonably well—the simulated band structure overlaps well
with the regions, where measured spatial Fourier components are
strong. As shown in Fig. 3e, h for the momentum cut away from
the Γ point (lines β and γ in Fig. 2d), the measured valleys
broaden and shift toward the center. The measurement is in good
agreement with the numerical result shown in Fig. 3d, h. When
the momentum cut is further away from the Brillouin center (line
η in Fig. 2d), the two valleys merge into each other forming a
single valley in the middle (Fig. 3k). This is also well explained by
the simulation result shown in Fig. 3j.

Another important signature of the NL degeneracy is the
presence of the so-called drumhead SSs. In the near-field
scanning measurement, SSs are also excited (marked in Fig. 3b,

e, h, k), due to scattering of bulk states at the edges of the
metacrystal block. Numerically simulated dispersions of the SSs
between the metacrystal and air along the four momentum cuts
are presented in Fig. 3a, d, g and j. It is observed that the SSs are
doubly degenerate at the Brillouin zone boundary, enforced by
the glide symmetry. In order to achieve a better contrast of the SS
to bulk states, a complementary measurement configuration is
employed, wherein a y-polarized source dipole is placed close to
the center of one edge of the top surface of the metacrystal, while
the field on the top surface is scanned by a y-polarized scanning
probe dipole (Supplementary Note 2). The measurement results
are shown in Fig. 3c, f, i, l, showing good agreement with the
simulation results. It should be noted that only SS with group
velocity of negative sign is collected by the probe dipole as the
source is located at the rightmost edge as shown in Fig. 1a.

Discussion
Through numerical studies, we show that by incorporating a
gyroelectric material into the metacrystal structure, the NL is
gapped everywhere except at two discrete points along the applied
magnetic field, which are identified as Weyl points (WPs). We
apply the most well-known gyroelectric material, magnetized
plasma to break the time-reversal symmetry. It has been reported
previously that a magnetized plasma itself possesses WPs at its
plasma frequency41. However, generation of WPs in magnetized
plasma usually requires a very strong applied magnetic field, and
the system is not clean in the sense that there exist extra bulk
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states at the WP frequency. Here we show that two type-I WPs of
opposite chirality can result from the combination of a NL with
magnetized plasma, while the required plasma frequency and
cyclotron frequency can be significantly lower than the WP
frequency.

Here realistic frequency-dependent material parameters are
used in our modeling. In the new configuration, the array of cut
wires, instead of being attached to dielectric substrates, are sub-
merged into a magnetized plasma with homogeneous electron
density of 1.24 × 1012 cm−3 under a 0.357 T static magnetic field
in the x direction. The corresponding plasma frequency and
cyclotron frequency are both around 10 GHz52.

For comparison, the band structure of the hybrid metacrystal
without an applied magnetic field is given in Fig. 4a. The plasma’s
permittivity at infinite frequency is 1, which is much smaller than
the previously used supporting substrate. Consequently, the band
structure is blue-shifted, which raises the NL frequency to about
25 GHz. Without the magnetic field, MP shows a simple Drude
response in permittivity, and therefore the band structure is
gapped below 10 GHz, due to the metallic response of MP below
its plasma frequency.

Once the magnetic field is applied, the NL is transformed into
two WPs. As shown in Fig. 4b, band crossing only persists along
the direction of the magnetic field, forming a type-I WP, and is
gapped elsewhere. This feature is well captured by the Hamilto-
nian formalism (Supplementary Note 4 and Supplementary Fig-
ure 4), and the effective Hamiltonian of the WP is expressed as

H ¼ v1σxkzþ v2σzþv3Ið Þkxþv4σyky; ð2Þ

where v1,2,3 can be expressed in terms of the field components of
the eigen fields at the NL. When there is no static magnetic field,
Eq. (2) recovers to Eq. (1) (Supplementary Note 5). Along any
other directions, our calculation confirms that the NL is gapped,
leaving only two point-like EFS at the WP frequency.

To conclude, we experimentally demonstrate a metacrystal
possessing an optical NL in the form of a single ring. By intro-
ducing glide symmetry into the metacrystal design, we can
engineer the nonlocality of the longitudinal bulk plasma mode to
exhibit a negative dispersion. This unique feature gives rise to a
single NL in the whole Brillouin zone. Our experiments verify the
presence of both the toroidal bulk state and the drumhead SS
supported by the metacrystal. We further numerically show that
the NL can transform into two type-I WPs under a static mag-
netic field. Besides the unique topological characteristics, the NL
degeneracy and donut-shaped EFS may introduce interesting

phenomena that arise from the unique optical density of states of
the NL optical material, such as spontaneous emission, resonant
scattering, and black-body radiation.

Data availability. The data that support the findings of this study
are available from the corresponding author upon request.
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