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Experimental Pauli-frame randomization on a superconducting qubit
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The promise of quantum computing with imperfect qubits relies on the ability of a quantum computing

system to scale cheaply through error correction and fault tolerance. While fault tolerance requires relatively

mild assumptions about the nature of qubit errors, the overhead associated with coherent and non-Markovian

errors can be orders of magnitude larger than the overhead associated with purely stochastic Markovian errors.

One proposal to address this challenge is to randomize the circuits of interest, shaping the errors to be stochastic

Pauli errors but leaving the aggregate computation unaffected. The randomization technique can also suppress

couplings to slow degrees of freedom associated with non-Markovian evolution. Here, we demonstrate the

implementation of Pauli-frame randomization in a superconducting circuit system, exploiting a flexible pro-

gramming and control infrastructure to achieve this with low effort. We use high-accuracy gate-set tomography

to characterize in detail the properties of the circuit error, with and without the randomization procedure, which

allows us to make rigorous statements about Markovianity as well as the nature of the observed errors. We

demonstrate that randomization suppresses signatures of non-Markovian evolution to statistically insignificant

levels, from a Markovian model violation ranging from 43σ to 1987σ , down to violations between 0.3σ and

2.7σ under randomization. Moreover, we demonstrate that, under randomization, the experimental errors are

well described by a Pauli error model, with model violations that are similarly insignificant (between 0.8σ and

2.7σ ). Importantly, all these improvements in the model accuracy were obtained without degradation to fidelity,

and with some improvements to error rates as quantified by the diamond norm. This demonstrates the ability of

Pauli-frame randomization to shape noise into forms that are more benign for quantum error correction and fault

tolerance.
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I. INTRODUCTION

Large-scale quantum computation poses a number of de-

sign and control challenges. Significant efforts are in progress

[1–3] to meet and overcome challenges associated with

initial-state preparation, maintaining coherence, implement-

ing universal gates, and measuring qubits reliably—all key

criteria for building scalable quantum computers [4]. As the

system coherence times continue to grow, coherent errors

can become the dominant source of error. These errors can

originate from miscalibration of qubit rotations, unintentional

control frequency detunings, or interactions between systems

that are otherwise assumed to be decoupled—all ubiquitous

problems for experimental quantum computers. These errors

are also particularly difficult to simulate in multiqubit sys-

tems, as they can interfere constructively and destructively,

making predictions about the performance of quantum error
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correction codes and fault-tolerant computation quite difficult

[5–7]. Moreover, theoretical lower bounds on the tolerable

rates for coherent errors indicate they may be much more

damaging than stochastic errors [8–11]. One way to address

this problem is to transform coherent errors into incoherent,

stochastic errors, such as random bit and phase flips. Here, we

use a superconducting qubit system to implement Pauli-frame

randomization (PFR) [12–14] and show that coherent errors

can be reshaped into stochastic Pauli errors. We also discuss

some additional benefits of the randomization process, such

as decoupling of slow non-Markovian noise [15].

One significant challenge in determining whether PFR has

indeed made coherent errors stochastic is their small mag-

nitude. Owing to the community’s progress towards fault

tolerance, the magnitudes of these errors are on the order of

10−3 or less in state-of-the-art devices. Measuring such small

errors reliably runs into limitations of various characterization

approaches: Standard tomography is sensitive to preparation

and measurement imperfections and has very low accuracy,

while randomized benchmarking estimates a quantity (closely

associated with the average fidelity [16–18]) that does not

differentiate between coherent and stochastic errors, and can-

not test if errors corresponds to Pauli error models or not.

In this demonstration we use gate-set tomography (GST)

[19–23], a tomographic reconstruction technique that provides

(1) insensitivity to state preparation and measurement (SPAM)

errors, (2) nearly quantum-limited accuracy, and (3) an open
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source library for experiment design and data analysis [24].

Critically, GST also allows us to accurately quantify not only

the behavior of the diamond norm error [25,26] and average

infidelity [16] under randomization, but also detailed features

of individual gate errors and the degree to which the evolution

is well described by a Markovian, time-invariant model [27]—

all of which help confirm the predicted Pauli error model

behavior, despite the presence of general imperfections in the

randomization operations.

The remainder of the paper is organized as follows. In

Sec. II we describe PFR, and discuss how to test its implemen-

tation, in a statistically rigorous manner, in Sec. III. Section IV

describes the experiments as well as the infrastructure re-

quired to create and process randomized sequences. Finally,

in Sec. V we discuss the experimental results.

II. PAULI-FRAME RANDOMIZATION

Pauli-frame randomization (PFR) is a noise-shaping tech-

nique that reduces general noise to effective random Pauli

errors between computational gates [12–14]. If the computa-

tional gates consist of Clifford group operations [28] (a set of

operations sufficient for the most promising approaches to er-

ror correction and fault tolerance), the effect of these random

Pauli operations can be easily tracked [29,30] so that the com-

putation can be unrandomized by simply reinterpreting the

measurement results. While this randomization is designed to

have no impact on the ideal computation, it effectively sym-

metrizes the error, much as twirling [31–36] and randomized

decoupling [15], leading to an effective error operation that

corresponds to a mixture of Pauli group operations known as

a Pauli channel, or a Pauli error model.

These results can be derived in the limit of perfect ran-

domization operations and gate-independent errors as follows.

Consider a set of ideal (noisy) [37] Clifford group quantum

operations Ci (C̃i). Any sequence of ideal Clifford operations

can be randomized by inserting uniformly random Pauli group

operations between the Clifford group operations. Since Clif-

ford group operations transform the Pauli group operation to

other Pauli group operations, the overall effect of these ran-

dom Pauli group operations can be canceled out by applying

a final single Pauli group operation at the end of the sequence

of gates. Moreover, since the Pauli group is a subgroup of the

Clifford group, one may simply combine the ith random Pauli

operation Pi with the ith Clifford group operation Ci, to obtain

a random Clifford group operations Di [38]. In other words, a

given sequence of Clifford group operations CLCL−1 · · · C2C1

becomes

PL+1CLPL
︸ ︷︷ ︸

DL

CL−1PL−1
︸ ︷︷ ︸

DL−1

· · · C2P2
︸︷︷︸

D2

C1P1
︸︷︷︸

D1

, (1)

which results in the randomized sequence of Clifford group

operations DLDL−1 · · ·D2D1. In essence, under PFR, a single

realization of a randomized sequence of Clifford group oper-

ations simply corresponds to a different sequence of Clifford

group operations.

It is possible to choose all Pi independently at random

and compensate for their action by flipping observed mea-

surement outcomes in postprocessing (as, by construction, we

only measure in the computational basis). In order to simplify

postprocessing, we instead choose PL+1 to cancel the effect

that all other random Pauli group operations would have on

measurement results (i.e., PL+1 is a Pauli frame correction be-

fore measurement). In this way the measurement outcome of

the randomized and unrandomized experiments can be treated

exactly the same, with no additional postprocessing for the

randomized experiments.

We can analyze the sequences above with the simplifying

assumption of gate-independent errors by replacing each oper-

ation with its noisy counterpart. We write the noisy operations

D̃i = EDi [where E is an arbitrary but fixed completely-

positive trace-preserving (CPTP) map] to obtain

D̃LD̃L−1 · · · D̃2D̃1 (2)

= EDLEDL−1 · · · ED2ED1 (3)

= EPL+1CLPLECL−1PL−1 · · · EC2P2EC1P1. (4)

Defining PC = CPC†, we can write CP = PCC. Similarly, we

define Pn:1 = PnP
Cn−1

n−1:1 (with the base case P1:1 = P1). With

these definitions, the entire sequence can then be rewritten

as E PL+1:1 CL P
CL−1

L−1:1 E P
CL−1

L−1:1 CL−1 · · ·P
C1

1:1 E P
C1

1:1C1, where,

in the experiments described here, we have chosen PL+1:1

to be the identity. In other words, we choose Pi uniformly

at random for 1 � i � L, and choose PL+1 to get a trivial

PL+1:1. Averaging over many uniformly random choices of

Pauli operations in Eq. (4), we transform each E in the se-

quence into E = 1
d2

∑

i PiEPi, which correspond to twirling

E over the Pauli group. This, in turn, ensures that the ef-

fective error E associated with each gate in the sequence

corresponds to a statistical mixture of Pauli operations [34], as

desired [39].

The calculation outlined above does require rather strong

assumptions about the properties of the noise (i.e., that it

is gate independent and Markovian), but due to similarities

to randomized benchmarking (RB) [40–44], which has been

shown to require weaker assumptions [18], we expect that

these strong assumptions are not strictly necessary. In the

remainder of this paper we focus on how to test such a hypoth-

esis, and implement these tests on the natural imperfections of

a superconducting qubit experiment.

III. HYPOTHESIS TESTING

The task of checking whether the result of applying PFR

to an experiment does indeed result in a Pauli channel is

subtle. Modern experiments have very high fidelity to ideal

operations so checking that the unrandomized errors are not

well described by the Pauli channel—i.e., determining that

PFR is necessary—is already challenging, since error rates

can be on the order of 10−3 or less. In both cases, it is natural

to consider long sequences of operations to amplify sensitivity

to these small errors.

We choose to use long-sequence gate-set tomography

(GST) [21–23] to observe these small effects, and use a read-

ily available open-source package for experiment design and

data analysis [24], with minor modifications. At heart, GST is

a sophisticated refinement of a quantum process tomography

[45,46], providing a complete reconstruction of the action of

quantum operations. In particular, GST is an iterative proce-

dure that refines the tomographic reconstruction of a set of
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gates by comparing predictions about long gate sequences to

experimental observations, and adjusting the reconstruction

for better agreement. Since long sequences allow for small

perturbations to accumulate, this technique yields unparal-

leled accuracy [21–23,47].

Even with a reconstruction in hand, another subtle question

is how to quantify the distance between reconstructed errors

and a Pauli error model—i.e., the degree of “non-Pauliness”

of the noise. We use the likelihood ratio test for this pur-

pose [48,49], which requires a hierarchy of nested models.

The null hypothesis H0 is taken to be that the statistics for

each sequence in the GST experiments leads to a separate

binomial distribution of outcomes. More explicitly, for the

null hypothesis we only assume that the sequences correspond

to reproducible experiments with well-defined measurement

statistics, and ignore the gate structure of the sequences. This

corresponds to not making any assumption about Markovian-

ity or time independence of the system evolution. We then

consider two hypotheses nested within H0: that each gate in

the sequence corresponds to a fixed linear operation acting on

the system (we call this first hypothesis H1), and that each

gate in the sequence corresponds to a fixed Clifford group

operation followed by a fixed Pauli stochastic error operation

(we call this second hypothesis H2). The consistency of H0

with H2, for some reconstructed Pauli error model, will be

taken as our measure of Pauliness.

As we indicated, these hypotheses are nested: H2 is a

special case of H1, and H1 is a special case of H0, meaning

that if the statistical tests indicated H2 is consistent with H0,

the same will be true of H1. The statistical tests will only be

able to test if the proposed hypotheses are consistent with H0,

in the sense that a hypothesis cannot have a higher likelihood

than another hypothesis it is nested into.

We fit data to a model under H0 by the maximum-

likelihood estimation of the binomial distribution parameter p

associated with each GST sequence. We fit data to a model

under H1 using a progressive refinement of the maximum-

likelihood estimation, a heuristic developed for GST [24]. We

fit data to a model under H2 by projecting the fit of H1 into a

generalized monomial matrix (described below), determined

by the corresponding noiseless Clifford group operation. The

first two fits are part of the standard routines within GST,

while the last fit is a small extension to the existing GST

routines.

The fitting of data to a model under H2 proceeds as follows.

In the Pauli-Liouville representation [50–56], a Clifford group

operation is a monomial matrix—each row or column has a

single nonzero matrix element, and this matrix element is ±1.

In the presence of a Pauli error model, a noisy Clifford group

operation will be a generalized monomial matrix, where the

±1 elements of the noiseless matrix are replaced by numbers

in the interval [−1, 1] (but the 0 matrix elements remain

unchanged). Collectively, these matrix elements must live in

a simplex equivalent to the probability simplex for the Pauli

channel [35]. Thus, the projection of an H1 model onto an

H2 model simply corresponds to identifying which matrix

elements should be set to zero (i.e., which matrix elements

are zero in the ideal gate), and then adjusting the remaining

nonzero matrix elements so that the resulting matrix lies in

the appropriate simplex.

A. Badness of fit

We quantify how well the data are explained with each of

the hypotheses discussed above by computing a metric for the

quality of the fits obtained. The basis for this calculation is

L(Hi ), the likelihood of the observed data given the model

fitted under a particular hypothesis Hi.

Following Wilk’s theorem [49], we know the log-

likelihood ratio −2 ln L(Hi )

L(H0 )
has a distribution that asymptot-

ically (in the same size) approaches a χ2 distribution with

degrees of freedom given by the difference in the dimensional-

ity of the two nested hypotheses, under the assumption that the

null hypothesis is true. The mean and variance of the asymp-

totic distribution for the log-likelihood ratio are determined by

the number of degrees of freedom. Given the fitted models, the

likelihood of the observations under the various hypotheses

are computed, and we follow the convention of reporting

the difference between the observed statistic and the mean

predicted by Wilk’s theorem, in units of the standard deviation

of the appropriate χ2 distribution, and call this quantity Nσ .

Intuitively, if this “badness-of-fit” number is large, we favor

the null hypothesis (i.e., the hypothesis fit is bad), but if this

number is small, both the simpler hypothesis and the null

hypotheses are valid, and the simpler hypothesis is favored

as a parsimonious model. We emphasize this “badness-of-fit”

parameter cannot be obtained by characterization techniques

such as RB that do not have an implicit model built in.

The log-likelihood ratios allow us to quantify whether (a)

the observations are consistent with a Markovian error model

(i.e., whether H1 is plausible), and (b) whether the observa-

tions are consistent with a Clifford group operation with a

Pauli error model (i.e., whether H2 is plausible). In particular,

we are interested in testing whether the answer to these ques-

tions changes when we apply PFR to our experiments. For

this, it is necessary to look at the likelihood of hypotheses in

different data sets (i.e., the unrandomized and the randomized

GST experiments). Likelihoods cannot be meaningfully com-

pared across different data sets. Instead, we simply consider

the plausibility of the different hypothesis for the different

data sets, while taking great care to ensure that the data sets

are representative of the same noise and error environment, as

we now describe.

IV. EXPERIMENTS

A. Device parameters

To test the hypotheses of Sec. III, we implement the PFR

procedure on a superconducting qubit device (see Fig. 1).

The device consists of four fixed-frequency, transmon qubits,

designed to be similar to those described in Ref. [3]. The

qubits are uncoupled but read out through a common Purcell

filter. For the PFR experiment in this paper, only one qubit

(Q1) is measured. Q1 is dispersively coupled to a readout

resonator with a center frequency of ωr/2π = 7.112 GHz,

κ/2π = 3.4 MHz, which is in turn capacitively coupled to a

quarter-wave Purcell filter with external Q = 22 and a center

frequency of ω f = 7.27 GHz [57] enabling fast qubit read-

out. Q1 has a fixed 0-1 transition frequency of ωq/2π =

4.432 GHz with an anharmonicity α/2π = 308 MHz. Coher-

ence times measured for Q1 are T1 = 10 μs, T2 = 13 μs, and
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FIG. 1. False-color micrograph showing qubit Q1 (red), res-

onator R (blue), and Purcell filter F (green). The qubit is dispersively

coupled to a λ/4 readout resonator which is capacitively coupled

to a Purcell filter with a Q = 22. Qubit control is done through a

dedicated drive line (orange) and all qubit readout is done via a

central feed line incorporating a Purcell filter.

a Hahn echo time of Techo = 16 μs (the other qubits in the

device were not characterized). The pulses used were 50 ns

long, leading to an expected average gate infidelity (diamond

norm distance) of at least ∼0.2% per pulse (∼1% per pulse).

Since we use two pulses in the implementation of the gates

discussed here, we expect an infidelity of no less than ∼0.4%

and diamond norm distance of no less than ∼2% (ignoring all

other sources of error and ignoring the effects of PFR).

B. Electronics and software stack

Making the PFR process experimentally tractable requires

leveraging a complex software and hardware control infras-

tructure. The first hurdle is the sheer number of experiments

needed. Long-sequence GST (ℓGST) experiments require a

large set (∼3500) of long circuits, each with up to 6155

gates. To ensure high accuracy, we produce a large number

of measurement shots, 1000 per sequence. Under PFR, we

take a single measurement shot per randomized sequence,

resulting in 1000 unique GST circuits for each of the ∼3500

ℓGST circuits originally specified. Thus, in total, we measure

over 3.5 million unique sequences to obtain high tomographic

reconstructions for the gates in the unrandomized and the ran-

domized experiments [58]. The second challenge is running

the experiments in a way that allows the most direct compari-

son between the randomized and unrandomized cases—doing

so allows us to minimize the impact of drift when comparing

how the hypothesis tests from Sec. III fare on the different data

sets. To achieve this, the unrandomized and the randomized

sequences should be run in an interleaved fashion to ensure

they experience the same noise environment (to the extent

possible). These requirements necessitate hardware that can

execute a large number of very long circuits, and to quickly

alternate between them.

To address these issues we use a custom sequence compiler

written in JULIA [59] called QGL.jl [60], providing a 4× com-

pilation speed-up per circuit over an earlier Python version

FIG. 2. Experimental data flow. Basic GST sequences are created

using pyGSTi [24]. This basic experiment is then randomized 1000

times as described in section II. Each randomization and the origi-

nal experiment get compiled by the QGL.jl compiler that translates

sequence instruction into instructions implemented by APSII pulse

sequencer [65]. The qubit response is digitized by an Innovative

Integration X6 digitizer card and organized with a Matlab experi-

mental framework. The single-shot data from each experiment are

then postprocessed into counts that pyGSTi uses to reconstruct the

gate set process matrices and the goodness-of-fit metrics.

through a combination of parallel computation and other effi-

ciency improvements—this ensured we were able to compile

the 3.5 million unique sequences into pulse sequences in a

reasonable amount of time. To minimize the runtime overhead

we leverage a custom arbitrary pulse sequencer with gateware

dedicated to implementing quantum circuits [61].

A rough outline of the process is as follows. Standard, one-

qubit ℓGST sequences are created using the GST experiment

and analysis software pyGSTi [24]. For the data presented here,

we choose the maximal sequence length in GST to be 6150

gates, to ensure the experiment will have high accuracy, and

be sensitive to non-Markovianity over timescales long com-

pared to qubit coherence times. The ℓGST sequences are then

randomized as described in Sec. II. It is worth emphasizing

the lengths of the randomized circuits are unchanged as the

Pauli group operations are combined with a neighboring Clif-

ford group operation [62], much as the randomized compiling

proposal of Ref. [14].

The collection of uniquely randomized GST (rGST) cir-

cuits and the original unrandomized circuits are then passed to

the QGL.jl compiler which translates qubit gate instructions

into machine instructions. This involves not only mapping

high-level instructions to control pulses but also time-ordering

and synchronizing instruction playback between all qubit

control and readout channels. We note, this process takes

significantly more time than the generation or randomization

of the GST circuits. The compiled instructions are then passed

to the pulse sequencer which is used to control the qubit.

Due to the nature of the randomization process, the rGST

experiments lack any kind of repetition or subroutine structure

which rules out any efficient storage in hardware memory of a

complete set of circuits. To address this, the set of randomized

experiments are broken into groups of ten in order to fit in the

control hardware memory. These ten single-shot runs of rGST

were then interleaved with ten shots of unrandomized ℓGST.

The process is repeated 100 times for each data point in Fig. 3.

The complete process flow for a single round of experiment

generation is illustrated in Fig. 2.
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FIG. 3. Badness of fit for the GST reconstructions under a

Markovian error model (H1, upward blue triangles), and a Marko-

vian stochastic Pauli error model (H2, downward red triangles),

as quantified by the log-likelihood-ratio statistic. This statistic is

presented as the difference from the predicted mean of the χ2 dis-

tribution (from Wilk’s theorem), in units of the standard deviation

of that same distribution, under the assumption that H0 is true.

Both experiments without randomization (solid triangles) and with

randomization (open triangles) are considered. As discussed in the

text, the 3.5 million unique sequences that comprise the tomog-

raphy experiments for randomized and unrandomized experiments

are measured in an interleaved fashion, so that both reconstructions

should experience the same physical noise conditions. The entire

collection of tomography experiments is repeated seven times to

illustrate the behavior observed persists, and thus unlikely to be the

result of statistical fluctuations, and is robust to drift in our system

(each of these seven experiments lasted roughly 1 h).

In the canonical construction of the Clifford group, el-

ements are composed of multiple native π and π
2

pulses,

which leads to Clifford group elements being implemented by

different numbers of native gates and pulses of nonuniform

length. To account for this, we use a “diatomic” implemen-

tation of the group where each Clifford group operation is

performed with two Xπ/2 pulses of fixed length (50 ns) and

three possible Z-frame updates [56,63]. This diatomic ap-

proach ensures all Clifford operations have equal duration.

The room-temperature measurement signals were processed

with an autodyne technique described in Ref. [64] using

the BBN-QDSP digitization architecture [65] for the Inno-

vative Integrations X6-1000M digitizer card. The final state

assignment is then fed into the pyGSTi package for gate-set

reconstruction. pyGSTi also provides the likelihood of H0 and

H1, while custom code generates the likelihood of H2—from

these likelihoods, we obtain the likelihood ratio statistic and

compare it to the predictions from Wilk’s theorem.

V. RESULTS

The experiment outlined in Sec. III was performed to test

the effectiveness of PFR. This process was repeated seven

times, each taking roughly 1 h to complete. The repetitions

allow us to observe how drift affects the results over an oper-

ationally meaningful amount of time.

One of the critical questions of this work is the valid-

ity of H2 (the hypothesis that gates are well described by

Clifford group operations followed by stochastic Pauli noise)

and the Markovian behavior of qubit evolution under PFR.

Data addressing this question can be seen in Fig. 3 where

the GST model violation is plotted in terms of Nσ both with

and without randomization. Several features are immediately

apparent: (1) The Markovian fits (H1) to the unrandomized

experiments (solid triangles) are orders of magnitude worse

than the randomized experiments (open triangles); (2) the data

projected to a Pauli error model (H2) in the unrandomized

cases (red open triangles pointing down) are roughly three

orders of magnitude worse than the randomized experiments

(red open triangles pointing down); and (3) there is little

difference between the quality of the fits under all the hy-

potheses for the randomized experiments (open triangles). In

terms of the hypotheses outlined previously, for unrandomized

experiments there is a large likelihood discrepancy between

H0 and the simpler hypotheses, greatly favoring the non-Pauli,

non-Markovian H0 model (H1 is 43σ–76σ away from the pre-

dictions from Wilk’s theorem, and H2 is 1754σ–1987σ away),

while for the randomized experiments all hypotheses have a

comparable likelihood (within 0.3σ–2.7σ of the predictions

from Wilk’s theorem), so it is reasonable to take the simplest

hypothesis (the Markovian, stochastic Pauli error model H2)

as the best explanation for those observations.

We should note that, despite the base level of H1 model

violation measured in the unrandomized data (a signature

of non-Markovianity) appearing large at 1987σ , it is largely

consistent with observations in other systems under similar

circumstances (see, e.g., ion trap experiments without drift

control or decoupling pulses [22]).

These features strongly indicate the noise in the absence

of randomization is not well described by a Markovian error

model, which follows from comment (1) above. Also apparent

from comment (2) is that even the best Markovian error model

is not well approximated by a Pauli model in the absence of

randomization. Conversely, these features indicate the noise

under PFR is very well described by a Markovian Pauli er-

ror model. In much simpler terms, the features of non-Pauli

error models (i.e., nontrivial off-diagonal matrix elements in

the Pauli-Liouville representation [55]) are insignificant in

the reconstructions of the randomized experiments, as Fig. 4

illustrates. These separations are persistent over many repeats

of the experiment, and the separation of many orders of

magnitude indicates that PFR worked in these experiments

not only quantitatively, but qualitatively, i.e., unrandomized

experiments have strong non-Markovian features, while ran-

domized experiments were well explained by Markovian Pauli

error models.

Behavior of error metrics under randomization

The badness-of-fit results illustrate that the models derived

under randomization are much more useful in explaining the

observations than the models derived without randomization.

A natural question that arises is whether this comes at the cost
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FIG. 4. Matrix representations of the reconstructed processes corresponding to the I, X π
2

, and Yπ
2

operations in the first of the seven

experiments performed (details of the other six experiments and confidence interval computation can be found in Ref. [66]). Without

randomization (top row) there are significant off-diagonal contributions, corresponding to non-Pauli errors. With randomization (bottom row)

there are no statistically significant off-diagonal contributions, indicating the errors correspond to a Pauli error model, as expected. Error bars

(95% confidence) for this experiment are smaller than ±0.0028 (unrandomized) and ±0.0023 (randomized).

of degrading the performance of the gates. Here, we demon-

strate that this is not the case, and that in fact the performance

of the gates improves under PFR.

We computed the average gate infidelity [67] and the di-

amond norm distance [68] for the reconstructed gates under

normal operation and under PFR, as depicted in Fig. 5. The

observed average gate infidelities (diamond norm distances)

are roughly double (quadruple) the expected coherence limits

of the device, which may be explained by dynamical effects

in the gate implementation which may be addressed by more

careful pulse shaping [69] (and which are not accounted for

in the coherence limit calculation mentioned earlier). We

observe no appreciable difference between the infidelity of

randomized and unrandomized experiments, while the dia-

mond norm distance is reduced by a factor of 3–5 under

PFR. This is consistent with the well-known behavior of

the infidelity and the diamond norm under small coherent

errors—namely, the infidelity is only sensitive to coherent

errors to second order, while the diamond distance is sensitive

to first order [70].

The diamond norm distance of unrandomized experiments

monotonically increases over the course of the seven experi-

ments, a behavior consistent with drift in the qubit and control

parameters with respect to calibrations. The qubit control pa-

rameters are calibrated only once, at the beginning of the first

experiment. This drift may at least partially explain the vio-

lation of the time-independent Markovian model represented

by H1, since these parameters appear to be continuously

and systematically drifting throughout the seven experimental

runs, but this is a small effect since H1 still makes accurate

predictions within each of the runs.

It should be noted that the drift is not apparent in the

randomized experiments (even in the diamond norm distance),

despite these experiments being run under the same conditions

as the unrandomized experiments. This indicates that the drift

was averaged away under PFR, a behavior consistent with

coherent errors.

VI. SUMMARY

We have demonstrated that Pauli-frame randomization re-

duces both the non-Markovian features and the non-Pauli

model features of errors in single-qubit experiments. This

demonstration relies on long-sequence gate-set tomography,

which yields high-accuracy reconstructions of all operations

used in the experiments. This in turn required a high degree

of automation to capture and process the ∼7 million measure-

ment shots per hour. In the absence of randomization, the ex-

periments were shown to have strong non-Markovian features,

and the best Markovian model in that case was also shown to

have strong features inconsistent with Pauli error models. In

the presence of Pauli-frame randomization, the experiments

were shown to be highly consistent with a Markovian Pauli

error model, as predicted. As quantified by log-likelihood-
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FIG. 5. (a) Average gate infidelity and (b) diamond norm dis-

tance estimates for all three gates (colors) on a sequence of seven

separate experiments over several hours. Data for different gates are

horizontally offset for clarity, but we emphasize each of the experi-

ments leads to a reconstruction of all three gates, for both randomized

(solid symbols) and unrandomized (open symbols) gate-sets under

identical conditions—the only distinction between the seven exper-

iments is the passage of time. All quantities are computed from the

reconstructed process matrices. For the randomized case (open sym-

bols), the infidelity and the diamond norm are comparable, at ≈1%.

For the unrandomized experiments, there is significant deviation

between the diamond norm error rate and the infidelity, suggesting

the presence of coherent errors that affect the infidelity metric only

weakly (and which are suppressed in the randomized experiments). A

monotonic upward trend in the diamond norm distance of unrandom-

ized experiments (solid symbols) implies the presence of systematic

drift in the control pulses, which is also suppressed by randomization

(open symbols). Error bars are 95% confidence intervals [analytically

for (a), and with the Hessian provided by pyGSTi for (b)].

ratio statistic, the violation of Markovian and Pauli error

models in the unrandomized experiments is highly significant,

as high as 1987σ , while the violations of Markovian Pauli

error models in the randomized experiments are statistically

insignificant, less than 2.7σ in most of the experiments. This

several orders-of-magnitude separation between randomized

and unrandomized experiments was persistent across seven

repeats of the experiment, indicating the noise-shaping effect

of Pauli-frame randomization is robust to drift in the control

parameters and fluctuations in the noise environment.

Areas for future work include speeding up the experiments

using techniques such as active reset [71,72], and pushing

randomization process onto the hardware field-programmable

gate array (FPGA), which would allow for data acquisition of

randomized Clifford group circuits without the user having to

manually precompile random circuits.

Note added. Recently, similar results were independently

reported by Hashim et al. [73].

The experimental data, along with scripts used to perform

the analysis and plot the results, can be found in Ref. [66].

These include the full tomographic reconstruction of gate sets

for all seven experiments, along with the raw counts needed

for these reconstructions.
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