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Experimental Observations of Baroclinic Eddies on a Sloping Bottom 
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Baroclinic eddies in a rotating box with a sloping bottom were produced by squirting dense 
salt water up the sloping bottom and along the "eastern" wall. The jet stagnated in shallow water 
and was ejected normal to the wall. For certain parameters (volume flux of jet, etc.), a coherent 
lens of dense bottom water formed and propagated west with an overlying cyclonic vortex. The 
circulation in the bottom lens, on the other hand, was relatively weak. No such eddy forms when 
the depth of fresh water is relatively deep, and a regime diagram is given for the formation of 
the coherent eddies. Thus a relatively simple structure emerges despite the complexity of the 
generating process. The pressure field determined from density measurements is discussed in 
terms of an integral theorem for coherent eddies, and the westward propagation is also related to 
previous theories. Several other techniques for generating such eddies are discussed. 

1. INTRODUCTION 

Isolated eddies are some of the most beautiful structures 
in fluid mechanics to observe experimentally, with the ring 
vortex and a vortex pair in a homogeneous fluid being two 
simple examples. The vortex pair became of interest in geo- 
physical fluid dynamics when Stern [1975] found a class of 
vortex pair solutions for flow in a rotating fluid and, in par- 
ticular, on the /• plane. The original eddy pairs, which 
have come to be called "toodons," had rather special prop- 
erties. For instance, they were found to propagate eastward 
in the presence of the/• effect [Larichev and Reznik, 1976b] 
and to not radiate Rossby waves. Theoretical works since 
have considerably broadened the types and properties of 
modon eddies in rotating fluids [Larichev and Reznik, 1976a, 
b; Flierl, 1979a, b, 1984; Flierl et al., 1980, 1983; Boyd, 1981; 
Zabusky and Mc Williams, 1982; NoI, 1983; Mory, 1985] in- 
cluding baroclinic toodons which have vortices of opposite 
sign stacked vertically and cold eddies on a sloping bottom. 

Isolated eddies have been extensively observed in the 
ocean and in the Earth's and other planetary atmospheres. 
Malanotte-Rizzoli [1982] cites the three best known ones: a 
Gulf Stream ring, Jupiter's Red Spot, and a blocking ridge 
eddy. In oceanography, there are a number of smaller eddies 
Which have now been documented, often called "meddies," 
after the identification of a water parcel with clear Mediter- 

ranean origin off the Bahamas. The oceanic eddies have a 
number of features that are characteristic of isolated eddies 
and not characteristic of solitary waves such as strong lo- 
cal circulation, closed streamlines, and anomalous potential 
vorticity. They also move relative to their surroundings and 

observations of these eddies in the ocean, and the numer- 

ous theories, there is at present no detailed connection be- 
tween isolated eddy structures observed in the ocean and the 
toodon solutions. There is, however, good correspondence 
between numerical computations and some modon solutions. 
Laboratory studies can serve as a bridge between the the- 
ories and computations and actual fluid flows in nature, as 
well as serving their time-honored role of being a direct test 
of calculations and suggesting new processes in which the 
eddies are actually generated. 

This study concerns the origin and properties of a lens of 
salty water which hes over a sloping bottom in a rotating 
fluid, in a gravitational field, with a level upper surface. The 
geometry produces a topographic /• plane with north on- 
shore, south offshore, east to the right looking onshore and 
west to the left (see Figures 1 and 2). This configuration 
was originally suggested [NoI, 1983] by a model of an eddy 
of dense water on a sloping bottom which lay below a semi- 
infinite region of motionless water. The eddy was predicted 
to travel to the west with a characteristic velocity given by 

the formula c = g*S/f. Here g* = g A pip is grav- 
ity multiphed by the relative density difference between the 
two fluids (often called reduced gravity), S is the slope of 
the bottom, and f is the Coriolis parameter. Water in the 
lens circulated anticyclonically, and the deep overlying fluid 
was motionless. Later experimental and theoretical studies 
by Mory [1983, 1985], and Mory et al. [1987] indicated that 
similar eddies can be produced in a laboratory turntable ex- 
periment but they possessed qualitative differences from the 
Nof solution. Instead of the fluid in the lens being anticy- 

clonic, it was relatively motionless compared to the strong 
carry trapped fluid with them. In spite of the numerous cyclonic circulation in the water over the eddy. In addition, 

a general pressure integral was derived, which depends only 
on the rapid decay of the upper layer velocity from the eddy 
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Fig. 1. Top and side view of the experimental apparatus to make 
eddies of dense water on a sloping bottom. 

on a sloping bottom bear on the important process of deep 
water formation in the ocean. Killworth [1979] has pointed 
out the important role of cyclonic circulation in the surface 

layer during dense water formation, and some of the new 
methods of generating eddies which we relate here bear on 
this. 

The purpose of this paper is to describe an experiment 
(section 2) which produces one or more eddies from an im- 
pulsively started source. Qualitatively (section 3), the ed- 
dies are very similar to those observed by Mory et al. [1987] 
in spite of the very different method of generation. We also 
demonstrate numerous other ways of making these eddies, 
since it is important in the context of the ocean problem 
to demonstrate that these simple eddies can arise from var- 
ious kinds of generating processes which are less artificial 

(and less controlled!) than those in the Mor•t •t al. [1987] 
experiment. 

2. EDDIES FROM A COASTAL JET 

If one has a rotating fluid on a sloping bottom, so that 
a topographic ]• plane is produced; and if a source of dense 
water is squirted up the slope, the dense fluid will curve to 

the right (east) and continue to do so until it reaches its rest 
latitude; from there it will flow downhill and curve toward 

the west. There are two ways for this westward directed flow 

North Coast 
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Fig. 2. Sketch of the processes in the eddy-generating region. 

to continue. One way is for the water to collect as coherent 

eddies and propagate to the west in the manner indicated 

below. The second way, which we observed when the up- 

per layer was very deep, was to form a downhill slumping 
of the dense fluid in a very broad and thin Ekman layer. 

The central result is that isolated eddies emerge from a gen- 
eral and rather nondescript process, which nevertheless has 

conditions that can set eddies up. This is a step beyond 

earlier experiments [Mory, 1983, Mory et al., 1987] in which 
isolated eddies were generated by a more explicit condition, 
namely, dense fluid in a removable cylindrical wall. 

The experimental apparatus (sketched in Figure 1) con- 
sisted of a plywood false bottom mounted with a 1:5 slope 

on the two-meter rotating turntable at the Coastal Research 

Center of Woods Hole Oceanographic Institution. A grid of 
lines spaced 10 cm apart was painted onto a white back- 
ground on the false bottom. The tank was filled to a max- 

imum depth of 23 cm with fresh water. The intersection 

of the water with a sloping bottom (to be called the coast) 
corresponds to the northern shore of the topographic beta 
plane. East is to the right looking onshore, west is to the 
left, and south is at the deepest end, as shown in Figure 1. 
Vertical sidewalls were attached to the eastern and western 

boundaries of the false bottom. 

A nozzle, made of 10 cm length of glass tubing of 0.76- 
cm internal diameter, was a source of intrusive fluid. It 

was connected by hose to a flow meter and from there to a 

reservoir filled with dyed salty water of density 1.012 g/cm 3 
for the early runs and 1.031 g/cm 3 for the final runs. The 
source was located at a specified distance offshore next to 

the eastern wall and was pointed up the slope so that a 
turbulent jet of salty water squirted up the slope. 

3. QUALITATIVE OBSERVATIONS 

The flow that resulted from the jet on the eastern wall 

was relatively complicated, so it is sketched in Figure 2. 
Salt water from the jet rose along the eastern coast and 
slowed down. It stagnated either at or near the coast and 

then slumped down the slope by gravitational acceleration. 
Meanwhile, it curved westward. Parts of the dyed fluid de- 

scended in a bottom Ekman layer, in which nonlinearities in 

the form of roll waves [Chow, 1959], or possibly waves due 
to Ekman layer instability, along with a distinct front were 
obvious. Above the Ekman layer the desired eddies formed 

for certain ranges of the controlled parameters. 

A photograph of an excellent set of eddies is shown in Fig- 

ure 3. Each eddy consisted of a circular lens of (dyed) salty 
water lying on the sloping bottom. The lens was roughly 
bell-shaped and approximately half as thick as the depth of 
the water. The eddies also had a number of features not 

visible in that photograph. The montage of streak photos 
in Figure 4 shows that a typical eddy travelled westward, 

with virtually no northward drift (in contrast to Mory et al. 
[1987]), and had a gyre of trapped cyclonically circulating 
fresh water immediately over the lens of salty water. Fluid 

in the gyre above the lens stayed trapped above the lens for 

the life of the eddy. This, along with the westward drift is 

revealed in Figure 5, which shows the motion of a floating 
pellet over an eddy. 

The number and quality of the eddies varied as a func- 

tion of the control parameters. A systematic set of runs 

was conducted to obtain a regime diagram in parameter 
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Fig. 3. A train of three barodinic eddies of dyed salty water on a white gridded sloping bottom. The top of the 
photograph is the coast (which is north in this topographical /3 plane). The Ekman layer and roll waves bleed 
some fluid down the slope. The view in the bottom portion is an inverted elevation view through a mirror placed 
in the deep part of the tank at approximately 50 ø. The eddies all travel westward and have cyclonic circulation. 
Parametrically, this run is directly below the circled rm• in Figure 6. 

space. For this set, turntable rotation was set to a period function of time. Typical trajectories are shown in Figure 8. 

of 15.00 -I- 0.1 s, and the duration of the jet was set at 30. Some exhibited uniform speed and clearly were quite well 
The other two control parameters were speed of the jet and developed with plenty of inertia, others attenuated rapidly 
distance of the jet offshore, and these were systematically from friction. It was desired to compare the westward eddy 
varied. Figure 6 shows the regime diagram from this set of velocities of many eddies as a function of the formula for 

experiments. It shows that there were a number of regions 
with vastly different flows. When the jet was very weak and 

far offshore, no eddy formed and the jet plunged down the 
slope as a gravity current. Photographs of this case, denoted 

0 in Figure 6, are shown in Figure 7. For stronger forcing, 
denoted by F in Figure 6, there was a sharp front or nose 
along the left-hand bottom of the Ekman layer. The nose 

velocity of eddies 

g*S 
= 

which was derived by Nor [1983] for an anticyclonic eddy 
on a sloping bottom with infiniteIs' deep motionless fluid 

was approximately 2 to 3 times the Ekman layer thickness above it. Here g* = g A pip is gravity multiplied by 
and gave every appearance of being very similar to the nose the relative density difference between the two fluids (often 
of a nonrotating frictional density current. It is interest- called reduced gravity), S is the slope of the bottom, and 
ing for its own sake, but is beyond the scope of the present f is the Coriolis parameter. This same formula for velocity 
study. When the jet was even closer to shore or was made 

stronger, one eddy formed as denoted by a number 1 in Fig- was found by Morg et al. [1987] using a quasi-geostrophic 
approximation for a noncirculating eddy with cyclonically 

ure 6. This eddy has already been described. For an even circulating fluid above it. We shall discuss the generality of 
stronger jet or with the nozzle closer to shore, a number of this formalism in section 7. 
eddies formed; their number is shown in Figure 6. The ed- 

To calculate the velocity from the formula accurately, it 
dies photographed in Figure 3 are shown in the run directly 

was necessary to determine the density of the salty lens by 
below the circled run. 

direct measurements of the salinity of the fluid in the lens. 

4. QUANTITATIVE MEASUREMENTS Samples of the bottom dyed fluid were obtained through 
the use of a syringe and a long tube which was laid on the 

The magnitude of the westward velocity was measured bottom as the eddy passed over it. When the eddy cen- 

by plotting the trajectories of the centers of the eddies as a ter passed the tip of the tube, a small sample was drawn 
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Fig. 4. One-second time exposure streak photographs of surface pellets. The eddies advance over the black 
background. To the right is a white background that reveals the circular lens of dyed salty water. There is a 10-s 
interval between frames. The forcing parameters are very similar to those in Figure 3. 
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Fig. 5. Trajectory of a surface float trapped over the eddy in the run which is circled in Figure 6. The numbers 
denote time after an arbitrary starting time. 

into the tube and hence into the syringe. The index of re- 

fraction of the sampled fluid was measured with an optical 

refractometer. This method requires a very small volume, 
and care was taken to insure that the desired fluid was care- 

fully withdrawn without incorporating adjacent fresh water. 

It was found that the salinity of the sample was consider- 

ably less than that of the original intrusive fluid in all cases. 

Probably the intrusive water was mixed with fresh water 

by turbulence which was produced either during the initial 
squirting of the jet or during the gravitational slumping that 
led to the eddies. 

The observed velocities were then plotted against the cal- 
culated velocities as shown in Figures 9a and 9b. Figure 9a 
was from the first experiments in which salinity of the intru- 

sive fluid was approximately • of the salinity of the fluid in 
Figure 9b. Figure 9 exhibits large scatter, but the primary 
reason for this large scatter is that all eddies over the en- 

tire parameter space were included in this figure, even those 
eddies which were weak and poorly formed. Also, scatter 

naturally arises from the fact that the eddies have continu- 
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Fig. 6. Regime diagram for experiments in which flux of the 
jet and the distance of the jet offshore (D) were systematically 
varied. The numbera denote the numbers of eddies observed. 

The fractions denote that a number (numerator) of small eddies 
were formed. F denotes an interesting front in the Ekman layer. 
The encircled run produced the most distinct eddies. A trajectory 
from one is shown in Figure 5. The three eddies shown in Figure 3 
were from the run directly below the circled run. 

ous stratification. Not only will the density profile probably 
vary in detail from run to run, but the withdrawal technique 

only gets a crude measure of the maximum density as well. 

The mean percentage difference between observed and cal- 

culated velocity is 0.80, and although the large scatter is 
bothersome, it does not seem to be unrealistic in view of 
the fact that the actual eddies contain numerous features 

(stratification, friction, finite water depth) not present in 
two-layer eddies. Thus in the early state the eddy propaga- 

tion speed is the same order of magnitude as (1). (Included 
in Figure 7 is one measurement for an eddy formed by fluid 

injected from above (see section 5).) This is in contrast to 
Mory et al., who used values of the original density in (1) 
and did not report agreement between observed speeds and 

(•). 
The integral constraint discussed below also implies that 

the fluid circulation velocity in the bottom eddy is relatively 

small, and we have attempted to verify this by direct obser- 

vation. Velocity profiles of the bottom eddy were generated 
by carefully injecting a north-south line of dye along a line 

1 to 2 mm off the bottom with a very long tube connected 

to a syringe. The injected fluid was composed of dyed wa- 
ter with a salinity close to that which was measured in the 

eddy. Video images were taken of the four runs with the 

best eddies that were observed. This run has the parame- 
ters of the circled run in Figure 6 and corresponds to the 
photographs in Figure 3. Figure 10 shows the evolution of 

dye streaks from images 1 s apart. It shows that movement 

in the bottom eddy is principally translational from east to 
west, with small additional cyclonic circulations. Thus even 

the sign of circulation differs from Nof's anticyclonic model. 
The dye also shows that fluid north of the eddy moves rather 
uniformly westward. Since the eddy is relatively close to the 

shore, this flow could be generated by water which cannot 
be bodily moved offshore to go around the eddy. There is 
also westward motion of the bottom fluid south of the eddy. 
It was clearly visible in the video tapes that the westward 

motion in the bottom fluid was due to the density current 
which is composed of dense water in the bottom Ekman 

layer. 

Similar dye lines in the top fluid (left column) permit di- 
rect measurements of the velocity field of the top eddies. It 
is clear from inspection that there is strong cyclonic circula- 
tion. The areal extent of the counterclockwise circulation of 

the top fluid is tens of percent larger than that of the lens 
of dyed dense water and the circulation extends both north 

and south of the eddy. Further to the south of the eddy 
there is little or no motion in the water above the bottom. 
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Fig. 7. Photographs of a run which did not result in an isolated eddy. 
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Fig. 8. Typical trajectories of the eddies from which velocity was 
determined. (a) Straight trajectories for which the velocity is 
easily determined. (b) Curved trajectories in which the velocity 
was markedly decreasing with time. For such cases we used only 
the initial velocity for Figure 9. 

There is also unanticipated westward moving fluid north of 

the eddy, as there was for the bottom dye line. 

In Figure 11 the measured radius of the eddies is presented 
as a function of a Rossby radius Ro = vf•'•/f. Here H is 
total depth of the fluid at the center of the eddy. Although 
observed radii are of the same order as the Rossby radius 

(in fact, roughly 0.SRo), there is considerable scatter. This 
arises from a number of factors. First, there is considerable 

ambiguity about the location of the edge of the eddy. The 
radius was determined by eye, from the film, and the edge is 
not distinct. Second, the eddies were not perfectly circular 
and in those cases, we used half the east-west width for the 

radius. Third, all eddies were incorporated in this figure and 

some were small and we,-.k. The ones on the left in Figure 11, 

in particular, could have been strongly influenced by friction. 

5. OTHER •XPERIMENTAL ]V[ETHODS OF GENERATING 

THE EDDIES 

Four other methods were successful at generating these 

eddies, which suggests that they are robust structures which 
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Fig. 9. Measured eddy velocity as a function of predicted velocity Fig. 10. The evolution on north-south streaks of dye injected 
vt. Figures 9a and 9b denote two experiments with the former (left) just under the top free surface of the water and (right} 
having one-third the salinity of the latter. In Figure 9b, the circles along the bottom. The outline of the dyed lens of dense water is 
connected by horizontal lines denote a range of observed veloci- showed for the first and last streak. The interval between streaks 
ties. is 1 s. 
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Fig. 11. Raxtius of the eddies as a function of the Rossby radius 

of deformation, Ro -- V/(g*H)/f. 

might be anticipated under a variety of conditions. The 

methods are sketched in Figure 12 with accompanying pho- 
tographs in Figure 13 and are listed below. 

1. A source of dense water at the coast (Figure 12a). In 
agreement with earlier experiments of Gri. ffiths [1983], cy- 
clonic eddies were formed with a lens of dense fluid below. 

There was formation of these coherent eddies only if the 

density current was turbulent. There was no eddy if the 
flow was laminar. Instead, the dense water sank down in 

the bottom Ekman layer, which sometimes exhibited pro- 

nounced roll waves, as shown by the 0 data in Figure 6 

and photographed in Figure 7. Our distinct impression is 
that the cyclonic flow in the top fluid is caused by entrain- 

ment suction [Ellison and Turner, 1969] which pulls fresh 
water into the density current, and this acts as a sink to 

the fresh water lying above. This suction then pulls fluid 
in from greater radii and generates cyclonic flow. This sug- 

gested mechanism differs from the inertial wave radiation- 

cyclogenesis mechanism suggested by Gri•ths [1983] which 
should have been visible over roll waves. The experiments 

described below also support the above mechanism and do 

not seem to be consistent with cyclogenesis by internal wave 
radiation. 

2. Removal of a known volume from the water over a 

reservoir of salt water (Figure 12b, 12c and 13c, 13d). This 
produces a cyclonic eddy which lifts a lens of bottom fluid 

and forms our eddy of interest. In our experiments we gen- 

erated suction by removing water with a syringe or by re- 

moving a beaker from still water. The completed eddy then 

propagated westward from the generation zone. There was 

a clear tendency for the generated eddy to drift north as 

well as west (a feature observed by Mory et al. [1987]). 
3. A plume of dense water sinking from the top sur- 

face. This makes large and energetic eddies. We believe 

that cyclogenesis arises from entrainment of fresh water by 
the turbulent plume as it sinks. The turbulence mixes the 

fresh water with the salty water and forms the final water 
which resides in the bottom lens. We tested the Stern inte- 

gral relation [Mory, 1983] for two isolated eddies generated 

North 
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'Brine (b) 

'ouT 11 wo,v' 
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Fig. 12. Sketch of four other methods to generate the baroclinic 
eddies on a sloping bottom. (a) Generation by a density current 
at a coast. (b) Generation by removing a beaker in motionless 
fluid. This produces a strong cyclonic eddy. (c) The cycloge- 
netic suction over a layer of deep brine lifts up a dome or lens. 

(d) Generation by an inverted turbulent plume. (e) Generation 
by a floating ice cube. 

in this way (see next section). We also found that both 
the observed predicted drift speed of one of the eddies was 

0.12 cm/s (see section 4). When the salt water was con- 
tinued for 10 or 15 mins, a street of eddies would slowly 

accumulate to the west as newly formed eddies grew, prop- 

agated westward, and vacated the generation region (Fig- 
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Fig. 13. Photo•ap• of edges genemt• by the fo• me•s-- shown in Fi•e 12. (a) A so,ce at a 
•• a demity c•ent w• flows offshore •d ben• to the west. Two ed&• • fo•ng. (b) Forty seconds 
later, the fl•d in the E•• layer h• continued to the deep end of the t• •d two l•ge ed&• rems. They 
cont•u• to move westwO. (c) A b•er is removed over a reservo• of brine. (d) One eddy h• fo•ed •d 
mov• up the slo• •d to the west. (e) A t•b•ent plume of dyed s•ty water over deep water produc• cyclo•c 
flow above a dome of brine. (• Sixty secon• later a tr•n of ed&es exten• w•t of the so•ce. (y) One h•ed 
twenty secon• later the tr•n h• become •e•. (h) A floating ice cube generates an •dy in a ma•er si•l• 
to the pl•e, except the ice cube rem• trap•d in the s•ace eddy and propagates westw•d with the •dy. 

ures 12d and 13e through 13g). A movie of this is available 
for viewing. 

4. A variation of method 3 is to place an ice cube in the 

water over a sloping bottom. We believe that cyclogenesis 
arises from conduction of the low ice temperatures to the 

surrounding water, which then sinks and forms a cold dense 
lens. We placed pellets on the surface and clearly saw them 
drawn radially inward toward the ice cube. Also, dye in 
the ice sank and was diluted as it sank. Since the ice cube 

drifts with the eddy, a street does not form, but the eddy 
continues to strengthen indefinitely. 

We also placed a nozzle in the center of the sloping bottom 

and successively pointed it sideways in all four directions. 
Parameters were set to the value which led to optimal eddies 

before, and at least one eddy was formed in all four cases. 

6. TEST OF THE CIRCuLATION-PRESSURE INTEGRAL 

We have used photographs of plume-generated eddies to 
test the integral theorem of Stern [Mory, 1983] which is re- 
viewed in section 7 (equation (26)). In cylindrical coordi- 
nates this can be written 

•o2,• /r• (1o• + g'h) rdrd # = 0 (2) 

where p, is pressure of the overhead fluid divided by its 

density, g* is reduced gravity for the lens of heavy fluid, 
and h is the vertical thickness of the lens. For a sufficiently 

isolated eddy, we may choose for r, any radius larger than 

the eddy radius. 

The pressure p, is determined by the velocity field in the 

top layer. Assuming an axisymmetric, inviscid, time inde- 
pendent eddy, we have the cyclostrophic relation, 

v 2 
/, + -- = -- 

The eddies generated in the lab have O(1) Rossby numbers 
so that the centrifugal force term can not be ignored. Ve- 
locity fields were determined by streak photographs of small 

(1 mm x 3 mm), white, rectangular pellets strewn on the 
surface over the eddy. 

The other term is determined by noting that the darkness 
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of the dyed salty water in the lens, when viewed from above, 

is proportional to g*h. "Darkness • is measured by transfer- 

ring the photo via video camera to a computer-accessible 
digitized image array with 512 pixels in the horizontal and 
480 in the vertical. Each pixel is represented by an integer 

from 0 to 255 proportional to light intensity. This integer 

is converted to g*h by a calibration curve from an image 

of a wedge-shaped enclosed reservoir of water of known dye 
concentration. The reservoir sits on the bottom of the tank 

and has the same 1:5 slope as the tank bottom. This makes 

for a linear relation between concentration times depth and 

measured light intensity. Since the relation between dye 
concentration and density is known, this gives a measure of 

g*h. 
A white bottom was used in the rotating tank. Ambi- 

ent water was dyed with about 0.07 ml/l saturated potas- 
sium permanganate solution. This concentration was strong 

enough to make white pellets on the surface visible while 
weak enough to allow measurement of the darker salty wa- 

ter, which was dyed with 10 ml/l saturated potassium per- 
manganate solution. 

The eddies were generated using method 3 described in 
section 5: a plume of dense water sinking to the bottom 

from the top surface. (An earlier study was conducted us- 
ing the same measurement techniques described here but 

with eddies generated by a coastal jet as described in sec- 

tion 2. These eddies appeared to confirm the integral re- 
lation but the eddies were close to the shore and not truly 

isolated from the coast.) Each test eddy had f = 0.83 s -•, 
S = 0.2, fluid depth at source H = 13.3 cm, injected 

g* = 33.3 cm/s 2, and a volume flux of 3.57 cma/s 4- 10% 
for 45 s. The lens radius was 5 cm for the first run and 6 cm 

for the second, lens thickness was 4.4 cm for both runs, and 
g* for the two runs was 2.3 cm/s 2 and 4.1 cm/s 2, respec- 
tively. This measure of g* is based on depth-integrated 
g* computed below. 

Two runs were conducted. In run 1, the dye distribution 

was photographed (Figure 14a), then pellets were strewn 
on the surface, and a photograph of the streaks was taken 

15.5 s after the dye photo (Figure 14b). For run 2, the 
same photo was used for both streak and dye measurements 

(Figure 14c). This eddy was less well-formed than the run 1 
eddy, with a distinctly elliptical (as opposed to circular) 
shape. Streaks from run 2 were binned into two groups, one 
along the major axis of the ellipse and one along the minor 
axis. These were analyzed separately, as if each was from 
an axisymmetric eddy, in order to estimate the value of the 

upper layer pressure. 

Tangential and radial velocity distributions were deter- 

mined by digitizing all possible streaks. The velocity as a 

function of radius are given for the raw velocities in (Fig- 
ures 15 to 17) and for the same data smoothed with a Gaus- 
sian filter (Figures 18 to 20) . The smoothed azimuthal 
components of the velocities were then multiplied by •rrAr 

and summed for an estimate of the pressure integral. The 
fiat, low-speed part of the azimuthal velocity distribution at 

large r was excluded from the integral on the assumption 
that these non-zero data points represented noise in the ve- 

locity field. For run 1 the upper layer pressure integral was 
found to be -613 cm½/s 2 when velocity was integrated from 
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Fig. 14. Photographs of two plume-generated eddies used to test the integral relation: (a,b) first eddy and (e) 
second eddy. 

r = 0 to r = 10.74 cm. For run 2, the corresponding num- 

bers were -576 cm4/s 2 integrating to r = 11.34 (minor 
axis) and -820 cm4/s 2 integrating to r = 10.91 (major 

The dyed ambient water contributes a significant nonuni- 

form backgrouI/d darkness to the digitized grey-scale image. 
In order to cancel this background, a "background"image, 
which shows the tank before the salty dyed water is intro- 

duced, is subtracted from each eddy image. Contours (in 
arbitrary machine units) of each eddy after subtraction axe 
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Fig. 15. Tangential and radial velocities of the fluid above the first eddy. These were used to test the integral 
relation. 
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Fig. 16. Tangential and radial velocities in the major axis of the fluid above the second plume-generated eddy. 
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Fig. 17. Taalgential and radial velocities in the minor axis above the second plume-generated eddy. 
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Fig. 18. Smoothed azimuthal velocities for the first plume-generated eddy. 
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Fig. 19. Smoothed azimuthal velocities for the major axis of the second eddy. 
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Fig. 20. Smoothed azimuthal velocities for the minor axis of the second eddy. 
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Fig. 21. Greyness contours for the first eddy in arbitrary machine 
units. 

displayed in Figures 21 and 22. For run 2, pixel values for 
the larger streaks were replaced with the intensities of neigh- 
boring pixels. These streaks would probably have changed 
the darkness measurement by at most a few percent. 

To transform the greyness in machine units toa mea- 
surement of g'h, a wedge-shaped reservoir contained the 
same amount of dye as the injected fluid and had a thick- 
ness that varied linearly from zero to approximately 3 cm. 

The background greyhess to be subtracted from each reser- 
voir is taken from the same image just to the "west"of the 

reservoir. The "north-south" reservoir profile (in machine 
units) is shown in Figure 23. The profile of the same reser- 
voir in run 2 is nearly identical. 

Since the integral relation was derived for the inviscid 

case, we exclude from our measurement the dark salty bot- 
tom Ekman layer, which extends over a larger area than the 
eddy itself. We can not directly measure the thickness of this 

layer underneath the eddy, but we assume that it is the same 

thickness as the part of the layer immediately surrounding 
the eddy. There is also no clear demarcation between the 

eddy proper and the surrounding Ekman layer. For mea- 
surement of the buoyancy part of the integral we define the 
eddy to be contained by the largest approximately axisym- 
metric darkness contour (run 1) or the largest approximately 
elliptical contour (run 2). The buoyancy integral computed 
with the best contour for run 1 (pixel values not less than 35 
in Figure 21) is 426 cm4/s 2. For run 2, for minimum pixel 
of 34 the integral is 704 cm4/s 2, and for minimum pixel of 
35 the integral is 627 cm •/s •. 

Thus for run 1 the upper layer pressure integral of 613 cm * 
s -2 was about 50% greater than the buoyancy integral of 
426 cm * s -2. For run 2, the two pressure integral estimates 
of 576 and 820 cm 4 s -2 encompassed the two buoyancy in- 
tegral measurements, with a spread of about 4- 15% from 

the average to the extreme measurements. 
Several factors limit this measurement to little better than 

a factor of 2 agreement. Most important is the uncertainty 
in separating the Ekman layer region from the eddy proper. 

Reasonable different choices for the bounding contour of the 
eddy region yield up to 40% differences in the integral mea- 
surement. The pressure measurement is also extremely sen- 
sitive to the velocity field at large radii. For instance, in- 
cluding the low-velocity data points at large r would nearly 
double the top layer pressure integral. 

Figures 24 and 25 compare upper layer pressure and g*h 
as functions of radius for the two eddies. Pressure is inte- 

grated from the tangential velocity distribution, while g*h 

is calculated from azimuthal averages of the digitized eddy 
images. These diagrams show us that the buoyancy is more 
intense and concentrated at smaller radii than the pressure 

anomaly in the upper layer. The maximum g*h of the ed- 
dies yield an internal deformation radius of 4.0 cm for run 1 
and 5.2 cm for run 2. The actual lens radii measured from 

Figures 24 and 25 are 5 cm and 6 cm. 

7. THEORETICAL CONSTP•INTS AND NUMEmCAL 

SOLUTIONS 

The experimental results demonstrate the need for a more 

focused theory as present solutions cannot be simply altered 
to incorporate all the complexities of the laboratory. In- 

stead, it is necessary to reformulate the problem from gen- 

eral governing equations. Thus here we establish results on 
the nature of two-layer eddies over a slope which can be 

tested against laboratory experiments. The dynamic equa- 
tions for the system, under the hydrostatic Boussinesq ap- 
proximations, are 

u•t-/- u•.V u•-/-f]•x u• = -Vp• (4) 

Fig. 22. Greyhess contours for the second eddy. - h, + v,. h - = 0 
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Fig. 23. Greyness profile of reservoir for run 1. Each data point represents the average of a 16-pixel square. 
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Fig. 25. Plot of Pl and g*h as functions of r for the second plume-generated eddy. 

lO 12 

a•+ a•.V a•+fj;x a• = -Vv• (6) 

h•+V ß a•h = 0 (7) 

p2 = p• +g* h+g* Sy (8) 

where u • is the horizontal velocity of the horizontal upper 

fluid, u2 is the velocity of the lower fluid, H is the mean fluid 

depth, h is the thickness of the lower layer blob, and is S 

is the slope of the bottom (g* and other terms have already 
been defined); p• and • represent the horizontally varying 
part of the dynamic pressure. 

Integral Balances 

Following Ball [1963] and Killworth [1979], we consider 
the moments for the lower layer continuity and momentum 
equations. From the lower layer mass equation (7), we have 

(9) 

so that 

V = // h dxdy (10) 

is constant. The z and y moments of mass equation are 

likewise simple 

• = (•h), ? = (•h) 

where 

x -- (• h) •ncl ¾ -- (•h) (]2) 

with the averaging operator defined by 

(•) = • • dzdy (]3) 

From the momentum equations (6) for layer 2 multiplied 
by h, 

(h u•2), + V ß (h u•2. u•2) + f •;xh u• = - h Vp2 (14) 

we find the integrated force balance 

= - (h v w) 

= -- (h(Vp, -I- g* V h -I- g* S.•)) 

= - (h V p,) - g* S.• (lS) 

after substitution from equation (8), where • and •, are 
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unit vectors in the z and y directions, respectively. When 

the frequency of centtold motion is low compared to f, we 
can balance the net Coriolis forces with the downslope grav- 

itational force and the pressure forces from the upper layer 

(16) 

As Mory et al. [1987] point out, this result implies that the 
blob will move at the Nor speed, 

X g.S = _ • (•) 
~ 

if either (1) the upper layer pressure is sufficiently weak 
I P• [ << g*SL (where L is the eddy length scale) or (2) 
the upper layer pressure gradient fields are orthogonal to 
the bump topography. Thus if p• and h are both radially 
symmetric (or the contours are parallel) to suitable order, 
we still find the eddy moves at speed - (g'S/f) •. The 
speed, then, does not discriminate between the role of the 
upper layer, since the same propagation speed is found for 
eddies with predominantly lower layer circulation (the Nor 
case) and for those with primarily upper layer circulation, 

Again looking at the low-frequency case of (21), dropping 
.. 

the X, we have 

Combining (16) and (23), we find 

1 

(p,)• = -g*• + • /:x BT (24) 

We then obtain Mory's [1985] result: if the eddy is isolated 

in the upper layer also, ] •BT] << g'S, there must be a 
net cyclonic circulation in the upper layer of size 

so that 

= - 

/_• /_• (m + 9*h) d,d• = 0 (26) 

On the average, then, if the flows in the upper layer decay 

i.e., nearly compensated (p• _• - g'h) states. Both will rapidly enough away from the eddy in the radial direction, 
yield the same translation rate. 

Integral balances for the upper layer are less straightfor- 
ward because of the contributions from the far field. The 

mass balance from integrating (5) is 

8 // hdzdy = / u• h(H Sy) • . 

8t ~ 

the lower layer blob is supported by a cyclonic low pressure 

above it in the upper region rather than by anticyclonic flows 
in the heavier fluid. 

Scaled Equations 

Let us now investigate more detailed models to study the 

conditions under which (26) applies. We nondimensionalize 
the equations as follows: z and y will be scaled by L, h by 

where the integral is taken over some area larger than that ho, time by fL/g*S (length divided by the characteristic 
occupied by the blob and h is the outward unit normal. But propagation rate), lower layer velocities by g'S/f, and up- 
outside of the blob, the flow of the upper layer (the only per layer velocities by a fhoL/H, with the pressure scales 
layer present) is determined by a stream function chosen by fL times velocity scale. The parameter a is a 

dimensionless number to be defined below. The upper layer 

u• (H - S•/) = •: x •7•b (19) velocity is chosen to balance vortex stretching with relative 
~ vorticity changes in the upper layer if a = 1. For other 

balances we will choose different a values; e.g., (26) would 
so that we still find O/Or ff h dzdy = 0. The expres- predict a = g*H/ffL 2. The nondimensional equations are 
sion derived from the first moment of the mass equation (5) 
becomes 

1 • f;72 u• +•a u• ß •7 u• + •: x u• = -•7p• (27} œ= V v½.i(20) ~' ~ ~ ~ 

with X being defined as before in equations (12) and i being 
the unit tangent vector to the curve bounding the area of 
integration. The momentum balance then yields 

h,+V. Sh- = 0 

i+/$x œ= BT 

where BT signifies the boundary terms from the integrals 

around the outer edge of the area of integration (again this 
is presumed to be larger than the blob). These terms are 

(22) 

(30) 

a•p, = 72 fig2 - 72 h - 72 f;y (31) 
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with the parameters being 

sL • = ho • _ g' ho I • l g fi = ho • 7 - faL2 a = fhoL (32) 

fi is the ratio of the topographic rise across the eddy to the 
eddy thickness, /5 is the eddy thickness to the outer fluid 
depth, and 7 is ratio of the deformation radius based on the 
denser fiuid's thickness to the eddy size. 

We shall consider three different parameter regimes: 

1. Nof's Regime: For this case (deep upper layer) we have 

Quasigeostrophic Model Results 

Consider the caze of steadily moving eddies translating at 
speed c. For these, the dimensional forms of equations (34) 
and (36) become 

•72q• 4. • (h 4. Sy) = F (q•i 4. cy) (37) 

(as) 

fi ~ 72 ~ 1, /5 << 1 and a -- 1. At the lowest order, where F, G are arbitrary functions and the geostrophic 
the lower layer is decoupled from the upper layer, and, az 
Nof proved, there exists a solution with a radially symmet- 
ric blob propagating westward at the nondimensional speed 
-1 (c = -g'S/f). The upper layer responds weakly to 
the vortex stretching produced by the motion of the bump. 
In this regime, the upper layer motion cannot be strictly 
isolated since the nondimensional form of (26) 

•/5 // p•dxdy =-72 // hdxdy (33) 

pressure haz been replaced by the stream function 
q• = p•/f. For streamlines q• 4-c•t extending to 
oo, we h•ve 

v• + h + S• = •-• (• + •) (39) 

so that 

f$ f h (40) v• - •-g• = _• 

does not hold when/5 << 1. 

2. Quasi-geostrophic regime: For the next caze (large- 
scale eddies- L ~ q•-•ff/f rather than •/g*ho/f- and 
deep upper layer), we takefi ~ 1, /5 ~ 72 << 1 and 
a = 1. We can then use the standard quazi-geostrophic 

expansion for the upper layer to find 

[3, ] + 
[v' + + = o 

(34) 

while the lower layer equations follow from the geostrophic 
and mazs balance equations 

+ v. =o 
--• ht 4- J(p2, h)--0 (35) 

Upon substitution of the hydrostatic relationship (31), we 
get finally 

ht- h• + 7•-•fi J(p•, h) = 0 (36) 

We shall study the system of equations (34) and (36) ana- 
lytically and numerically below: here we note only that it 
may be possible to find isolated solutions since the terms in 

(33) are the same order. 
3. More nonlinear upper layers: The parameter 

regime which seems best fitted to the experiments is 
72 ~ 1, /5 ~ /• < 1; in addition, we choose a = 72//5 to 
m•int•in a balance in the hydrostatic equation (and so that 

(33) may apply). This scaling haz two problems: first, none 
of the parameters are very small, so that it is probably nec- 
essary to solve the full set; and second, even if we do assume 
that the parameters/5 and fi are both small enough to use az 
expansion parameters, the balances are not strafightforward, 
since the upper layer momentum equation is fully nonlinear 

(though steady) at the first order. We have not carried this 
line of investigation further. 

Since c < 0, the operator on q•l haz wavelike solutions, 

not trapped ones. Therefore to ensure isolated upper layer 
solutions, we need to have •bl = 0 in regions where 

h = 0. Equation (38) applied where h = 0 then implies 

G (cy4- g-• (41) 

This forces G and therefore h to be zero everywhere unless 

c = -g*S/f. Thus the eddy must move with the Nor 
speed. We then find that (36) becomes 

h = C(½•) (42) 

and (40) becomes a (possibly) nonlinear equation for •,•. If 
we adopt the simple view that F is an analytic function and 

apply the modified form of (40), 

f2 f h (43) 

throughout space, we can prove that 

(44) 

// h(r,O) J, ( f ) v/•l•. r r dr dO = 0 (45) 

for all n. In particular, from the n = 0 caze, we see that h 
must be nonzero beyond a radius 

, > 2.4 • (46) 
f 

where 2.4 is the first zero of Jo. Solutions with various test 
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Fig. 26. Numerical solutions showing (top 10 panels) the evolution of the lower layer thickness at time 
t = 1, 2 ..... 10 (reading left to right) and (bottom 10 panels) upper layer pressure p• at the same time points. 
Contours are 4- 0.1, 4- 0.3, 4- 0.5 ... (negative contom• are dashed). The value of the ratio of bottom slope to 
eddy interface slope /• is 0.23, and the nonlinearity parameter q = 6//5-• 2 is 2.4. The initial pressure (hence 
initial motion) in the upper layer is 0. 

functions for h(r) suggest that the constant multiplier is 
usually considerably larger: e.g., for h = h0[1- (r/ro)2], the 
constant is 5.1 rather than 2.4. Thus we confirm Mory's re- 

suit that the only equilibrium solutions are large compared 
to the deformation radius especially since the latter is usu- 
ally based on the maximum blob thickness, ho, 

r > 2.4 • •/g'ho (47) 
The experiments clearly indicate a much smaller radius 

r = 0.8 •/f; while it may be possible that (37) and 
(38) have a solution with a nonanalytic functional F which 
has r ~ x/g*ho/f, we have not found any and suspect that 
no such solution exists. Nonanalytical or time-dependent 

solutions are candidates for laboratory observation. 

Numerical Experiments 

We have solved (34) and (36) numerically for various 
choices of values for the parameters q = /•//•72 and /• 
with h(0) = exp (- r 2) and p• (0) = p; (0, 0) exp (- kr) 2. 
A pseudospectral 64->( 64 code was used. The model is 

doubly periodic so that Rossby waves can propagate across 
the domain and return to influence the eddy. This prob- 

lem is more severe in the cases where the upper layer is 

shallow. In Figures 26-30 the parameters fi and q were set 

as close to the laboratory values as possible and the upper 

layer pressure factor A was systematically made more nega- 

tive, starting from zero. For zero initial upper layer pressure 

(Figure 26), the bottom eddy slumped to the southwest and 
a radiated wave field was generated overhead and spread 

out relatively evenly over the entire domain. There is a high 
pressure center over the bottom eddy with a strong low pres- 

sure area behind. Figure 27 contains the results when the 

initial pressure field exactly satisfies the integral constraint 

•ff p, dzdy = 72 ff h dzdy (equation (33)). The 
bottom material breaks into two blobs. One drifts slowly 

northwestward. The other, smaller fragment drifts south- 
west at roughly the Nor speed. The low pressure in the top 
fluid remains principally over the northern eddy, but still 

spreads out a little bit. Figure 28 shows the effect of a half- 
strength pressure field. The bottom material still breaks 
into two blobs, but they now have roughly equal volumes. 
The upper layer remains associated with the northern blob, 

but a stronger radiation pattern, like that in Figure 26, de- 
velops. The radiation is best illustrated by a nearly linear 

calculation in which the blob height is increased by a fac- 

tor of 100 (Figure 29). The nonlinear terms are negligible 
so that (7.33) implies that the blob propagates smoothly at 
the Nor speed. This moving topography generates the upper 
layer wake pattern. 

The association of an upper layer high-pressure center 

with the blob when the initial pressure field is zero is best 
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Fig. 27. Same as Figure 26 with initial pressure p! = - 1.81 exp (-r2), which satisfies the integral constraint 
given by equation (26). 

Fig. 28. Same as Figure 26 with initial pressure Pl = - 0.905 exp (-r2), haft that required for (26). 



9608 • gr At,.' B,•o(I•C ED!Im oN A SLcam• BOTTOM 

f----,,. 

Fig. 29. A experiment in the more linear regime, fl = 23.0, q = 0.024, showing the propagation at the Nof speed 
and the generation of a wake in the upper layer. This choice of parameters corresponds to keeping the values of 
#*, H, L, fixed and letting h0 become small. Note similarities to Figure 26 in Rossby wave patterns in the 
upper layer. 

Fig. 30. An experiment with a deep upper layer, fl = 0.23, q = 0. 

i t k,_j,•!ltk } I 
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illustrated by the case when the upper layer is very deep 

(Figure 30). The westward drift of the blob compresses up- 
per layer fluid on its leading edge, generating anticyclonic 
vorticity, on top of the blob. The fluid which started at rest 

over the blob is stretched as the blob moves out from under, 

so that a cyclone is left at the origin. 

These c•lculations reve•l the difficulty of quasi- 

geostrophic equations reproducing the features of the lab- 
oratory eddies. Presumably, a more ambitious project using 
the primitive equations could replicate the laboratory results 
more faithfully. 

8. CX)NCLUSIONS 

We conclude that well-formed eddies can be produced 

from rather genera• nondescript initial conditions. The 
lenses of s•lty water travel westward parallel to the slope 

of the bottom. There is order of magnitude agreement with 

the speed prediction of No! [1983] and Mory et al. [1987], 
though the estimates of speed from the data have consider- 
able scatter. In contrast to the earlier experiments of Mor!l 

[1983] and Mory et •1., our eddies travelled due west with 
little or no south to north drift observed. 

Despite the agreement with Nof's prediction for the prop- 

agation rate, we have not observed the Nor solution with 
negligible motion overhead. We •lways saw unambiguous 
cyclonic circulation over the eddies as shown in Figures 4, 5, 

and 10. Figure 5 shows the trajectory of a surface float in the 
fresh water over the eddy. The run, with parameters marked 

by the circle in Figure 6, had a typica• well-formed eddy. Not 
only does this track show clear evidence of cyclonic circu- 

lation over the eddy and westward drift of the eddy, but 

it also shows that fluid over the eddy remains trapped in 

the cyclonic circulation for many cycles and many eddy dis- 

placements. These observations qualitatively support the 

idea that the integra! constraint of Mory et •1. (equations 2 
and 26), which requires cyclonic circulation over the eddy, 
is reMized. C•lculations show that the integral of the upper 

layer pressure can b•lance g* times the volume of the lens, 
though the errors in the c•lculation are large. Dynamically, 
the integral b•lance implies that the thermal wind b•lance 

is satisfied on average by a jump from cyclonic upper layer 
velocities to nearly zero velocities in the lens. Our obser- 
vations likewise bear this out: we see westward drift within 

the eddy, with the only circulating part being a we•k cy- 

clone rather than anticyclone. This does not mean that it is 

impossible to have anticyclonic eddies on a sloping bottom 
with only weak, nonisolated flows above; we simple have 

not seen such. Possibly, for example, the fluid was not deep 

enough to admit slow flows in the surface layer (indeed the 
Rossby number of the upper layer fluid was nearly one), the 
bottom fluid must be injected with more anticyclonic vor- 

ticity, or the friction must be reduced. However, the various 

methods we used to produce eddies all resulted in cyclonic 

upper layer supporting a relatively stagnant lens of s•lty 
fluid. 

Theoretica• constraints for a two-layer system show that 

the Nor speed g* S/f is indeed appropriate if either the up- 
per layer pressure is we•k or is parallel to the contours of 

lens thickness. The first case (Nof's limit), while giving 
the proper translation speed, is not consistent with the flow 
fields observed. But attempts to find steady state solutions 
with upper layer cyclonic circulation give lens radii much 

larger than observed. Time-dependent quasi-geostrophic 
evolution experiments show much more distortion of the 

lens and stronger north-south translation than observed, 
though the details are sensitive to the initial upper layer 
pressure field. Also, the order one Rossby number in the up- 
per layer makes the quasi-geostrophic assumption suspect. 
Thus while we are forced to consider upper layer motions 
as an essentiM part of the dynamics, we do not yet have a 
satisfactory model for them. 

There is no clear evidence that the eddies can be rep- 
resented as finite-amplitude waves. Rossby (topographic) 
waves are not obvious in the observations, •lthough there 
is considerable velocity in the region between the eddy and 
the coast. We did note that the set of eddies produced by 
a coasta• jet looks like solitoh packets in that the leading 
eddy is biggest, the next is smaller, etc. However, it seems 
unlikely that these problems can be linked with inverse scat- 

tering theory. 

One of the clearest experimental observations is that the 

cyclonic circulation over the eddy is generated by entrain- 
ment of fresh water into the s•lty water by small-scale tur- 

bulence. The mixture then gets lost by sinking into the 
large lens of brine. The cyclonic swirl in the top fluid was 
produced by the sinking. It was clearly visible in all runs. 

Cyclogenesis due to entrainment could be an important pro- 
cess in the ocean. 

The fact that there is a regime diagram for the produc- 
tion of eddies implies that eddies emerge from some general 
stability or bifurcation problem. The formulation of such 

problems have not yet been made, and the finite-amplitude 
solutions are even further off. 
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