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Abstract. We describe results from an apparatus and protocol designed to imple- 

ment quantum key distribution, by which two users, who share no secret information 

initially: (1) exchange a random quantum transmission, consisting of very faint 

flashes of polarized light; (2) by subsequent public discussion of the sent and 

received versions of this transmission estimate the extent of eavesdropping that 

might have taken place on it, and finally (3) if this estimate is small enough, distill 

from the sent and received versions a smaller body of shared random information, 

which is certifiably secret in the sense that any third party's expected information on 

it is an exponentially small fraction of one bit. Because the system depends on 

the uncertainty principle of quantum physics, instead of the usual mathematical 

assumptions such as the difficulty of factoring, it remains secure against an adver- 

sary with unlimited computing power. 
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1. Introduction and History 

Quantum cryptography has entered the experimental era [5]. The first convincingly 

successful quantum exchange took place in October 1989. After a short historical 

review of quantum cryptography, we report on the new apparatus and the latest 

results obtained with it. 

1 Date received: September 10, 1990. Date revised: September 25, 1991. This paper was accepted prior 
to the present Editor-in-Chief taking responsibility. A preliminary version of this paper was presented 
at Eurocrypt '90, May 21-24, ,~rhus, Denmark, and has appeared in the proceedings, pp. 253-265. 
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Quantum cryptography was born in the late 1960s when Stephen Wiesner wrote 

"Conjugate Coding." Unfortunately, this highly innovative paper was unpublished 

at the time and it went mostly unnoticed. There, Wiesner explained how quantum 

physics could be used in principle to produce bank notes that would be impossible to 

counterfeit and how to implement what he called a "multiplexing channel," a notion 

strikingly similar to what Rabin was to put forward more than 10 years later under 

the name of "oblivious transfer" (in our opinion, it would be fair to give at least equal 

credit to Wiesner for the concept of oblivious transfer). 
Fortunately, Charles H. Bennett knew Wiesner quite well and heard about his 

idea from the horse's mouth. Nevertheless, it was only when he met Gilles Brassard 

that quantum cryptography was revived. This happened on the occasion of the 20th 

IEEE Symposium on the Foundations of Computer Science, held in Puerto Rico in 

October 1979. Following their discussion of Wiesner's idea, they discovered how 

to incorporate the (almost new at the time) notion of public key cryptography, 

resulting in a Crypto '82 paper [7]. This brought Wiesner's paper back to life, and 

it was subsequently published in Sigact News [27], together with a selection of 

papers from the earlier Crypto '81 workshop. 

Initially, quantum cryptography was thought of by everyone (including ourselves) 

mostly as a work of science-fiction, because the technology required to implement it 

was out of reach (for instance, quantum bank notes [27] require the ability to store a 

single polarized photon or spin-�89 particle for days without significant absorption or 

loss of polarization). Unfortunately, the impact of the Crypto '82 conference had 

left most people under the impression that everything having to do with quantum 

cryptography was doomed from the start as being unrealistic. 

The main breakthrough came when Bennett and Brassard realized that photons 

were never meant to store information, but rather to transmit it (although it should 

be said that half of Wiesner's original paper dealt precisely with the use of quantum 

physics for the transmission of information). This lead initially to the self-winding 

reusable one-time pad [6] which was still not very practical. Later, Bennett thought 

of the quantum key distribution channel (whose implementation is the object of the 

current paper) and Brassard designed the somewhat less realistic quantum coin- 

tossing protocol (which can be used to implement bit commitment) [2], [3]. Quan- 

tum cryptography was also picked up by other researchers. For instance, Cr6peau 

and Kilian showed how the quantum channel could be used in principle (although 

not in practice) to implement oblivious transfer in a strong way (Wiesner's original 

multiplexing channel could leak information on both channels), zero-knowledge 

protocols, and secure two-party computation [17], [16]. More recently, Ekert 
proposed an alternative approach to implement quantum key distribution [19] 

(making use of EPR and Bell's theorem), but a simplified--and no less secure-- 

version of his scheme is shown in [10] to be equivalent to the ideal version of our 

quantum key distribution protocol, which we originally put forward in 1984 [3]. 

Let us also mention that Bennett, Brassard, and Cr~peau have developed practical 

quantum protocols to achieve oblivious transfer, bit commitment, and coin-tossing 
[8]. See also [14]. 

The principle of quantum cryptography has been described in major popular 
magazines such as Scientific American [25-1, The Economist [20], New Scientist [18], 
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and Science News  [23]. In N e w  Scientist, Deutsch wrote that "Alan Turing's 

theoretical model is the basis of all computers. Now, for the first time, its capabilities 

have been exceeded" [by the quantum cryptography apparatus] 2 [18]. Also, 

Brickell and Odlyzko close their thorough survey of recent (1988) results in crypt- 

analysis with these words: "If such systems [quantum cryptography] become feasi- 

ble, the cryptanalytic tools discussed here [in their paper] will be of no use" [15]. 

In this paper, we report on the first experimental quantum key distribution 

channel ever designed and actually put together. Section 2 provides background 

information on quantum cryptography. (For further detail on the basic quantum 

channel, see Chapter 6 of [13].) We first review the original quantum key distribu- 

tion protocol of [3], which illustrates the method most plainly. Then we describe 

subsequent modifications of the protocol [11], [12], [4], which give it the ability, 

necessary in practice, to function despite partial information leakage to the eaves- 

dropper and partial corruption of the quantum transmissions by noise. In Section 3, 

we describe the physical apparatus by which quantum key distribution has actually 

been carried out. In Section 4, we discuss the possible sources of information leakage 

to the eavesdropper. In Section 5, we report on actual data transmitted by the 

apparatus. Finally, the Appendix gives a new technique allowing privacy amplifica- 

tion to be applied when the eavesdropper's information is probabilistic. 

2. Quantum Key Distribution 

The purpose of key distribution is for two users "Alice" and "Bob," who share no 

secret information initially, to agree on a random key, which remains secret from an 

adversary "Eve," who eavesdrops on their communications. In conventional cryp- 

tography and information theory it is taken for granted that digital communications 

can always be passively monitored, so that the eavesdropper learns their entire 

contents, without the sender or receiver being aware that any eavesdropping has 

taken place. By contrast, when digital information is encoded in elementary quan- 

tum systems such as single photons, it becomes possible to produce a communica- 

tions channel whose transmissions cannot in principle be reliably read or copied by 

an eavesdropper ignorant of certain information used in forming the transmission. 

The eavesdropper cannot even gain partial information about such a transmission 

without disturbing it in a random and uncontrollable way likely to be detected by 

the channel's legitimate users. 

The essential quantum property involved, a manifestation of Heisenberg's uncer- 

tainty principle, is the existence of pairs of properties that are incompatible in the 

sense that measuring one property necessarily randomizes the value of the other. 

For example, measuring a single photon's linear polarization randomizes its circular 

2 More precisely, it is mathematically impossible for two probabilistic interactive Turing ma'chines 
who share only a short secret key beforehand to achieve secure exchange of a longer secret key under 
the nose of a third Turing machine eavesdropping on all their communications if that third machine 
has unlimited computing power. In sharp contrast, this is precisely what the experimental quantum 
cryptography prototype achieves, with an arbitrarily small probability of failure. This does not contradict 
the Church-Turing thesis since the purpose of the apparatus is not to compute functions. 
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polarization, and vice versa. More generally any pair of polarization states will be 

referred to as a basis if they correspond to a reliably measurable property of a single 

photon, and two bases will be said to be conjugate [27] if quantum mechanics 

decrees that measuring one property completely randomizes the other. Our quan- 

tum key distribution protocol uses two conjugate bases, which we shall take to be 

the rectilinear basis (horizontal versus vertical polarization) and the circular basis 

(left-circular versus right-circular). We shall refer to these as the canonical bases. 

Similarly, a canonical polarization is either horizontal, vertical, left-circular, or 

right-circular. A third basis also exists, consisting of 45 ~ and 135 ~ diagonal polariza- 

tions, which is conjugate to both the other two bases, but we will not need to 

consider it except in connection with possible eavesdropping strategies. More 

information on the notion of conjugate bases is given in the Appendix. 

The protocol we describe here is secure even against an enemy possessing un- 

limited computing power (even if ~ = X~!) ,  under any attack in which she is 

limited to measuring photons (or in the subsequent generalization, light pulses) one 

at a time, and combining the classical results of these measurements with informa- 

tion subsequently overheard during the public discussion (described below). The 

formalism of quantum mechanics allows a more general kind of measurement, 

completely infeasible at present or in the foreseeable future. Such a measurement 

would treat the entire sequence of n photons sent during a key-distribution session 

as a single 2"-state quantum system, cause it to interact coherently with an inter- 

mediate quantum system of comparable complexity, maintain the phase coherence 

of the intermediate system for an arbitrarily long time, then, finally, measure the 

intermediate system in a way depending on the information overheard during the 

public discussion. It is not known whether the protocol is secure against such an 

attack, but recent work indicates that it may be [10]. 

The basic quantum key distribution protocol (see Fig. 1) begins with Alice 

sending a random sequence of the four canonical kinds of polarized photons to Bob. 

Bob then chooses randomly and independently for each photon (and independently 

of the choices made by Alice, of course, since these choices are unknown to him at 

this point) whether to measure the photon's rectilinear or circular polarization. Bob 

then announces publicly which kind of measurement he made (but not the result of 

the measurement), and Alice tells him, again publicly, whether he made the correct 

measurement (i.e., rectilinear or circular). Alice and Bob then agree publicly to 

discard all bit positions for which Bob performed the wrong measurement. Simi- 

larly, they agree to discard bit positions where Bob's detectors failed to detect the 

photon at a l l - -a  fairly common event with existing detectors at optical wavelengths. 

The polarizations of the remaining photons is interpreted as bit 0 for horizontal 

or left-circular, and bit 1 for vertical and right-circular. The resulting binary string 

should be shared secret information between Alice and Bob, provided that no 

eavesdropping on the quantum channel has taken place. The result of the above 

steps is referred to as the quantum transmission (or sometimes the raw quantum 

transmission to emphasize that it was obtained early in the process). 

In the basic protocol, Alice and Bob next test for eavesdropping by publicly 

comparing polarizations of a random subset of the photons on which they think 

they should agree. As shown in the Appendix, no measurement the eavesdropper can 
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Fig. 1. 

2. + 0 0 + + 0 0 + 0 + 0 0 0 0 + 

a. I P I c~ c~ ~ I P P c~ I 

4. + 0 + 0 0 + + 0 0 0 + 

5. q' v' J ,/ J ~/ 
6. P I ~ p c~ I 

7. 1 1 0 1 0 1 

Basic quantum key distribution protocol. 

1. Alice sends a random sequence of photons polarized horizontal (*--,), vertical ($), right-circular ( ~ )  
and left-circular ( ~ ); 

2. Bob measures the photons' polarization in a random sequence of bases, rectilinear ( + ) and circular 

(0). 
3. Results of Bob's measurements (some photons may not be received at all). 
4. Bob tells Alice which basis he used for each photon he received; 
5. Alice tells him which bases were correct; 
6. Alice and Bob keep only the data from these correctly-measured photons, discarding all the rest. 
7. This data is interpreted as a binary sequence according to the coding scheme ~ = C~ = 0 and 

$ : p : 1 .  

make on one of these photons while it is in transit from Alice to Bob can yield more 

than �89 expected bit of information on its polarization. Moreover, any measurement 

yielding s < �89 expected bit has probability at least s/2 of inducing a discrepancy 

when the data of Bob and Alice are compared, assuming that this photon is detected 

in the correct basis by Bob (otherwise, this photon is lost to all parties). If  Alice and 

Bob find no discrepancies, and if it is safe to assume that Eve cannot corrupt the 

contents of the public messages exchanged between them, then Alice and Bob may 

safely conclude that there are few or no errors in the remaining uncompared data, 

and that little or none of it is known to any eavesdropper. 

The assumption that the public messages cannot be corrupted by Eve is necessary, 

because otherwise it is clear that Eve could sit between Alice and Bob and imperson- 

ate each of them to the other [1]. As a result, Eve would end up with a string 

shared with Alice and another one shared with Bob, whereas Alice and Bob would 

be none the wiser. This crucial property of the public channel can be implemented 

in practice either by using an inherently unjammable public channel or by using an 

information-theoretically secure authentication scheme [26] to certify that the 

public messages have not been altered in transit. In the latter case, Alice and Bob 

need to have a modest amount  of shared secret information beforehand to serve as 

an authentication key, and a few bits of this key are rendered unfit for re-use each 

time the key distribution protocol is carried out. However, each successful instance 

of the protocol provides Alice and Bob with a substantially larger volume of fresh 

key information, some of which can be used to replace the lost authentication bits. 

Hence in this case the protocol implements key expansion rather than key distribu- 

tion. It should be noted that in the case of a jammable  public channel, a determined 

opponent, by repeated interference with either the quantum or public transmissions, 

could force Alice and Bob to exhaust their entire supply of authentication key before 
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successfully distributing any fresh key to replace it. Alice and Bob would then have 

irreversibly lost their ability to exchange key securely. Nevertheless, except with 

arbitrarily small probability, Eve cannot make Alice and Bob believe that they have 

succeeded when in fact their fresh key information is either not shared or not secret, 

or both. 

The elementary "quality-control" in the basic quantum key distribution protocol, 

which follows the quantum transmission as described above, is inadequate in 

practice for two reasons: 

1. Realistic detectors have some noise; therefore, Alice's and Bob's data will differ 

even in the absence of eavesdropping. Accordingly, they must be able to 

recover from a reasonably small error frequency. 

2. It is technically difficult to produce a light pulse containing exactly one photon. 

It is much easier to produce a coherent pulse, which may be regarded as a 

superposition of quantum states with 0, 1, 2 . . .  photons; or an incoherent pulse, 

which may be regarded as a statistical mixture of coherent states. In either case, 

let # be the expected number of photons per pulse. If # is small (i.e., significantly 

less than 1), there is a probability approximately #2/2 that an eavesdropper 

will be able to split a pulse into two or more photons, reading one and allowing 

the other(s) to go to Bob. 3 This allows the eavesdropper to learn a constant 

fraction of the bits shared between Alice and Bob without inducing errors. 

A satisfactory protocol must be able to recover from noise as well as from partial 

leakage. 

Below we describe a practical protocol that remedies these defects, allowing Alice 

and Bob to reconcile the differences between the sent and received versions of the 

quantum transmission, and then distill from the reconciled data (about which the 

eavesdropper may have significant partial information) a smaller body of data that 

is almost perfectly secret. The protocol we sketch is simple but not optimal: other 

protocols, which we are currently developing, have a higher yield of shared secret 

key at the same levels of noise and leakage. Further details on preliminary versions 

of the current protocol may be found in [4], [11], [24], and [12]. 

Once the quantum transmission as been completed (with very dim light pulses 

used instead of single photons, as discussed in (2) above), the first task is for Alice and 

Bob to exchange public messages enabling them to reconcile the differences between 

their data. Because we assume throughout that Eve listens to all the public messages 

between Bob and Alice, this exchange must be performed in a way that reveals as 

little information as possible on this data. On the other hand, let us recall that Eve 

cannot corrupt the contents of these public messages. 

An effective way for Alice and Bob to perform reconciliation is for them first to 

agree on a random permutation of the bit positions in their strings (to randomize 

the locations of errors), then partition the permuted strings into blocks of size k such 

that single blocks are believed to be unlikely to contain more than one error. (The 

optimal block size, which should be a function of the expected error rate, has not 

3 More generally, the probability of detecting k photons in a single pulse is given (exactly for 
coherent light, and in the low-intensity limit for incoherent light) by a Poisson distribution of mean #. 
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yet been determined theoretically; instead, we use in Section 5 block sizes that have 

empirically been found to be good.) For each such block, Alice and Bob compare the 

block's parity. Blocks with matching parity are tentatively accepted as correct, while 

those of discordant parity are subject to a bisective search, disclosing log(k) further 

parities of subblocks, until the error is found and corrected. If the initial block size 

was much too large or too small, due to a bad a priori guess of the error rate, that 

fact will become apparent, and the procedure can be repeated with a more suitable 

block size. 4 In order to avoid leaking information to Eve during the reconciliation 

process, Alice and Bob agree to discard the last bit of each block or subblock whose 

parity they have disclosed. 

Of course, even with an appropriate block size, some errors will typically remain 

undetected, having occurred in blocks or subblocks with an even number of errors. 

To remove additional errors, the random permutation and block parity disclosure is 

repeated several more times, with increasing block sizes, until Alice and Bob 

estimate that at most a few errors remain in the data as a whole. At this point, the 

block parity disclosure approach becomes much less efficient because it forces Alice 

and Bob to sacrifice at least one bit in each block on the altar of privacy. Consider, 

for instance, a (very typical) situation in which exactly two errors are left. If the 

block size is chosen so that there are I blocks, the probability of not detecting the 

existence of the remaining errors is l/I, and the cost for this strategy is 1 bits when 

unsuccessful. For this reason, a different strategy is adopted to eliminate any errors 

that may remain and to verify, with high probability, that they have in fact been 

eliminated. The probability of undetected errors with this new strategy is 2 - t  for the 

same cost of I bits sacrificed to privacy, and this probability is completely indepen- 

dent of the number and location of the remaining errors. 

In each iteration of this strategy, Alice and Bob compare parities of a publicly 

chosen random subset of the bit positions in their entire respective data strings. 

If the data strings are not identical, then the random-subset parities will disagree 

with probability exactly �89 If a disagreement is found, Alice and Bob undertake a 

bisective search, similar to that mentioned above, to find and remove the error. As in 

the preceding block-parity stage of the reconciliation, the last bit of each compared 

subset is discarded to avoid leaking any information to Eve. Each subsequent 

random subset parity is, of course, computed with a new independent random subset 

of bit positions in the remaining string. 

At some point, all errors will have been removed, but Alice and Bob will not yet 

be aware of their success. When this occurs, subsequent random subset parities will 

of course always agree. After the last detected error, Alice and Bob continue 

comparing random subset parities until sufficiently many consecutive agreements 

(say 20) have been found to assure them that their strings are indeed identical, with 

a negligible probability of not detecting the existence of remaining errors. 

Alice and Bob are now in possession of a string that is almost certainly shared, 

but only partly secret. As described in Section 4, they can find a conservative 

4 Alternatively, a small random sample of the bits could be compared initially in order to estimate 

the error rate, much like the quality control mechanism in the basic quantum key distribution protocol. 

Of course, these bits would then have to be sacrificed. 
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estimate on Eve's partial information on their string from the detected error frequen- 

cy and the optical pulse intensity. More precisely, they can estimate an integer l 

such that Eve's information on Alice's string resulting from the raw quantum 

transmission is worth no more than knowledge of I physical bits of that string (please 

consult the Appendix for the meaning of "worth no more"). Recall that the reconcili- 

ation process involves Alice disclosing the parity of many subsets of her bits, but 

that each time one bit from that subset is discarded from the reconciled string. As 

a result, Eve's knowledge about physical bits could become knowledge about 

parities. Let us say that Eve knows a parity bit about Alice's string if she knows the 

parity of a nonempty subset of the bits of that string (knowledge of physical bits is 

a special case of knowledge of parity bits, taking single-element subsets). It is easy 

to see that if Eve knows no more than I parity bits about a string y, and if she is 

given an additional parity bit about y, but that z is formed by discarding from y 

one of the bits involved in that parity, then Eve still knows no more than I parity 

bits about z. Therefore, if Eve knew no more than l physical bits of Alice's string 

before reconciliation, she knows no more than I parity bits about the string shared 

between Alice and Bob that results from reconciliation. 

At this point, Alice and Bob can perform privacy amplification, which is a 

fundamental tool introduced in [11] and [12]. Let x denote the reconciled string 

and let n denote its length. Let us say that a deterministic bit of information about 

x is the value e(x) of an arbitrary function e: {0, 1}" ~ {0, 1}. For instance, physical 

and parity bits are deterministic bits, but bits of information in the sense of Shannon's 

information theory need not be. It is shown in [12] that if Eve's knowledge about x 

is no more than I deterministic bits, a hash function h randomly and publicly chosen 

from an appropriate class of functions {0, 1} n ---, {0, 1} n-t-s will map x into a value 

h(x) about which Eve's expected information is less than 2-~/ln 2 bit, where s > 0 

is an arbitrary security parameter. This technique applies for Alice and Bob because 

parity bits are a special case of deterministic bits. 

An adequate hash function for this purpose can be obtained by continuing to 

compute n - l - s additional publicly chosen independent random subset parities, 

but now keeping their values secret instead of comparing them. The class of hash 

functions thus realized is essentially the strongly-universal2 class H3 discussed by 

Wegman and Carter [26]. It is amusing to note that if even a single discrepancy is 

left between Alice's and Bob's data after reconciliation, the final strings computed 

by Alice and Bob will be totally uncorrelated, a fact likely to be noticed rapidly. 

Moreover, it is clear that this hash function has the property that if Eve's knowledge 

of x before privacy amplification was strictly in the form of parity bits, then such is 

also the case about her knowledge of h(x). Therefore, Eve cannot have nonzero 

information about h(x) without in fact having at least one bit of information about 

it. As a consequence, the privacy amplification theorem implies that Eve knows 

nothin9 at all about the final string h(x) shared between Alice and Bob, except with 

probability at most 2-~/ln 2, in which case she knows at least one deterministic bit. 

3. Physical Apparatus 

The apparatus (see Fig. 2) occupies an optical bench approximately 1 m long 

inside a light-tight box measuring approximately 1.5 x 0.5 x 0.5 m. It is controlled 
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by a program running on an IBM PC computer, which contains separate software 

representations of the sender Alice, who controls the sending apparatus, the receiver 

Bob, who controls the receiving apparatus, and optionally an eavesdropper Eve. 

The program can also run in simulation mode, without the attached experimental 

apparatus. Even though they reside in the same computer, no direct communication 

is allowed between the software Alice and the software Bob, except the public 

channel communication called for by the protocol. 

Alice's light source, at the left end of the optical bench, consists of a green light- 

emitting diode (LED Stanley type HBG5566X) as the source of incoherent light, a 

25/~ pinhole and a 25 mm focal length lens to form a collimated beam, a 550 + 20 nm 

interference filter (Ealing type 35-5065) to reduce the intensity and spectral width 

of the light and select a portion of the spectrum at which the photomultipliers have 

relatively high quantum efficiency, and finally a Polaroid filter (i.e., a dichroic 

sheet polarizer) to polarize the beam horizontally. The LED is driven by current 

pulses (about 5 • 10 -s coulombs in 60 ns) yielding, after collimation, filtration and 

polarization, an intensity of about 0.1 photon per pulse, about half of which is 

emitted during the first 500 ns. The low intensity of the light pulse serves to minimize 

the chance that an eavesdropper will be able to split any one pulse into two or more 

photons. 

Alice modulates the polarization of the beam by means of two Pockels cells 

(INRAD type 102-020), operated at + or - the quarter-wave voltage (about 800 V), 

so as to be able to choose among the four polarization states horizontal, vertical, 

left-circular, or right-circular. (Diagonal polarizations could have been used in- 

stead of circular, but they would have required twice the Pockels cell voltage.) High 

voltage NPN transistors (type BU-205), in series with 200K ohm pull-up resistors, 

are used to switch the high voltage for the Pockels cells under control of low voltage 

TTL signals on output lines of the PC's parallel port (5.1 V Zener diodes protect 

the computer from exposure to high voltage in case of transistor failure). 

The quantum channel itself is a free air optical path of approximately 32 cm. 

Bob's receiving apparatus, at the right end of the optical bench, consists of 

another Pockels cell and a calcite Wollaston prism (Melles-Griot type 03PPW001/C), 

oriented so as to split the beam into vertically and horizontally polarized beams, 

which are directed into two photomultiplier tubes (Hamamatsu type R 1463-01) with 

integral preamplifiers and voltage dividers in the sockets (Hamamatsu type C716-05). 

Bob's Pockels cell is also operated at quarter-wave voltage, allowing him to use the 

same Wollaston prism to make a measurement of either rectilinear or circular 

polarization, depending on whether the voltage is off or on. 
The timing for each experiment is controlled by a timing and detection unit, 

which also contains the hardware for handling asynchronous communication with 

the PC's parallel port, and two potentiometers for setting the discrimination levels 
for rejecting small pulses from each photomultiplier preamplifier (no rejection of 

large pulses is necessary, owing to their infrequency). The pulse-height discrimina- 

tion is carried out by fast ECL voltage comparators (Plessey type SP9687). 
Upon receiving a "start" signal on one of the PC parallel port's output lines, the 

timing unit waits 60/~s for the Pockels cell voltages to settle, supplies current to 
the LED for about 60 ns, gates the photomultiplier detection logic on for about 
500 ns, and sets two input lines of the parallel port according to the result (for 
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each photomultiplier, whether a count was detected). The 500 ns time window 

was chosen to include the brightest part of each light pulse (about half the integrated 

intensity), while avoiding excessive dark counts that would have accumulated had 

the window been kept open for the entire ~ 5/ ts  duration of the pulse. When 

it has done all this, the timing unit turns on another of the parallel port's input lines 

to signify "done," and begins waiting for the next start signal. When the computer 

sees the done signal it knows it can read the results of the present experiment and 

thereafter safely start the next experiment. 

Alice's choice of polarization and Bob's choice of reading basis are made randomly 

(not pseudorandomly) using a large file of random bits supplied to the computer on 

a diskette. Of course, Alice and Bob feed on different bits from this diskette (recall 

that although they live on the same computer, they do not communicate or other- 

wise share information that is not called for by the public channel discussion). These 

random bits had been previously generated using the same experimental apparatus, 

by taking the physically random output of one of the photomultipliers, illuminated 

by an auxiliary nearby LED of intensity such as to yield a count in about half the 

time windows, removing the 0/1 bias by von Neumann's trick (in each consecutive 

pair of coin tosses, take HT = 1, TH = 0, and ignore HH and TT), and XORing the 

resulting bits with pseudorandom bits from the computer to hide any residual 

deviations from randomness caused by time-variation of the photomultiplier and 

pulse-detection circuit. The same file is used to supply additional random bits as 

needed by Alice and Bob during the data reconciliation and privacy amplification 

protocols described in the previous section. 

The photomultipliers have quantum efficiency approximately 9~, with dark 

count rates of about 200 per second, or about 10 -4 per 500 ns time window. When 

using pulses of 0.1 expected photon per pulse, with about 0.05 expected photon 

arriving within the 500 ns time window, this dark count rate would yield a bit error 

rate around 2~; the actual error rate, about 4~o, was due also to imperfect alignment 

of the Pockels cells. 

The driver program on the PC provides the ability to simulate two principal kinds 

of eavesdropping: intercept/resend and beamsplitting (described in Section 4) by a 

hypothetical adversary "Eve" who has detectors of 100~ quantum efficiency. 

The present apparatus is only an experimental prototype. In a more realistic 

demonstration, the error rate could be reduced several orders of magnitude by better 

optical alignment and cooling the photomultipliers to reduce dark current, the 

quantum channel could be made much longer, and the protagonists Alice, Bob, and 

Eve could reside in separate buildings I-4]. The feasible distance over which a 

quantum key distribution system can operate depends on the noise and quantum 

efficiency of the detectors and especially on the attenuation of the optical channel: 

the weak signal entering the channel must still be recognizable above background 

upon leaving the channel. This means that essentially unlimited distances could be 

realized in principle by sending a diffraction-limited beam through an evacuated 

pipe or periscope of appropriate dimensions (e.g., 1 m • 1000 km), using high- 

reflectance polarization preserving mirrors to change the beam direction as neces- 
sary. More practically, existing optical fibers have sufficiently low attenuation to be 

used over a distance of at least several kilometers. 
It should be stressed that although the current prototype is of no direct practical 
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value because no one is interested in secure key distribution over short distances, 

other cryptographic primitives make perfect sense in this context. For instance, an 

implementation of quantum oblivious transfer over a short distance is potentially 

very useful [8], as it would among other things allow a practical and unbreakable 

implementation of secure two-party computation. 

4. Eavesdropping Strategies 

This section describes the main eavesdropping strategies--intercept/resend and 

beamsplitting--and how they can be simulated with our apparatus and software. 

It also explains how Alice and Bob can estimate the amount of information poten- 

tially leaked to Eve. We assume conservatively throughout that Eve has unlimited 

technology (consistent with quantum physics) for dealing with single light pulses, 

including perfect photodetection and the capability of storing a pulse for an arbi- 

trary long time before measuring it. However, we do not grant Eve the technology 

necessary to perform coherent measurements, as described in the third paragraph 

of Section 2. 

4.1. Intercept/Resend 

Recall that # is the expected number of photons per light pulse. If p is sufficiently 

smaller than 1, it is approximately also the probability that a pulse would be 

detected by a perfectly efficient detector. Let us say that a pulse is successful if Bob 

detects it in the basis originally chosen by Alice. In other words, successful pulses 

are those that contribute a bit in the raw quantum transmission. Unsuccessful pulses 

can be ignored, except for the fact that Alice and Bob would become suspicious 

should the rate of successful pulses be significantly different from expected. (With 

the present apparatus about one pulse in 400 is successful.) 

In intercept/resend, Eve intercepts selected light pulses and reads them in bases 

of her choosing. For each such pulse, with probability approximately #, Eve's 

perfectly efficient detectors are successful at detecting a photon. When this occurs, 

Eve fabricates and sends to Bob a pulse of the same polarization as she detected. 

To avoid suspicion with respect to the rate of successful pulses, Eve's fabricated 

pulses should be of such intensity (slightly higher than one expected photon per 

pulse) as to yield the same net rate of pulse detection by Bob as if no eavesdropping 

were taking place. 

In a classical communications channel, it would be possible for Eve to measure 

Alice's signal exactly, and resend an exact copy of it, thereby escaping detection. 

However, in the present quantum setting, it is shown in the Appendix that at least 

25~o of the pulses Eve fabricates will yield the wrong result if later successfully 

measured by Bob. Moreover, each of these intercept/resends is worth no more to 

Eve than if she were told Alice's bit with probability 1/v/2, and told nothing with 

complementary probability. 

Thus if there are t errors in the raw quantum transmission, Alice and Bob may 

conservatively estimate that fewer than 4t + 5 x / / ~  of their bits have been subjected 

to intercept/resend, the second term in this expression being an arbitrary but 
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generous 5 standard-deviation allowance for statistical error. Furthermore, Alice 

and Bob may also conservatively estimate that the amount of information leaked 

to Eve through intercept/resend is worth no more than if she had obtained 

(4/x/~)t + 5x/(4 + 2x/~)t bits of the quantum transmission (the standard deviation 

of this estimator is explained in the Appendix). Of course, errors in practice may 

also result from other causes, such as optical misalignment, disturbance on the 

quantum channel, or noise in Bob's detectors. Therefore, Alice and Bob might be 

tempted to determine empirically the expected error rate in the absence of eaves- 

dropping and use the difference between the observed and predicted error rates to 

estimate the amount of information leaked to Eve through intercept/resend. How- 

ever, this approach could grossly underestimate Eve's capabilities. Consider, for 

instance, the case in which most of the errors are due to misalignment between 

Alice's and Bob's notion of"horizontal." A clever Eve might discover this and rotate 

Alice's signal (e.g., by passing it through a sugar solution of the appropriate concen- 

tration) just enough to correct the misalignment and so reduce the error rate 

dramatically. Having done this, Eve could then intercept/resend a number of 

photons sufficient to create as many errors as the misalignment would have caused 

had Eve not corrected it. Clearly, such eavesdropping would completely avoid 

detection. In order to thwart this threat, it is safer if Alice and Bob take the 

very conservative view that all errors are due to intercept/resend. 

No additional hardware is needed to simulate intercept/resend: when the software 

Eve wishes to intercept a pulse, she borrows the real receiving apparatus from Bob; 

when she wishes to resend to Bob, she borrows the sending apparatus from Alice. 

While Eve is borrowing the receiving apparatus, Alice obliges her by repeating the 

same transmission 1/q times, where q is the quantum efficiency of the actual 

detectors. This allows Eve to obtain a count with the same probability p as a 

physical eavesdropper with perfectly efficient detectors. Similarly, while Eve is 

borrowing the sending apparatus, Bob obliges her by allowing her to repeat the 

transmission 1/# times. 

4.2. Beamsplitting 

The other attack, beamsplitting, depends on the fact that the transmitted light pulses 

are not pure single-photon states. To carry out this attack, Eve uses a partly-silvered 

mirror or equivalent device to divert a fraction f of the original beam's intensity to 

herself, letting the remainder pass undisturbed to Bob. In order to avoid wasting 

information by measuring pulses in the wrong bases, Eve stores her share of each 

pulse until the correct bases have been announced in the public discussion. Then, 

Eve measures her stored pulses in those bases. With probability approximately f/z, 

Eve will succeed in detecting a photon, and will therefore obtain Alice's bit for that 

pulse. This attack induces no errors, but does reduce the intensity reaching Bob by 

a factor 1 - f. 
A small loss of intensity might not be detectable to Alice and Bob, and in the 

present set-up Eve could supplement the fraction f she splits from the main pulse by 
diverting to herself all the remaining integrated beam intensity during the 5 #s tail 

(see Section 3), which Bob shuts out to avoid excessive dark counts, resulting 
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in an effective splitting ratio of about ( f  + 1)/2. Another approach by which Eve can 

bring her share f closer to 1 without attenuating the signal too substantially would 

be for her to resend bright pulses when she intercept/resends pulses as described in 

Subsection 4.1. In analyzing data from the present apparatus, we conservatively take 

f -- 1 and assume that Eve learns a fraction/~ of Alice's bits through beamsplitting. 

More realistically, if Eve does not have the technology needed to store her share of 

the beam, she can measure her share of each pulse as it comes. Of course, this can 

only be done at the cost of losing information. If Eve's measurements are in the 

canonical bases, she will learn a fraction roughly/~/2 of Alice's string (still conserva- 

tively taking f = 1). If she uses noncanonical bases, the technique introduced in the 

Appendix can be used to show that she cannot be in a better situation than if she 

had obtained a fraction #/x/~ of Alice's string. It should be noted that even if Eve 

had the capability of storing beams, but if Alice and Bob suspected it, they could 

send and receive all the pulses first, wait an arbitrarily long time for Eve's stored 

beam to decay, and only then announce all the bases. 

The open air optical path in the present apparatus has negligible attenuation, 

but quantum key distribution might also be attempted through a channel with 

considerable natural attenuation, such as an optical fiber. If, in addition, Eve has the 

technological ability to surreptitiously substitute a much more transparent channel, 

she can mount an aggressive version of the beamsplitting attack based on allowing 

Bob to receive only pulses she has already succeeded in splitting. To do this, Eve 

splits all the pulses entering the channel into two pulses of half-intensity #/2, 

attempts to measure one half-pulse, and, if she succeeds in detecting a photon, 

forwards the other half-pulse to Bob, otherwise stopping it. She compensates for 

the resulting (2//~)-fold reduction in pulse frequency and 2-fold reduction in intensity 

by increasing the channel's transparency (4/#)-fold, so Bob receives photons at the 

same rate he would have from an undisturbed transmission through the original 

less transparent channel. This attack can be thwarted by keeping the original pulse 

intensity/~ small compared to 4T, where T is the transmission coefficient of the 

original channel before possible improvement by Eve. 

A dramatic but harmless variant on the above attack would be for Eve to attempt 

to detect enough photons in the incoming pulse to determine its polarization 

uniquely, even without knowing the correct basis. An example of such a measure- 

ment would be for Eve to split the incoming pulse into two half-pulses as before, 

but now measure the rectilinear polarization of one and the circular polarization 

of the other. If, by extreme good luck, this measurement yielded three photons with 

polarizations vertical, horizontal, and right-circular, Eve would know that the 
original pulse's polarization was definitely right-circular, and she could capitalize 

on this knowledge by sending Bob such a bright pulse of right-circular light that he 

would be sure to detect it. Fortunately, this attack succeeds so rarely (roughly with 

probability #3/32) that it is a less serious threat than simple 2-photon beamsplitting. 

In our setting, owing to the high transparency of the optical channel, only the 

first kind of beamsplitting attack is relevant, which, under the conservative assump- 
tions explained above, leaks each successful bit to Eve with probability #. If the 
quantum transmission consists of N successful pulses, Alice and Bob can therefore 
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conservatively estimate that Eve has learned less than 

Np + 5~Np(1 - p) 

bits through beamsplitting. The second term in this expression is, as before, a 5 

standard-deviation allowance for Eve's having had better than average luck in her 

beam-splitting attempts. Our apparatus simulates beamsplitting without additional 

hardware, simply by having the software Alice disclose directly to the software Eve 

the correct polarization of each successful pulse with probability/~. 

4.3. Estimating Eve's Information 

The expected fraction of Alice's string leaked to Eve through both kinds of eaves- 

dropping is conservatively bounded above by 

p =/~ + (4/x/~)p, 

where/~ is the pulse intensity at the upstream end of the channel and p is the bit 

error rate. This formula comes from the fact that Eve can learn a fraction roughly 

of the bits through beamsplitting, and a number of effective bits no greater than 

a fraction (4/x/~)p from intercept/resend, as discussed above and in the Appendix. 

Because of possible correlation between these two kinds of information, 5 the total 

information gained by Eve will typically be less than the sum of these two terms. 

Because undiscovered errors can sometimes disappear without notice during the 

reconciliation protocol when bits are discarded to avoid leaking information to Eve, 

it is necessary for Alice and Bob to estimate the number of such undiscovered errors 

in order to estimate the value of p, and thus that ofp. This can be achieved by a rather 

simple interpolation. 

This estimate on p assumes that Eve has the superior technology required to delay 

measurement until after announcement of the correct bases (if she did not, the first 

term in the above formula for p would be decreased from/~ to #/x/~), that she has 

perfect photodetection, and, perhaps most importantly, that all transmission errors 

result from intercept/resend eavesdropping, rather than noise sources beyond Eve's 

control. These assumptions will in most cases be excessively conservative: e.g., in 

our case, many of the bit errors can be confidently attributed to causes other than 

eavesdropping. 

If N is the number of successful pulses, Alice and Bob can conservatively estimate 

the number of bits leaked to Eve as 

l = N p  + 5x/N(#(1 - p) + (4 + 2v/r2)p), 

where the first term represents Eve's expected information and the second is a 5tr 

allowance for sampling errors. The two terms under the square root represent 

contributions to the variance of Eve's information from variances in, respectively, 

the number of split pulses at fixed p and the number of effective bits leaked to Eve 

5 It would be hard for Eve to prevent learning some bits twice, i.e., through intercept/resending of 
a successfully split pulse. 
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through intercept/resend. We take the square root of the sums rather than the sum 

of the square roots (i.e., we add the variances rather than the standard deviations) 

because the probability of success of beamsplitting is independent from the proba- 

bility of success of intercept/resend, provided we consider only the successful pulses. 

5. Sample Data  from the Apparatus 

Here we give examples of data actually transmitted through the quantum channel, 

the subsequent public discussion, and the size of the shared secret key ultimately 

distilled. The first batch of data is from a run in which there was in fact no 

eavesdropping, but the eavesdropper's potential information was nevertheless con- 

servatively estimated as described above from the estimated error rate and known 

pulse intensity. The second batch of data illustrates the ability to distill a small 

amount of shared secret key from a run with significant amounts of both kinds of 

eavesdropping. 

5.1. A Run Without Eavesdroppin9 

Here is some of the raw data obtained from data exchanged over the quantum 

channel on 27 February, 1991. 

Alice 

ooo1011110111011ooo110oooolooo o110o11111111011111o OlOlO,0Oo 01111111Ol oo0o1111111111010101 oooo101101 

0011011101 0100001001 1111001101 1000000010 1011101010 0011011111 1010001001 0000011010 1101010000 1011001100 

01010100100101010011 0000000010 0001100111 1011011011 0101100011 1100111011 110011110100000101100100000010 

10000111100010110000 1000111111 1111101011 1010001110 1101000111 1010100100 0001010100 1010000010 0101010101 

1101001110 1100000111 0001111000 1010010010 1101000100 0011111010 1110101100 0000111011 1110101001 1010011011 

Bob 

0001011100 1110110001 10000010000110011111 111011111001010110000111111101 0000111111 1111010101 0000101101 

0011011101 0110001001 1111001101 10013000010 1011101010 0011011111 1010001001 0000011010 1101010000 1011001100 

01010100100101010011 00100000100001100111 1011011011 0101100011 1100111011 1100111101 10000101100110000010 

10000111100010110000 1000111111 1111101011 1010001110 1101000111 10101001000001011100 10000000100101011101 

1101001110 1100000111 0001111000 1010010010 1101000100 0011111010 11101011000000111011 1110101001 1010011011 

In this first example, out of about 715,000 pulses of intensity # -- 0.12 sent by Alice, 

2000 were received in the correct basis by Bob. This quantum transmission took 

about 10 min of real time. Bob's string contained 79 errors, an error frequency 

of 3.95~o. 

A random permutation and block parity comparison was performed with block 

size 14, reducing the string length to 1678 bits with 29 remaining errors. 

A second random permutation and block parity comparison was performed with 

block size 20, reducing the string length to 1483 bits with 4 remaining errors. 

A third random permutation and block parity comparison was performed with 

block size 28, reducing the string length to 1420 bits with 2 remaining errors. 
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Random subset parity comparison was then begun, revealing an error on the first 

attempt. Removal of the error reduced the string length to 1410 bits, with 1 

remaining error. 

Random subset parity comparison was resumed, revealing an error on the second 

attempt. Removal of the error reduced the string length to 1399 bits, with no 

remaining errors. 

Twenty random subset parities were then computed and found to agree, confirm- 

ing to Bob and Alice that with high probability their remaining strings, now 1379 

bits long, were identical. 

A total of 76 errors were discovered during reconciliation. Using a simple inter- 

polation formula, Bob and Alice estimated that about 3.6 errors had been eliminated 

without noticing, when bits were discarded in order to avoid leaking information to 

Eve during reconciliation. Hence, the original error rate was estimated to be 3.98~o. 

Potential information leakage to Eve (and standard deviation) was therefore esti- 

mated to be equivalent to 466 (___ 27.5) deterministic bits, comprising 226 bits from 

intercept/resend and 240 bits from beamsplitting, based on pulse intensity/~ = 0.12. 

Therefore, allowing 159 bits (5a + 21) excess compression for safety, it was 

decided to compress the string 625 bits by random subset hashing, leaving 754 bits 

of shared secret key distilled from 2000 original bits. Eve's expected information on 

this key was less than 10 -6 bit, based on the privacy amplification theorem and the 

probability of a 5a statistical deviation. In reality, of course, Eve has no information 

at all on this key since she did not eavesdrop on the quantum transmission, and 

the public reconciliation protocol is designed not to increase her information 

subsequently. 

5.2. A Run with Substantial Eavesdropping 

Substantial eavesdropping was attempted in the second example. Out of another 

approximately 715,000 light pulses of intensity/~ = 0.12 sent by Alice, 2000 were 

received in the correct basis by Bob. Through attempting to beamsplit all the pulses, 

and intercept/resending one-eighth of them, the simulated Eve learned 336 indivi- 

dual bits of Alice's data, while increasing Bob's error frequency to 8.00% (160 errors). 

Eve read her selected pulses in random canonical bases, using a separate portion 

of the random bit diskette to make her decisions. 

A random permutation and block parity comparison was performed with block 

size 7, reducing the string length to 1424 bits and leaving 49 errors. 6 Eve's informa- 

tion about the remaining string was still no more than 336 bits, and included 

knowledge of 242 individual bits. 

A second random permutation and block parity comparison was performed with 

block size 10, reducing the string length to 1153 bits and leaving 11 errors. Eve's 

information about the remaining string was still no more than 336 bits, and included 

knowledge of 192 individual bits. 

A third random permutation and block parity comparison was performed with 

6 They start with a block size different from that of the previous example because of reason (1) given 
at the beginning of Subsection 5.3. 
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block size 14, reducing the string length to 1027 bits and leaving no errors. Eve's 

information about the remaining string was still no more than 336 bits, and included 

knowledge of 167 individual bits. 

Twenty consecutive successful random subset parity comparisons with no failures 

convinced Alice and Bob that their strings, now consisting of 1007 bits, were very 

probably identical. Eve's information about the remaining string was still no more 

than 336 bits, and included knowledge of 164 individual bits. 

From the 148 errors found during reconciliation, Alice and Bob estimated that 

about 14 errors had been eliminated without noticing. Hence, the original error 

rate was estimated to be 8.10~o. Potential information leakage to Eve (and standard 

deviation) was therefore estimated to be equivalent to 699 ( + 36.3) deterministic bits, 

comprising 459 bits from intercept/resend and 240 bits from beamsplitting, based on 

pulse intensity # = 0.12. 

Therefore, allowing 203 bits (5a + 21) excess compression for safety, it was 

decided to compress the string 902 bits by random subset hashing, leaving 105 bits 

of shared secret key distilled from 2000 original bits. The 902-bit compressive 

hashing used to obtain the key was based on very conservative estimates of what 

Eve might know. Since she actually knew only 336 bits, this compression sufficed 

to reduce her expected information about the key to a ridiculously low level of 
2-(9~ 2, or about 6 x 10 -171 bit. 

5.3. Additional Remarks 

The 2000-bit batch size used above for illustrative purposes is less than optimal. 

In production use, a larger batch size should be used for three reasons: 

(1) It would allow the users, by preliminary sampling, to get a good estimate 

of the bit error rate and so optimize the choice of block sizes used in the 

reconciliation stage; 

(2) by reducing the statistical uncertainty in estimating Eve's possible informa- 

tion, it would reduce the proportional amount of compression needed in the 

privacy amplification stage to assure a given level of security; and 

(3) if authentication of the public channel messages is necessary, the amount of 

key Alice and Bob must use up for this purpose is independent of batch size, 

hence the key expands by a larger factor the larger the batch size. 

Let us finally recall that the reconciliation protocol described in this paper and 

used in our two examples is not the best possible. We ran our currently best protocol 

on the same data with the following results. The data in which 79 errors occurred 

in 2000 bits was reconciled at the cost of disclosing 530 bits of information (instead 

of 601 bits with the other protocol). Taking account of the subsequent 20 random 

subset parities to confirm success of the reconciliation and of the compression by 622 

bits 7 needed to eradicate the eavesdropper's information, the final secret key, the 

7 We compress by 622 bits rather than 625 bits because one advantage of the new protocol is 
that it determines the exact number of errors, hence the potential leakage from intercept/resend is 
estimated more accurately. 
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same for Alice and Bob, was 828 bits in length (instead of 754). The data in which 

160 errors occurred in 2000 bits was reconciled at the cost of disclosing 868 bits of 

information (instead of 973). Taking account of the subsequent 20 random subset 

parities to confirm success of the reconciliation and of the compression by 895 bits 

needed to eradicate the eavesdropper's information, the final secret key, the same 

for Alice and Bob, was 217 bits in length (instead of 105). We do not describe this 

improved protocol here because it is still experimental and because it may well be 

that we shall discover yet a better protocol that bears no or little resemblance to our 

currently best protocol. The final protocol will be discussed in a subsequent paper. 
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Appendix. lntercept/Resend and Privacy Amplification 

The first part of this Appendix discusses in more detail the tradeoff between 

information gained and disturbance caused when Eve intercepts a pulse from Alice 

and resends it to Bob. The second part generalizes the privacy amplification tech- 

niques of [12] to show how Alice and Bob can nearly eradicate Eve's information. 

The generalization is necessary because 1-12] deals with deterministic information, 

whereas the information Eve gains through intercept/resend is generally of a prob- 

abilistic nature. For simplicity, we shall assume throughout this Appendix that 

Alice's pulses are pure single-photon states. This is justified because the threat 

created by multi-photon pulses is taken care of in the analysis of the beamsplitting 

attack (Subsection 4.2). 

A.1. Error Rates for Eve and Bob in Intercept/Resend 

Recall that the light pulses comprising the quantum transmission are prepared in a 

random sequence of the four canonical polarizations. In the intercept/resend attack, 
Eve intercepts selected pulses and measures them in bases of her choosing, then she 

fabricates and sends to Bob other pulses in their place. Subsequently, too late to 
influence her choices of measurement, Eve is told whether the original pulses were 

from the rectilinear or circular bases. Eve would of course like to learn the polariza- 
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tion of the intercepted pulses exactly, and fabricate exact copies of them, but the 

uncertainty principle prevents her from doing so. Here we sketch a proof that the 

intercept/resend attack tells Eve the value of Alice's bits with probability at most 

(2 + x/~)/4 ~ 85~o, while inducing an error with probability at least 25~o for each 

fabricated pulse that is later successfully measured by Bob in the correct original 

basis. 

Before proceeding it is should be noted that the kind of information Eve receives 

about Alice's bit depends on the basis in which Eve makes her measurement. If she 

uses either canonical basis, her information will be deterministic, since the subse- 

quent public announcement of the correct basis will tell her either that she has 

learned Alice's bit correctly (having measured it the correct basis), or that she has 

spoiled the bit and knows nothing about it. On the other hand, if Eve uses an 

intermediate basis halfway between rectilinear and circular (the so-called Breidbart 

basis [7], to be described below), her information remains probabilistic, consist- 

ing of a measurement result that agrees with Alice's bit with probability ~a = 

(2 + x//2)/4 ~ 85Vo regardless of the announced basis. Even though the Breidbart 

measurement provides less Shannon information, 1 + ~a log 2 ~a + (1 - ga) x 

log2(1 - go) ,,~ 0.399 bit, than the �89 expected bit of deterministic information pro- 

vided by a measurement in rectilinear or circular bases, it is conceivable (see the 

second part of the Appendix) that this probabilistic information requires Alice and 

Bob to throw away more information from the raw quantum transmission during 

privacy amplification than if Eve had used canonical bases. 

The remainder of this part of the appendix justifies the lower bounds 25~o and 

15~o claimed above for Bob's and Eve's respective error probabilities on those 

successful pulses subjected to intercept/resend attack. It may be omitted by those 

uninterested in the physical details of polarization measurements. 

An arbitrary polarization state may be described by giving a point Q = (X, Y, Z) 

on the unit sphere X 2 + yZ + Z 2 = 1, called in this context the Poincar~ sphere. 

The parameters X, Y, and Z represent, respectively, the rectilinear, diagonal, and 

circular components of state Q, and they can be determined with arbitrary accuracy 

for a bright beam of light consisting of many photons. However, the best that can 

be done to measure the polarization of a single photon is to cause it to interact with 

a measuring apparatus that forces it to choose between two states of a basis, i.e., a 

pair of state characteristic of the measuring apparatus, and represented by a pair 

of diametrically opposite points {P, - P }  on the Poincar6 sphere. Upon encoun- 

tering the measuring apparatus, a single photon in general behaves probabilistically: 

if a photon in state Q is measured in basis {P, - P } ,  it behaves like state P with 
probability cosZ(~/2) = (1 + cos ~)/2, where ~ is the angle between points P and Q 

as seen from the center of the Poincar6 sphere, and like state - P with the comple- 

mentary probability sin2(ct/2) = (1 - cos ~)/2. Thus we see that the photon behaves 

deterministically precisely if Q = + P because in this case c(/2 is either 0 ~ or 90 ~ 

Subsequent measurements yield no further information about the original state Q, 

because the measuring apparatus necessarily either destroys the photon or forces 
it into one of the basis states _ P characteristic of the most recent measurement. 

Two bases are conjuoate [27] if the corresponding pairs of points are 90 ~ apart 

on the Poincar6 sphere. The three standard mutually conjugate bases (rectilinear, 
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diagonal, and circular) are conventionally identified with the intersections of the 

sphere with the X, Y, and Z axes, respectively. Thus, we may think of the polarization 

state (1, 0, 0) as horizontal, ( -  1, 0, 0) as vertical, (0, 1, 0) as 45 ~ (0, - 1, 0) as 135 ~ 

(0, 0, 1) as left-circular, and (0, 0, - 1) as right-circular. A state from one basis will 

behave randomly and equiprobably if measured in another basis conjugate to the 

first, because cos 2 45 ~ = �89 

Suppose Alice sends a photon from the rectilinear basis (+  1, 0, 0), which is 

intercepted and measured by Eve in an arbitrary basis {P, - P}, where P = (X, Y, Z). 

Without loss of generality we assume X to be positive.S The measurement is counted 

as correct if it yields P when in fact the incoming photon was in polarization state 

(1, 0, 0) or if it yields - P when in fact the incoming photon was in polarization state 

( -  1, 0, 0); otherwise, the measurement is counted as an error. From the sinZ(~/2) 

law, it is clear that Eve's error probability is (1 - X)/2 for either type of rectilinear 

photon. Suppose Eve next resends the photon in another basis {P', - P' }, according 

to the result {P, - P} obtained in the first measurement, and finally that this photon 

is measured by Bob in the original rectilinear basis. Further application of the 

sin2(~/2) law shows that Bob's resulting error probability is �88 - X)(1 + X') + 

(1 - X')(1 + X)]. Similarly, for circular photons (0, 0, ___ 1) sent by Alice and even- 

tually received in the circular basis by Bob, the error probabilities induced by 

the same intercept/resend attack would be (1 - Z ) / 2  and �88 - Z ) ( 1  + Z ' ) +  

(1 - Z')(1 + Z)], for Eve and Bob, respectively. The mean error probabilities aver- 

aged over both sending bases for Alice are thus 

�88 - X)  + (1 - Z ) ]  

for Eve, and 

81-[(1 --  X)(1  + X')  + (1 --  X') (1  + X)  + (1 --  Z)(1 + Z') + (1 - Z')(1 + Z ) ]  

for Bob. From these formulas it can be verified that: 

�9 Eve's error probability, averaged over Alice's two sending bases, attains its 

minimum value when X + Z is maximized, subject to X 2 + y2 + Z 2 = 1, 

which is clearly when X = Z = x/~/2 and Y = 0. In that case, Eve's error 

probability is (2 - x/~)/4 ~ 15%. This happens when Eve performs her mea- 

surement in a basis midway between the rectilinear and circular bases, hence- 

forth called the Breidbart basis [7]. 

�9 Bob's error probability attains its minimum value of �88 when Eve uses the same 

basis to resend as she used to intercept (i.e., P' = P), and this minimum value 

is achieved for any basis in the X Z  plane. In particular, Bob's error probability 

is �88 when Eve intercept/resends in either the rectilinear, the circular, or the 

Breidbart basis. By contrast, Bob's error probability is necessarily larger than 

�88 if P' # P or if Y r 0, which means that Eve would create more errors than 

8 If X is negative and the measured photon is rectilinear, Eve will obtain the correct result with 

probability less than �89 However, she will discover this when the correct bases are announced on the 

public channel, and she can then negate her reading in order to obtain the correct bit with probability 

better than �89 This is very much like using a binary symmetric channel with known error probability 
greater than �89 
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necessary if she does not resend in the interception basis or if she intercepts in 

a basis that contains a diagonal component. In particular, Bob's error will be 

exactly �89 if Eve intercepts in the diagonal basis (0, ___ 1, 0), regardless of her 

resending basis. 

�9 Before public announcement of Alice's basis, Eve's a priori error probability 

on any given bit is �88 - X) + (1 - Z)] as noted above. When the basis is 

announced, Eve will learn that her error probability for that bit was either 

( 1  - X)/2 or (1 - Z)/2, according to whether the announced basis was recti- 

linear or circular. Her a priori information is maximized (at ,~0.399 bit) by 

intercept/resending in the Breidbart basis, while her expected a posteriori 

information is maximized (at i bit) by intercept/resending in the rectilinear or 

circular basis. 

Although we have implied above that any measurement by Eve on one of Alice's 

photons will induce an error with probability at least �88 if the photon (or Eve's 

fabricated pulse) is later measured by Bob, this is only true if Eve's measuring 

apparatus actually interacts with the photon. Eve could have a "measuring appara- 

tus" that simply lets the photon pass undisturbed, while also not telling her anything 

about it. Between these two extremes, Eve might have an apparatus that, whenever 

she attempted to use it, measured the photon with probability s _< 1, otherwise 

letting it pass. Clearly, such a sometimes-measurement yields no more than an s/2 

expected bit about the photon's polarization, while inducing an error with probabil- 

ity at least s/4. Such a sometimes-measuring apparatus grants Eve no power she 

does not already have, by virtue of her ability to decide probabilistically whether 

or not to make an ordinary measurement. 

A.2 Privacy Amplification Against Probabilistic Information 

Assume that Eve performs intercept/resend on k successful pulses. If she uses 

canonical bases, she expects to learn the values of k/2 physical bits in Alice's string, 

whereas if she uses any other basis she will learn less, and her information will be 

of a probabilistic nature. At first sight, Eve's optimal strategy would thus appear 

to be to intercept/resend all the selected pulses in rectilinear or circular bases, a 

choice that also allows her to achieve minimal disturbance, k/4 expected errors, in 

the transmission reaching Bob. This reasoning would be valid if Eve wanted to 

maximize her information on the raw quantum transmission, but of course she wants 

to maximize her information on the final string shared between Alice and Bob after 

reconciliation and privacy amplification. The problem is that k bits known by Eve 

with probability roughly 85~ each, even though they hold less information, turn 

out to be more resistant to privacy amplification than k/2 bits known with certainty. 

Recall that the main privacy amplification theorem [12] says that if Eve knows 

l deterministic bits of information about an n-bit string x, and if a suitable hash 

function h: {0, 1}" ~ {0, 1} "-l-~ is then publicly but randomly chosen and applied 

to x, Eve's expected information on the value of the hash function h(x) will be less 

than 2-~/ln 2 bit, where s > 0 is an arbitrary safety parameter. This theorem is not 

directly applicable to the situation in which Eve intercepts pulses in the Breidbart 
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basis because in that case her information is probabilistic, consisting of knowledge 

ofk bits ofx  with 85~ probability. The difference between the two situations is that, 

in the case of deterministic information, Eve has a set of candidates, all equally 

plausible, for what x might be; whereas here her knowledge is characterized by a 

nonuniform probability distribution p(x) in which candidates disagreeing with some 

of Eve's Breidbart measurements receive correspondingly less weight, but are not 

excluded outright. In I-9] it is shown that such a nonuniform distribution of 

candidates resists privacy amplification no better than a set of 1/~ x p2(x) equally 

weighted candidates, and therefore that k bits known with 85~ probability, which 

supply 0.399 x k bits of Shannon information, may resist privacy amplification 

somewhat better than 0.399 x k bits of deterministic information, but can do so no 

better than (1 + 1og2(0.852 + 0.152)) • k ,~ 0.585 x k deterministic bits. 9 There- 

fore, regardless of which basis Eve uses to intercept and resend, she cannot learn 

more than the privacy-amplification equivalent of 0.585 bits of deterministic infor- 

mation per successfully intercepted bit. 

In the present paper, rather than justifying and using the above expressions for 

the true privacy-amplification equivalent of probabilistic information, we will derive 

and use a somewhat cruder upper bound ofk/x/~ = 0.7071 x k bits on the amount 

of deterministic information required by Eve to simulate the effect of knowing k of 

Alice's bits with 85~o probability. This approach involves introducing a new actor, 

whom we call Big Brother. We assume that Big Brother is given a fair coin, a biased 

coin whose bias is under his control, immediate access to all the bases used by Alice 

in forming her quantum transmission, and the ability to look at any of Alice's bits 

and learn its value reliably if he chooses to do so. Each time Eve decides to measure 

a pulse, Big Brother steps in and supplies her with a simulated reading (described 

below) that is statistically indistinguishable from the actual reading she would have 

obtained without his presence. The key point is that Big Brother does not always 

need to look at Alice's bit in order to supply Eve: sometimes he can get away with 

tossing a coin instead. 

Consider first the simple case in which all of Eve's measurements are in the 

Breidbart basis. Each time that Eve selects a pulse for interception, Big Brother flips 

a biased coin. With probability 1/x/~, he looks at Alice's bit and gives it to Eve. 

Otherwise, he flips a fair coin and gives its outcome to Eve. Clearly, Eve gets Alice's 

bit with probability (1/xf2) • 1 + (1 - 1/x/~ ) x �89 = (2 + x/~)/4, exactly as she 

should have by intercepting in the Breidbart basis. 

More generally, consider the case in which Eve measures Alice's photon in 

an arbitrary basis, having components X, Y, and Z, respectively, of rectilinear, 

diagonal, and circular polarization, as explained in the preceding subsection. Using 

the formulas of that subsection, it is clear that Big Brother will correctly simulate 

9 In more detail, it is shown in [9], by arguments similar to those used in the context of quasi-perfect 

pseudorandom number generation by Impagliazzo and Zuckerman I-21], that the property of a distribu- 

tion most simply affected by privacy amplification is its Renyi or collision entropy - log2 ~x p2(x) which 

is less than the Shannon entropy except for uniform distributions where the two are equal. Hashing an 

input with Renyi entropy r down to an output of size less than r bits is necessary and sufficient to make 

the output's Renyi entropy near-maximal, which in turn forces the Shannon entropy to be near-maximal. 
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Eve's data if he uses his prior knowledge of Alice's basis to decide between two 

courses of action. 

�9 If Alice's basis was rectilinear, Big Brother looks at Alice's bit with probability 

X and feeds it to Eve; otherwise, he feeds her a fair coin toss. In this case, Eve 

gets Alice's bit with probability X x 1 + (1 - X) x �89 = (1 + X)/2, exactly as 

she should. 

�9 If Alice's basis was circular, Big Brother looks at Alice's bit with probability 

Z and feeds it to Eve; otherwise, he feeds her a fair coin toss. In this case, Eve 

gets Alice's bit with probability Z x 1 + (1 - Z) x �89 = (1 + Z)/2, exactly as 

she should. 

Clearly, Big Brother has to look at Alice's bit with probability (X + Z)/2. Subject 

to the constraint that X 2 + Z 2 < 1, this probability is maximized at X = Z = 

x//2/2, in which case it takes the value l/x//2. Thus we see that Eve forces Big Brother 

to spy hardest on Alice's bits precisely when she chooses to intercept in the Breidbart 

basis. 

To complete the reasoning we note that, after all bases have been disclosed, Big 

Brother's expected information on Alice's bit string consists of I < k/v~2 physical 

bits of Alice's data, which may be viewed as the value of an /-bit deterministic 

function F of Alice's bits, where the function F is probabilistically chosen by Big 

Brother, who knows her bases but not her bits. Therefore Big Brother's information 

can be obliterated almost completely by privacy amplification. On the other hand, 

Eve knows no more about Alice's bits than what Big Brother has told her, which 

is generally less than all he knows. Therefore, Eve's information on Alice's string 

will also be almost obliterated by the same privacy amplification. 

Of course, Alice and Bob need to estimate the number I of bits obtained by Big 

Brother in order to apply privacy amplification. Because each pulse fabricated by 

Eve has at least a 25~o chance of creating an error, and because Big Brother obtains 

a bit of Alice's string with probability no better than l /v /2  when Eve attempts 

intercept/resend, it is clear that l can be estimated as (4/x/~)t, where t is the number 

of errors between Alice's and Bob's data. However, a complication arises because 

Alice and Bob need to estimate not only the expected value of I but also its standard 

deviation, in order to apply privacy amplification conservatively as if Big Brother 

had obtained 5 standard-deviation more bits than expected. 

In order to calculate this standard deviation [22], let k denote the (unknown) 

number of pulses subjected to intercept/resend, let t denote the (observed) 1~ number 

of errors, and let I denote the (unknown) number of bits leaked to Big Brother under 

the assumption that Eve used the optimal Breidbart basis for all her intercepts. It 

is clear that t is a Binomial (k, �88 whereas l is a Binomial(k, l /x /2  ). Let us now 

estimate l by l '= (4/x/~)t. The variance o f / i s  k(1/x//2)(1 - l/x//2), which can be 

estimated as 4t(1/x//2)(1 - 1/x/~ ). The variance of our estimator 1is 3k/2, which can 

10 Using the reconciliation protocol described in this paper, t is estimated by interpolation rather than 
being actually observed. To be exact, we should have taken account also of that estimate's variance. We 
did not worry about this additional complication because our currently best reconciliation protocol 
(mentioned but not described in this paper) obtains the exact value for t. 
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be estimated as 6t (it is (4/X//2) 2 times the variance of t). What we need, however, is 

the variance of the error in our estimate, i.e., the variance of I - ~. A calculation 

involving the central limit theorem shows that if k is large enough (about k = 30 

suffices for all practical purposes), the distribution of l -  ~ is nearly a normal 

of mean 0 and variance k x (2 + V/2)/2. It follows that this variance can be esti- 

mated by t x (4 + 2x/~ ), and thus the standard deviation can be estimated as 

~/(4 + 2~c2)t. 
A similar analysis can be made about Eve's benefit from the beamsplitting attack 

if she does not have the superior technology required to store pulses for an arbitrarily 

long time before measuring them. 

Note Added in Proof. Further work with Claude Crrpeau [8] has shown that Eve's 

optimal intercept/resend strategy, if she wishes to maximize her expected Shannon 

information on the final key string shared between Alice and Bob, is to measure her 

selected pulses in canonical (rectilinear or circular) bases. The estimate in Section 4.3 

that as much as 1/x/~ bit of compression might be needed during privacy amplifica- 

tion to combat each intercept/resend was therefore overly conservative: �89 bit com- 

pression per intercept/resend would have sufficed. Accordingly, the privacy amplifi- 

cation used on the experimental data in Section 5 actually leaves Eve with far less 

than 10 -6 bits expected information on the final key. It is interesting to note that 

if, instead of wishing to maximize her information on the key, Eve wishes to 

maximize her (very small) chance of guessing the entire key correctly, her optimal 

strategy is to conduct all her measurements in the intermediate Breidbart basis. 
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