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The robust jaws and large, thick-enameled molars of the Plio-Pleistocene hominins 1 

Australopithecus and Paranthropus have long been interpreted as adaptations for hard-object 2 

feeding. Recent studies of dental microwear indicate that only Paranthropus robustus regularly 3 

ate hard items, suggesting that the dentognathic anatomy of other australopiths reflects rare, 4 

seasonal exploitation of hard fallback foods. Here we show that hard-object feeding cannot 5 

explain the extreme morphology of Paranthropus boisei. Rather, analysis of long-term dietary 6 

plasticity in an animal model suggests year-round reliance on tough foods requiring prolonged 7 

postcanine processing in P. boisei. Increased consumption of such items may have marked the 8 

earlier transition from Ardipithecus to Australopithecus, with routine hard-object feeding in P. 9 

robustus representing a novel behavior. 10 

11 
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1. Introduction 1 

 The australopiths (genera Australopithecus and Paranthropus) represent the earliest well-2 

documented diversification of the hominin lineage and include the ancestor of our own genus, 3 

Homo (Fig. 1) [1]. Understanding the paleobiological and phylogenetic implications of 4 

phenotypic variation in this group is therefore a critical step in the study of human origins [2-4]. 5 

Australopiths were characterized by numerous apomorphic craniodental features—including 6 

robust jaws and large postcanine teeth with thick enamel caps—that have long been interpreted 7 

as adaptations for countering powerful masticatory stresses associated with a diet of 8 

mechanically challenging foods, particularly hard objects [5-8]. However, this scenario has been 9 

challenged by recent studies of dental microwear, which have failed to detect signs of routine 10 

postcanine processing of hard items in most australopiths [9-11].  11 

One hypothesis invoked to explain this discrepancy between anatomy and microwear is 12 

that australopith craniodental adaptations reflect hard fallback foods critical to surviving seasonal 13 

periods when easier-to-process preferred resources were scarce [9-10]. Accordingly, the dearth 14 

of fossil australopith teeth preserving evidence of hard-object consumption simply reflects the 15 

rarity of such fallback items [12] in the diets of these hominins. However, the role of dietary 16 

seasonality in shaping the masticatory apparatus of primates and other mammals is unclear. 17 

Indeed, there is little evidence that the highly robust jaws of the australopiths Paranthropus 18 

robustus and especially P. boisei would be required of an organism that relies only seasonally on 19 

mechanically challenging foods [13]. Here we report the results of a long-term diet-manipulation 20 

experiment conducted using an animal model that examines adaptive plasticity [14,15] in 21 

craniomandibular development vis-à-vis temporal variation in food mechanical properties. Our 22 

naturalistic, longitudinal data provide a novel perspective on debates over early hominin 23 
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paleoecology and have significant implications for understanding phenotypic variation in extant 1 

and fossil species that experience resource seasonality. 2 

 3 

2. Materials and Methods 4 

White rabbits (Oryctolagus cuniculus) exhibit several characteristics that make them 5 

excellent models for investigating questions regarding masticatory biomechanics in primates, 6 

including a vertically deep face; a temporomandibular joint situated high above the occlusal 7 

plane, capable of rotational and translational movements; intracortical bone remodeling; and a 8 

similar pattern of covariation among jaw-muscle activity, jaw loading, and dietary properties 9 

[16-20]. Our sample contained 30 five-week-old weanling male rabbits divided equally into three 10 

dietary cohorts and raised for 48 weeks. Control subjects were fed a diet consisting solely of 11 

rabbit pellets. Annual rabbits were given hay in addition to pellets throughout the experiment, 12 

starting with two hay cubes daily for the first 18 weeks and then six hay cubes daily for the next 13 

six weeks. This 24-week schedule was then repeated. Seasonal rabbits received pellets and three 14 

hay cubes daily for the first six weeks and were then switched to an all-pellet diet for the 15 

subsequent 18 weeks, mimicking seasonal reliance on fallback foods. This schedule was repeated 16 

in the final 24 weeks.  17 

The mechanical properties of these diets fall within the range of values for foods ingested 18 

by wild primates [21,22]. Hay and pellets result in similar levels of bone strain along the rabbit 19 

mandibular corpus [16]. However, hay is stiffer than pellets [22] and therefore presents a greater 20 

masticatory challenge characterized by longer loading durations and greater cyclical loading. 21 

Compared to pellets, hay takes rabbits approximately three times as many chewing cycles and, 22 

correspondingly, three times longer to process (Ravosa et al., unpublished data). Dynamic 23 
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alterations in dietary behaviors related to differences in the properties of experimental foods are 1 

posited to induce osteogenic responses and corresponding ontogenetic changes in the proportions 2 

of the feeding apparatus [17,22,23]. 3 

Each animal was imaged using micro-CT (Bioscan/Mediso X-CT; settings: 70 kVp,100 4 

μA, with 71-μm reconstructed isometric voxel size) upon arrival and every two weeks thereafter 5 

until Week 24, when they became too large to image. Rabbits were imaged a final time following 6 

sacrifice at Week 48. This data set allowed us to track skull development longitudinally from 7 

weaning to mature adult stages. Using the segmenting tools available in the program PMOD, we 8 

quantified bone cross-sectional areas at three mandibular sites (symphysis, condyle, corpus) and 9 

one on the cranium (palate) involved in load resistance during chewing. To control for 10 

differences in organismal size that may confound our ability to detect a dietary signal among 11 

cohorts at a given age, shape ratios were computed by dividing the square root of each subject’s 12 

cross-sectional area at a given time point by its cranial length. These ratios were logged for 13 

analysis. Statistical comparisons were performed using the bootstrap to generate confidence 14 

intervals for differences between groups [24]. A more detailed description of the measurements 15 

and procedures is available in the electronic supplementary material. 16 

 17 

3. Results 18 

Mean shape ratios for the three dietary cohorts were statistically indistinguishable at the 19 

onset of the experiment (Week 0). By Week 6, seasonal and annual rabbits had significantly 20 

greater shape ratios at all sites—indicating relatively larger cross-sectional areas—than control 21 

rabbits, while being similar to each other (Table 1, Fig. 2). Annual and seasonal rabbits diverged 22 

rapidly following the latter’s shift to a less-challenging all-pellet diet after Week 6. By Week 12, 23 
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means for the annual cohort were significantly larger than those for the seasonal and control 1 

cohorts at three of the four sites. Notably, seasonal rabbits differed from control animals only in 2 

relative palatal cross-sectional area. This general pattern persisted, with slight differences, 3 

through the first half of the experiment (Week 24) and characterized the final set of comparisons: 4 

at Week 48, annual rabbits had significantly larger symphyseal, palatal, and corporal relative 5 

cross-sectional areas than seasonal and control groups; the latter two cohorts differed only at the 6 

symphysis (seasonal > control). Ratios for the annual group at this stage were 6–17% and 4–7 

11% larger than the ratios for the control and seasonal groups, respectively. Such differences fall 8 

within the range of variation observed in closely related primate species that differ in diet 9 

(electronic supplementary material, table S4), indicating that phenotypic plasticity is likely an 10 

important source of interspecific adaptive variation. 11 

 12 

4. Discussion 13 

Seasonal hay consumption resulted in adult phenotypes clearly distinct from those of 14 

animals that ate hay throughout the experiment, but only minimally differentiated from those 15 

associated with the less-challenging all-pellet diet. This finding indicates that the relationship 16 

between dietary properties and craniomandibular morphology is highly dependent on loading 17 

history, specifically the extent to which a structure is exposed to a behavioral stimulus during 18 

development. With respect to linking australopith jaw robusticity to seasonal consumption of 19 

hard objects, this observation implies that the more extreme australopiths would have relied on 20 

such foods for a greater portion of the year than the more generalized species. It is notable, 21 

therefore, that P. boisei, the apex of the australopith trend toward increased jaw robusticity [1,6], 22 

presents molar microwear suggesting that it processed hard foods less frequently than the closely 23 
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related but less-specialized P. robustus [10,25], the only australopith with microwear consistent 1 

with at least seasonal hard-object feeding [9]. Our results therefore suggest that the apomorphic 2 

masticatory apparatus of P. boisei cannot be explained by a scenario in which this species fed 3 

mainly on relatively easy-to-process foods throughout the year while relying on hard objects 4 

during fallback episodes that were shorter in duration than was the case for P. robustus. Instead, 5 

the remarkable jaws of P. boisei probably reflect regular consumption of items that required 6 

intensive postcanine processing, resulting in masticatory stresses that exceeded those 7 

experienced by P. robustus.  8 

Considered within the broader context of australopith variation, the link between 9 

morphology and markedly seasonal hard-object feeding in P. boisei appears even more tenuous. 10 

In jaw robusticity, species of Australopithecus fall between Paranthropus and the geologically 11 

older and more plesiomorphic Ardipithecus ramidus [1,3,4]. If the morphological differences 12 

between Ardipithecus and basal australopiths signal an adaptive shift to seasonal exploitation of 13 

hard objects in the latter, then our experimental evidence suggests that exaggeration of 14 

australopith craniodental features in Paranthropus implies increased reliance on such items. 15 

Microwear results for P. robustus fit this scenario, whereas those for P. boisei contradict it 16 

[10,25]. Indeed, the microwear signatures of P. boisei, Au. anamensis, and Au. afarensis are 17 

striking in their uniform lack of evidence for consumption of very hard or very tough items 18 

[10,11]. 19 

The functional significance of this microwear signature remains enigmatic, but it may 20 

result from prolonged milling and grinding, which would have been necessary when 21 

australopiths consumed tough foods due to the fact that their low-cusped molars are not as well-22 

suited for shearing such items as are the high-cusped molars of extant folivorous primates [11]. 23 
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Although speculative, this interpretation is supported by our results: because the microwear data 1 

reject frequent hard-object feeding in P. boisei, this species must have masticated exceptionally 2 

tough foods on a regular basis. The properties of foods eaten by species of Australopithecus are 3 

more difficult to infer, but differences between these hominins and Ar. ramidus in jaw 4 

robusticity, megadontia, and microwear [3,4], combined with the absence of a hard-object 5 

microwear signature [11], suggests tough-object feeding [26], but not to the degree inferred for 6 

P. boisei. We posit, therefore, that increases in jaw robusticity from Ardipithecus to 7 

Australopithecus to P. boisei reflect progressively greater reliance on tough, probably 13C-8 

enriched [27] foods and concomitantly elevated masticatory stresses due to higher repetitive 9 

loading and longer load durations resulting from extended bouts of milling and grinding [11]. 10 

Under this scenario, the hard-object feeding evident in the microwear of P. robustus represents a 11 

novel feeding strategy, perhaps indicating adoption of a broader niche facilitated by a 12 

masticatory apparatus initially shaped by a diet of tough foods but nevertheless capable of 13 

processing objects with a wide range of mechanical properties. 14 

 15 
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Table 1. Comparisons among dietary cohorts. Significant differences in shape ratios among 1 

dietary cohorts are indicated by different type styles; entries in the same style are not 2 

significantly different. Alpha levels were adjusted for multiple comparisons using the sequential 3 

Bonferroni method within each variable-week combination (i.e., each row). P-values and raw 4 

data are provided in electronic supplementary material (tables S1, S2). 5 

 6 

Figure 1. Cladistic relationships of selected australopiths. Only the five best-represented species 7 

are shown here for simplicity, along with Ardipithecus ramidus and genus Homo. 8 

 9 

Figure 2. Jaw growth in dietary cohorts. Logged (base e) square roots of bone cross-sectional 10 

area versus mean cranial length: (a) condyle, (b) palate, (c) corpus, (d) symphysis. Each datum 11 

represents a given week. Data are available in the electronic supplementary material (table S3). 12 

 13 

 14 
  15 
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Table 1 1 

  Direction of observed differences 
Time point Variable Smallest  Largest 
Week 0     

 Symphysis ratio Annual Control Seasonal 

 Palate ratio Annual Seasonal Control 
 Condyle ratio Annual Control Seasonal 

 Corpus ratio Annual Seasonal Control 

Week 6     

 Symphysis ratio Control Annual Seasonal 
 Palate ratio Control Seasonal  Annual 
 Condyle ratio Control Annual Seasonal 
 Corpus ratio Control Seasonal Annual 

Week 12     
 Symphysis ratio Seasonal Control Annual 
 Palate ratio Control Seasonal Annual 
 Condyle ratio Control Seasonal Annual 
 Corpus ratio Control Seasonal Annual 

Week 24     
 Symphysis ratio Control Seasonal Annual 
 Palate ratio Control Seasonal Annual 
 Condyle ratio Control Seasonal Annual 
 Corpus ratio Control Seasonal Annual 

Week 48      
 Symphysis ratio Control Seasonal Annual 
 Palate ratio Control Seasonal Annual 
 Condyle ratio Control Seasonal Annual 
 Corpus ratio Control Seasonal Annual 

 2 



Figure 1

Indicates increase in jaw robusticity

and postcanine megadontia

Indicates decrease in jaw robusticity

and postcanine megadontia



Figure 2
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