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The e�cient characterization of quantum systems1–3, the veri-
fication of the operations of quantumdevices4–6 and the valida-
tion of underpinning physical models7–9, are central challenges
for quantum technologies10–12 and fundamental physics13,14. The
computational cost of such studies could be improved by mac-
hine learning enhanced by quantum simulators15,16. Here we
interface two di�erent quantum systems through a classical
channel—a silicon-photonics quantum simulator and an elec-
tron spin in a diamond nitrogen–vacancy centre—and use the
former to learn the Hamiltonian of the latter via Bayesian
inference. We learn the salient Hamiltonian parameter with an
uncertainty of approximately 10−5. Furthermore, an observed
saturation in the learning algorithm suggests deficiencies in
the underlying Hamiltonian model, which we exploit to further
improve themodel.We implement an interactive version of the
protocol and experimentally show its ability to characterize the
operation of the quantum photonic device.

In science and engineering17,18, physical systems are approxi-
mated by simplified models to allow the comprehension of their
essential features. The utility of the model hinges upon the fidelity
of the approximation to the actual physical system, and can be
measured by the consistency of the model predictions with the real
experimental data. However, predicting behaviour in the exponen-
tially large configuration space of quantum systems is known to
be intractable to classical computing machines19,20. A fundamental
question therefore naturally arises: How can underpinning theoret-
ical models of quantum systems be validated?

To address this question, quantum Hamiltonian learning (QHL)
was recently proposed15,16 as a technique that exploits classical
machine learning with quantum simulations to efficiently validate
Hamiltonian models and verify the predictions of quantum systems
or devices. QHL is tractable in cases in which other knownmethods
fail because quantum simulation is exponentially faster than existing
techniques19–21 for simulating broad classes of complex quantum
systems22–26. Our experimental demonstration of QHL uses a digital
quantum simulator20 on a programmable silicon photonic circuit,
shown in Fig. 1a–c, to learn the electron spin dynamics of a neg-
atively charged nitrogen–vacancy (NV−) centre in bulk diamond,
shown in Fig. 1d,e. We further demonstrate an interactive QHL
protocol that allows us to characterize and verify single-qubit gates
using other trusted gates on the same quantum photonic device.

Silicon quantum photonics is a promising platform for the
realization of manufacturable quantum technologies27–30. Our
silicon device integrates entangled photon generation, projective
measurements, single-qubit and two-qubit operations onto a single
chip, as shown in Fig. 1c. This device implements the quantum

circuit in Fig. 1b. Photons are generated and entangled in the
path-encoded state (|0s〉|0i〉+|1s〉|1i〉)/

√
2, with s and i indicating

signal and idler photons29. Then the idler photon is prepared in
the state |ψi〉 and undergoes an arbitrary unitary evolution, Û or
V̂ , conditional upon the logical state of the signal photon31. This
entangled state (|0s〉Û |ψi〉+ |1s〉V̂ |ψi〉)/

√
2 is realized upon the

coincidental detection of the idler photon indicated by the blue
dots, and the signal photon indicated by the red dots in Fig. 1c.
The overlap between Û |ψi〉 and V̂ |ψi〉 is evaluated measuring the
control qubit, enabling the estimation of the likelihoods for ourQHL
implementations. More details on the silicon photonic device are
provided in Methods and Supplementary Information 1.

The solid-state spin-qubit dynamics32–36 under test are between
the ms= 0 and ms=−1 states of the electron ground-state triplet
(Fig. 1f) in the NV− centre. Optical addressing, read-out, and
microwave (MW) manipulation of the electron spin are performed
with a bespoke confocal microscope arrangement. At the transition
frequency of 2.742GHz, the electron spin is optically initialized into
the ms = 0 state. The electron spin is then coherently driven in
a single Rabi sequence (Fig. 1g), for a given evolution time t , by
applying MW pulses of a fixed but arbitrarily chosen power. The
photo-luminescence (PL) indicating the spin state is detected and
used to obtain the output probability. For more details on NV− spin
see Methods and Supplementary Information 2.

The general aim of QHL is to find the parameters x0 that best
describe the dynamical Hamiltonian evolution of the system via
Ĥ0= Ĥ(x0). Learning the Hamiltonian relies on an estimation of
likelihoods, which can be exponentially hard to compute on classical
machines. However, a quantum simulator can be programmed for a
parametrized Hamiltonian Ĥ(x) such that the observed data allows
the efficient estimation of its associated likelihoods. The first QHL
protocol we implemented is called quantum likelihood estimation
(QLE). The initial state |ψ〉 of the target system is evolved for a
time t and measured in a basis {|D〉}, as shown in Fig. 2a. The
observed data D is fed to the quantum simulator which simulates
state evolution and measurement assuming Ĥ(x) as the true
Hamiltonian. Given x, the probability Pr(D|x)= |〈D|e−iĤ(x)t |ψ〉|2
of obtaining D is known as the likelihood function for QLE. We
then use Pr(D|x) in combination with an approximate form of
Bayesian inference known as sequential Monte Carlo algorithms
(SMC) to learn x and estimate its uncertainty. In this approximation,
a finite set of points in the parameter space {xi}, called particles,
is used to describe the probability distribution (see Methods
for details).

Our silicon-photonics device and theNV− centrewere interfaced
with a classical computer, such that experimental data directly
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Figure 1 | Quantum photonic simulator and diamond nitrogen–vacancy centre. a–c, The silicon quantum photonic simulator: experimental set-up (a),
quantum circuit (b), and device schematic (c). The operation, either Û or V̂, on the qubit |ψ〉, is entangled with the states, |0〉 or |1〉, respectively, of the
control qubit. The device in c implements the logical circuit. A 10mW continuous-wave pump laser with near-1,550 nm wavelength is coupled into the chip
through optical fibres. In c, black lines are silicon nano-photonic waveguides (Si-WG), and gold wires represent thermo-optical (TO) phase shifters and
their transmission lines. A pair of idler (blue) and signal (red) photons with di�erent wavelengths are generated via spontaneous four-wave mixing
(SFWM) in the spiral waveguide sources. These photons are split equally via multi-mode interferometer (MMI) beam splitters, producing a post-selected
maximally entangled state. The operation Û or V̂ performed on idler qubit is coherently controlled by the state of the signal qubit. Performing
measurements M̂ on the signal qubit allows one to estimate the likelihood function for the chosen configuration of the device. Photons are detected
o�-chip by fibre-coupled superconducting nanowire single-photon detectors (SNSPD). d, Confocal set-up with diamond (inset) containing NV− centres.
e,f, Structure and energy level diagram, respectively, of an NV− centre in diamond. The ground-state electron spin Hamiltonian, describing the coherent
dynamics betweenms=0 and−1, is to be characterized and learned using the quantum simulator in a. g, A single Rabi sequence for the initialization,
manipulation and read-out of the electron spin state. A laser pulse at 532 nm is used to initialize the spin intoms=0. Two microwave (MW) π/2-pulses
with a time t delay are then used to coherently drive the spin. The spin state is measured by detecting photo-luminescence (PL) with an avalanche
photodiode (APD). These two di�erent physical systems are interfaced through a classical computer.

enabled QLE. Rabi oscillations of the NV− centre’s electron spin can
be modelled by a Hamiltonian of the form Ĥ(f )= σ̂x f /2 acting on
the initial state, defining σ̂x as the quantization axis (this definition
is equivalent to the conventional model σ̂z f /2 up to a rotation of
reference frame). The silicon-photonics chip simulated the model
Ĥ(f ) to learn the Rabi frequency f and to enable the calculation of
the likelihood function for each particle. At each step of the QLE
implementation, the evolution time t was chosen adaptively for the
NV− electron spin performing a single Rabi sequence. PL results
were calculated from 3 million iterations for each sequence. The
likelihoods obtained were then used to update the prior distribution
via the classical computer, before proceeding to the next step. The
prior distribution Pr(f ) of the particles was initialized to be uniform
between 0 and an arbitrary value1f , where we chose1f =100/2π
MHz. For clarity, we consider the rescaled quantity ω = f /1f
distributed in the interval ω∈[0, 1].

We performed QLE with 50 steps using a 20-particle SMC app-
roximation to learn the electron spin dynamics of the system. Fig-
ure 2b,c show the particle distribution converging to the correct
value ω0. The final learned value corresponds to the Rabi frequency
f QLE= (6.93±0.09)MHz, given by the mean and standard devi-
ation of the distribution, which is consistent with the referenced
value f0= 6.90MHz obtained with the fit of the Rabi oscillations
measurements (see Supplementary Information 2). Thus the sim-
ulator successfully learns the parameter that best represents this
Hamiltonian, without prior knowledge of the Rabi frequency. We
note that the total number of measurements on the NV− system
required for QLE is smaller than those for the fit ('200). The
fast experimental convergence of the algorithm to ω0 is observed
through the evolution of the quadratic losses (here equal to the
mean-squared errors) of the particle distribution achieving a final
value of approximately 10−5, as shown in Fig. 2d.

Figure 2e reports the evolution of the distribution variance and
shows an exponential decay in the first 35 steps. The stepping of data
points, for example, near steps 15 and 24, arises from the proba-
bilistic nature of the learning algorithm. We note that the variance
σ 2 saturates at approximately 4.2× 10−5. This saturation indicates
that the algorithm stops learning within this model (Model I). Such
saturations are easy to spot within a Bayesian framework, because
σ 2 can be directly computed from the posterior distribution. This
strikingly illustrates that QHL can estimate the limitations of the
physical model used to describe the dynamics of the system.

Knowing when a model has failed affords us the opportunity to
improve upon it. The present model was improved by introducing
chirping, described by a time-dependent Hamiltonian Ĥ ′(f ,α; t)=
σ̂x(f + αt)/2 (Model II), where α is a chirping constant. Includ-
ing chirping allows the algorithm to continue learning with an
exponential decay of the covariance below ‖6‖2= 7.5× 10−6 (see
Fig. 2e). The final learned values of the two parameters are fQLE
= (7.00± 0.04)MHz and αQLE= (−0.26± 0.04)MHz2, which are
comparable with the values f0= 6.94MHz and α0=−0.28MHz2
calculated with a full chirped Rabi fit (Supplementary Informa-
tion 3). A formal comparison between the performances of the two
models is given by the Bayes factor K , defined as the ratio of the
average likelihoods calculated for each of the two models. Consid-
ering all of the data collected from the NV− centre in performing
the algorithm, we obtain K = 560, which provides strong evidence
in favour of the new model (despite its increased complexity).
This demonstrates that QHL not only estimates the best model
parameters, but that it also instructs us to improve the model itself,
providing potentially crucial insights into underpinning physical
processes. See Supplementary Information 3 for details.

Although QLE is scalable, it often requires short evolution times
to ensure the likelihood evaluation is tractable, which can preclude
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Figure 2 | Learning the electron spin dynamics on the quantum photonic simulator using QLE. a, Schematic of QLE. The system Hamiltonian Ĥ(x0)
(shaded green) is to be learned by a quantum simulator (shaded red) that embeds an abstract model Ĥ(x) of the target system. We here choose an
electron spin in the NV− centre as the target system and use a silicon photonic device as the simulator. In the system, the initial state |ψ〉 is evolved for a
time t and measured. The simulator mimics the system dynamics according to the model and obtains an estimate of the likelihood function using the
outcomes from the system. The likelihoods are then used to infer the posterior distribution of the parameters x via Bayes’ rule and to calculate the next
step time t. b, The QLE progressive learning of the electron spin Hamiltonian parametrized by a rescaled Rabi frequency ω= f/1f. The probability
distribution over Hamiltonian parameter ω is described by a discrete approximation using 20 particles. The logarithmic (rather than linear) scale of
probability log(P(ω)+ 1) is used to better elucidate the key information including the convergence. Within 50 steps, the distribution converges to the
correct value ω0 (dashed red line). Insets: the distribution of particles after 15, 30 and 50 steps. The points represent experimental data and the shaded
areas are un-normalized Gaussian fittings. c, Evolution of the mean and standard deviation of the distribution. Error bars are±1 s.d. of the distribution.
d, Evolution of the quadratic losses, here equivalent to the mean-squared errors. Circles are experimental data and the line represents theoretical
simulation results with a 67.5% credible interval (shaded area). The theoretical simulation was averaged over 500 runs of QLE. e, Model validation and
improvement. The presence of other physical e�ects in the system that are not describable by the model Ĥ(ω) (Model I) limits the amount of extractable
information, as manifested by a saturation of the distribution variance at σ 2(ω)'4.2× 10−5 after approximately 35 steps. The adoption of a new
two-parameter model Ĥ′(ω,α) (Model II), which includes the presence of chirping, allows one to achieve a covariance below ‖6‖2=7.5× 10−6

(the shaded area). Inset: covariance norm evolution of the Model II.

exponential reductions in the number of experiments needed, and
makes the SMC approximationmore error prone. Yet if it is possible
to couple two quantum devices via a quantum (rather than a
classical) channel, such as photon–NV− spin coupling systems33 or
different gates on a single photonic chip10, an interactive quantum
likelihood estimation (IQLE) algorithm can be adopted to overcome
these problems15,16.

Similar to QLE, in IQLE the state initially evolves forward in time
with the Hamiltonian of the system Ĥ(x0). However, the transfor-
mation is then inverted by the time-reversed Hamiltonian evolution
Ĥ−= Ĥ(x−), with x− sampled from the prior distribution (Fig. 3a).
To ensure the backwards transformation via H−, the state must be
transferred from the system to the simulator. Thus IQLE requires
the presence of a coherent quantum channel between them. IQLE
enables a number of significant features. It has been shown that
the likelihood function for the two-outcome experiments, which
involves computing |〈ψ|eiĤ−te−iĤ(x)t |ψ〉|2, is efficient for Ĥ ≈ Ĥ−
even if ‖Ĥ‖t�1 (ref. 15). IQLE is also expected to be much more
resilient to errors in the inference process, making it more robust for
experimental implementations and critical device verifications16.

Although establishing a coherent link between two distinct
quantum systems is challenging29,34, such a channel naturally exists
on a single quantumdevice10. In this case, IQLE can be applied to use
calibrated gates to efficiently characterize other uncalibrated gates
on the same quantum device, which now respectively represent the
trusted hardware and the untrusted system to be validated. This

application illustrates how IQLE could be implemented to use small
trusted quantum circuits to characterize and verify large quantum
circuits, improving the scalability in many-qubit systems in which
characterization will be a key challenge.

We implement IQLE entirely on the single photonic chip,
showing its ability to characterize single-qubit operations of
quantum devices. In our experiment the photonic device plays the
role of both the untrusted system and the trusted hardware, which
is relevantly equivalent to the case that integrates two of the devices
on a single chip. This further allows a natural implementation of a
quantum device self-verification by demonstrating the algorithm,
widening the context of quantum characterization and verification.
The operation to be characterized here is e−if0t σ̂x /2, where f0 matches
the value of the fitted Rabi frequency, chosen for consistency
with the previous QLE demonstration. Thus characterizing this
σ̂x-rotation operation is equivalent to learning the Rabi frequency.
Similar to the QLE demonstration, the Hamiltonian Ĥ(f ) of Model
I was simulated to learn the parameter ω= f /1f . In each step of
IQLE, the experiment was implemented twice: once for measuring
the outcomes from the untrusted σ̂x-rotation (top part in Fig. 3a),
and once for estimating the likelihoods (bottom part in Fig. 3a).
See Methods for more details. Figure 3b shows the experimental
results for the estimated ω as given by the posterior mean and
standard deviation at each step of IQLE. The particle distribution
converges quickly to the correct value ω0. After 50 algorithm steps
we obtain f IQLE= (6.92±0.08)MHz, which is within 1 s.d. of the
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Figure 3 | Characterizing the operation of the quantum photonic device
using IQLE. a, Schematic of IQLE. The untrusted quantum system is shaded
green and the trusted quantum devices are shaded red. IQLE lies in the
inversion of the evolution via a Hamiltonian Ĥ(x−) implemented with a
trusted device (top one). The trusted and the untrusted devices are linked
by a coherent quantum channel (Q-ch). The inversion is performed also in
the likelihood estimation on the trust quantum devices (bottom ones).
Results are classically processed for Bayesian inference. b, Evolution of the
mean and standard deviation of the distribution of the rescaled frequency ω,
while IQLE is converging to the expected value of the ω0 (dashed red line).
The determining of ω0 is equivalent to the characterizing of σ̂ x-rotation.
The sudden change in behaviour of points between the steps 8 and 15
indicates an interesting feature: the algorithm is resilient to errors from
experimental noises, resuming the learning process after noisy steps. Error
bars are±1 s.d. of the distribution. c, Exponential decrease of quadratic loss
for IQLE. Experimental data are shown as circles, and theoretical simulation
data are shown as a line with a 67.5% credible interval (shaded area). The
theoretical simulation was averaged over 500 runs of IQLE.

implemented Rabi frequency f0= 6.90MHz. The evolution of the
quadratic losses (Fig. 3c) indicates that the parameter is learned
exponentially fast, with a final quadratic loss value of approximately
10−7. The convergence of the algorithm to the implemented value
ω0 indicates the successful self-verification of the quantum device.

We report the first demonstration of QHL showing the capability
of validating Hamiltonian models and verifying quantum devices.

While these experiments use a digital quantum photonic simulator
for the demonstration, QHL is universal and can be implemented on
any quantum computing platform (for example, refs 10–12). Fur-
thermore, this learning protocol applies to non-digital simulators,
which is particularly of interest when certain classes of analogue
quantum simulations are likely to approach a regime beyond that
available to classical supercomputers in the medium term7,8. With
anticipated future developments in quantum hardware, the QHL
protocol can be scaled up to learn more complex Hamiltonians, and
promises the early delivery of quantum-enhanced computational
techniques to efficiently characterize and verify quantum systems
and technologies, and to investigate foundational physics.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Diamond NV− centre sample and set-up. The bulk diamond hosting the negative
changed NV− centre is a chemical vapour deposition (CVD) grown sample
(electronic grade) with a natural abundance of 1 ppb nitrogen impurities (see inset
in Fig. 1d). The NV− centre was positioned in the static magnetic field at room
temperature. All the measurements were performed on a home-built scanning
confocal microscope, as shown in Supplementary Fig. 2. With the help of optical
detected magnetic resonance (ODMR), we perfectly aligned a small external
magnetic field of 5mT in the direction of the NV− centre’s axis, lifting the
degeneratedms=±1 spin states. Supplementary Fig. 3a shows the ODMR of the
NV− centre used in the experiment, which was scanned under continuous optical
laser and microwave (MW) excitation, indicating the transition fromms=0 to
ms=−1 at a frequency of 2.742GHz. More details on the confocal set-up and spin
measurement are reported in Supplementary Information 2.

Silicon quantum photonic device and set-up. The quantum device was
manufactured on a standard silicon-on-insulator (SOI) wafer using
248 nm-ultraviolet photolithography and reactive-ion etching. Single photons
were generated and guided in silicon waveguides with a cross-section of
450 nm× 220 nm. The single-photon-pair sources were designed with a 1.2 cm
length. The relative phase between different paths was manipulated using
thermo-optical (TO) phase shifters obtained by metal deposition of titanium
upon the silicon waveguides. Multi-mode interferometer (MMI) couplers with a
size of 2.8 µm× 28 µm were used as beam splitters with a near-0.5 reflectivity.
The crossers in the device showed a−40 dB crosstalk between the two
intersected waveguides. The schematics of components are shown
in Fig. 1c.

The chip was optically accessed via single-mode optical fibres using spot-size
converters. The chip was wired-bounded on a PCB and each phase-shifter was
individually controlled by an electronic driver with 12 bits resolution. Photons were
detected using superconducting nanowire single-photon detectors. A classical
computer was used to process the photon statistics obtained through a time
interval analyser from the quantum device, and perform the Bayesian inference to
update the Hamiltonian model. The detailed experimental set-up for the quantum
chip is provided in Supplementary Fig. 1.

State evolution on the quantum photonic device. The schematic of the photonic
device is provided in Fig. 1c. The state generated by the SFWM sources37, is given
by (|20〉+|02〉)/

√
2 in the Fock basis27. After the first pair of MMIs which here

works as a probabilistic filter, the state becomes (|1100〉+|0011〉)/
√
2 by

post-selecting photons29, where the number indicates the photon number
occupying in different spatial modes. We re-label the top and last mode as the first
two—that is, applying the following transformation |a,b, c,d〉→|a,d ,b, c〉, which
is physically realized using waveguide crossers. Then, the state evolves into a
maximally two-qubits entangled state.

|1010〉+|0101〉
√
2

(1)

If we convert the Fock state to the logic state via |0〉logic↔|10〉Fock
(|1〉logic↔|01〉Fock), we obtain (|0〉1|0〉3+|1〉1|1〉3)/

√
2, where the subscripts

denote the qubit 1 and qubit 3. By adding two additional modes in the bottom
paths (expanding into a four-dimensional space) which can be represented
as the addition of another qubit 2, we can obtain a state equivalent to
(|0〉1|0〉2|0〉3+|1〉1|1〉2|1〉3)/

√
2. The same input state |ψ〉2 can be prepared in the

higher-dimensional space. Evolving the state |ψ〉2 using two different unitaries Û
in the upper path and V̂ in the lower path, we have the state as

|0〉1(Û |ψ〉2)|0〉3+|1〉1(V̂ |ψ〉2)|1〉3
√
2

(2)

Then crossing the waveguides again and interfering photons at the last two MMIs,
it allows us to erase the path information between the upper and the lower
path—that is, whether the photon went through the Û or the V̂ operation. This is
equivalent to applying a Hadamard gate to the third qubit. The state emerging by
this evolution can be described as

(|0〉1Û |ψ〉2+|1〉1V̂ |ψ〉2)|0〉3+ (|0〉1Û |ψ〉2−|1〉1V̂ |ψ〉2)|1〉3
2

(3)

Applying a post-selection for those cases where the second photon emerges from
one of the upper modes—that is, projecting the third qubit into the state |0〉3—it is
possible to achieve the desired state

|0〉1Û |ψ〉2+|1〉1V̂ |ψ〉2
√
2

(4)

In our QHL experiments, we choose |ψ〉2 as |0〉, which can be naturally realized
after the stage of generating entangled photon state, with no compilation between
the operation of unitaries and the preparation of |ψ〉2. Thus, the operations Û and
V̂ are solely used to represent the Hamiltonian evolution.

We remark that the operation, either Û or V̂ , performed on the second qubit
on the initial state |ψ〉2 is determined by the state of the first qubit31. This allows us
to achieve the desired superposition of quantum operations. Measuring the first
qubit on the σ̂x and σ̂y projective basis, we can directly estimate the overlap
between the states evolved according to the Û and V̂ operations. This method can
be seen as an entanglement-based scheme for calculating the overlap38,39.
Unfortunately we point out that the probabilistic and post-selected nature of this
approach makes it not scalable, but it allows flexibility to perform likelihoods
estimation in our demonstration. The details on likelihood estimation are
discussed in the last section in Methods.

Bayesian inference and Hamiltonian learning. Bayesian inference is a commonly
used method in physics and statistics for model estimation. The method is
fundamentally based on the Bayes’ theorem, which gives the proper way to update
a probability distribution given evidence. The fundamental object in Bayesian
inference is called a prior distribution Pr(x). From a Bayesian perspective, the
prior distribution describes the subjective beliefs that an experimenter may have
about the model in question which is parametrized by x∈RN . For example, if we
want to learn a Rabi frequency we may know from prior knowledge that
f =6.9±0.01MHz. If that is the case then a reasonable prior distribution for
describing this is to take x=[f ] and

Pr(x)=e−(f−6.9MHz)2/(0.0002MHz2)
/[0.01

√
2πMHz] (5)

A major advantage of this approach is a posterior distribution not only gives an
estimate of the most likely outcome, argmax (Pr(x)), but also gives an estimate in
the uncertainty of that estimate in the form of the covariance matrix of Pr(x). We
use this feature in the main body for model selection.

While the subjectivity of the initial prior distribution is a hotly debated subject
among statisticians, the use of priors does an excellent job here, addressing the fact
that we almost always start experiments with prior understanding of the system in
question. The Bayesian formalism gives us a language to articulate it. Also the
Bernstein–von Mises theorem shows that, under relatively generic assumptions, a
poor choice of the prior distribution does not affect the ultimate conclusions
reached by Bayesian inference. Rather it affects only the time required to learn the
model in question.

The next most important object in Bayesian inference is the likelihood
function. The likelihood function takes an experimental datum, D, and
parameters x and outputs the probability that x generates the observed data. This is
expressed as Pr(D|x) and is essential for most applications of Bayesian inference
because it allows Bayes’ theorem to update the prior distribution given an
observed datum:

P(x|D)=
Pr(D|x)Pr(x)∫
Pr(D|x)Pr(x)dNx

(6)

The output of Bayes’ theorem, Pr(x|D), is known as the posterior distribution. It
represents how the experimentalists’ beliefs about the model should be distributed
after observing the evidence given their prior beliefs.

This update process is seldom efficient in Bayesian inference. This is because,
unless there is a special relationship between the prior and the likelihood function
(that is, conjugate priors), there will not be a simple analytic form for the posterior
distribution. This means that the entire function must be stored in memory, which
is not possible for continuous models. Such problems are often solved by using
approximate inference methods.

Sequential Monte Carlo (SMC) algorithms are a class of approximate inference
algorithms that are increasingly popular for approximating Bayesian inference. The
idea behind these methods is to approximate the probability density by a discrete
sum of points, known as particles. In particular, we wish to find a set of weights wi

and positions xi such that Pr(x)≈
∑

iwiδ(x−xi) and
∑

iwi=1. This allows us to
replace the integrals with a sum and further allow the density to be represented in a
finite amount of memory. Formally this approximation is not known to be efficient,
in that the number of particles needed can be shown to scale at most
sub-exponentially (rather than polynomially) with the number of model
parameters. In practice, the dependence on the number of model parameters is
often quite weak and often depends more strongly on the properties of the
likelihood function than the size of the model.

An important technical issue about SMC algorithms is that the particles often
need to move as the inference algorithm proceeds. To see this, consider the Rabi
model. If we assume that the system has no noise then the Rabi frequency can be
learned with infinite precision. This corresponds to a probability density of
Pr(x)=δ(ω−ωtrue). This density can be described exactly inside the SMC
formalism only if there is a particle xj=ωtrue. If a finite number of particles is
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chosen then the probability of this is zero. Therefore, to model very narrow
distributions that will occur in Bayesian inference we need to move particles.

One procedure for doing this is known as resampling. The goal of the resampler
is to effectively move the particles by redrawing them from a distribution that
resembles the current distribution. These ‘resampled’ particles are then assigned
equal weight and the learning process is resumed, now with more particles
concentrated in the important parts of the posterior distribution. This resampling
is triggered when the number of ‘effective’ particles in the approximation becomes
too small. In particular, we resample if and when the inverse participation ratio,
1/

∑
iw2

i , becomes too small (usually 1/
∑

iw2
i ≤Npart/2 is taken to be the

threshold). The resampler we use was given by Liu and West40 and it has the
property of preserving the first two moments of Pr(x) while approximately
maintaining the structure of the particle cloud.

If we specialize to the problem of QLE and IQLE experiments then our
likelihood function is always of the form15,16

Pr(D|x; t)=|〈D|e−iĤ(x)t |ψ〉|2 (7)

for QLE or

Pr(D|x; t ,x−)=|〈D|eiĤ(x−)te−iĤ(x)t |D〉|2 (8)

for IQLE.
An important question to ask is: ‘how do we choose t to best estimate H(x)?’

We employ an adaptive strategy known as the particle guess heuristic to provide
near-optimal experiments41,42. This strategy takes the evolution time to scale as the
reciprocal of the current uncertainty. For the application using QLE to estimate
Rabi frequencies, we adopt a near-optimal choice of the evolution time t=1.26/σ ,
where σ is the standard deviation (s.d.) of Pr(x). For IQLE, we adopt the following
heuristic t=1/‖Ĥ(x1)− Ĥ(x−)‖2=1/|ω1−ω−|, with both x1 and x− sampled
from the prior distribution Pr(x) (ref. 15). Pseudocodes for both QLE and IQLE
algorithms are reported in Supplementary Algorithms 1–5.

Estimation of the likelihoods on the photonic chip. The likelihood estimation for
QLE requires the inner product between the evolved state e−iĤ(x)t |ψ〉 and the state
|D〉. In this work we have used |D〉=|ψ〉=|0〉, in the chosen computational basis
state of both NV centre and photonic device. The NV spin’s reference frame we use,
defining the σ̂x as the quantization axis, is obtained by a rotation of basis from the
standard reference frame, where the quantization axis is the σ̂z axis. The choice of
this reference frame is due to the ease of preparing the input state |ψ〉 as |0〉 in the
photonic chip, with no needs of compilation between state preparation and unitary
operations (see the state evolution section in Methods).

To calculate the inner product in our photonic device we exploit an
entanglement-based technique38,39. The scheme realized in the integrated device
allows us to produce entangled states (|0s〉Û |ψi〉+|1s〉V̂ |ψi〉)/

√
2, where the

subscripts s and i now represent the qubits 1 and 2 (see equation (4)) encoded in
the signal and idler photons, respectively. When performing a projective
measurement on the σ̂x eigenbasis {|+〉, |−〉} of the signal qubit, where
|±〉= (|0〉±|1〉)/

√
2, we obtain

Re(〈ψ|Û †V̂ |ψ〉)=2p+−1 (9)

where p+ is the probability to get the outcome |+〉. Similarly, when performing
a projective measurement on the σ̂y eigenbasis {|+ i〉, |− i〉}, where
|± i〉= (|0〉± i|1〉)/

√
2, we obtain

Im(〈ψ|Û †V̂ |ψ〉)=2p+i−1 (10)

where p+i is the probability to get the outcome |+ i〉. The likelihood for QLE is
given by LQLE=|〈ψ|e−iĤ(x)t |ψ〉|2 and particularly |〈0|e−ift σ̂x /2|0〉|2 in this
experimental demonstration, which can be easily obtained setting

Û= 1̂, V̂=e−iĤ(x)t=e−ift σ̂x /2 (11)

The schematic in Fig. 2a shows the QLE implementations on the photonic device.
Using equations (9) and (10), we have

LQLE= (2p+−1)2+ (2p+i−1)2 (12)

The values of p+ and p+i are calculated by performing the single-qubit operations
on the control qubit and measuring photon coincidences.

For IQLE the likelihood LIQLE=|〈ψ|eiĤ(x−)te−iĤ(x)t |ψ〉|2 is obtained similarly
using equation (12) but setting

Û=e−iĤ(x−)t , V̂=e−iĤ(x)t (13)

given the same format of Hamiltonians and evolved state |ψ〉. The schematic in
Fig. 3a shows the IQLE implementations on the photonic device. The quantum
channel required for IQLE in our case is thus given by the entanglement generated
in the sources. We remark that using this scheme to implement IQLE all evolutions
are forward in time, in contrast with the original approach where the time reversal
eiĤ(x−)t is performed by a backwards evolution in time15. This can make our
entanglement-based approach amenable for analogue quantum simulators.
However, it comes at the cost of additional entanglement between the system and
an ancillary qubit.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding author upon
reasonable request.
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