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Experimental quantum homomorphic encryption
Jonas Zeuner 1✉, Ioannis Pitsios2, Si-Hui Tan3,4, Aditya N. Sharma1,5, Joseph F. Fitzsimons3,4,6, Roberto Osellame 2,7 and

Philip Walther 1,8

Quantum computers promise not only to outperform classical machines for certain important tasks, but also to preserve privacy of

computation. For example, the blind quantum computing protocol enables secure delegated quantum computation, where a client

can protect the privacy of their data and algorithms from a quantum server assigned to run the computation. However, this security

comes with the practical limitation that the client and server must communicate after each step of computation. A practical

alternative is homomorphic encryption, which does not require any interactions, while providing quantum-enhanced data security

for a variety of computations. In this scenario, the server specifies the computation to be performed, and the client provides only

the input data, thus enabling secure noninteractive computation. Here, we demonstrate homomorphic-encrypted quantum

computing with unitary transformations of individual qubits, as well as multi-qubit quantum walk computations using single-

photon states and non-birefringent integrated optics. The client encrypts their input in the photons’ polarization state, while the

server performs the computation using the path degree of freedom. Our demonstration using integrated quantum photonics

underlines the applicability of homomorphic-encrypted quantum computations, and shows the potential for delegated quantum

computing using photons.
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INTRODUCTION

Secure delegated computing has been a longstanding research
goal for both the classical and quantum computation commu-
nities. The aim is to provide a client (Alice) access to remote
computational resources (Bob), while protecting the privacy of
Alice’s data and Bob’s algorithm. In his seminal 2009 paper, Gentry
described the first computationally secure, fully homomorphic
encryption scheme for classical computing1. Here, “computational
security” means that the privacy guarantees of the protocol are
based on assumptions about an adversary’s computational
capabilities; “fully” means that any computation is possible. Blind
quantum computation was also introduced in 2009 (refs. 2,3): this
protocol addresses a different situation, in which the data and
algorithm both belong to Alice, who wants to use Bob’s remote
computational resources without revealing them. Blind quantum
computation has the advantages of being information-
theoretically secure (i.e., it does not rely on assumptions about
the adversary’s technological capabilities) and allowing multiple
rounds of communication between Alice and Bob over the course
of the computation. Its efficiency is limited by the need for
interaction: Alice and Bob must exchange classical information
after each step of the computation. Quantum homomorphic
encryption—where, in contrast to the scheme of ref. 1, a quantum
computation is performed on quantum information—removes the
requirement of interactive computation, but necessarily sacrifices
either security or computational power to achieve this, in
accordance with a no-go theorem: fully homomorphic encryption
is impossible if both perfect privacy and non-exponential resource
overhead are required4,5.
The proposal by Rohde et al.6 shows that relaxing the

requirements for (1) universal quantum computation, and (2)

perfect privacy enables novel implementations using photonic
quantum processors. Photons feature multiple degrees of freedom
for encoding quantum information, enabling homomorphic-
encrypted quantum walks. Even though quantum walks provide
only subsets of universal quantum computation, such computa-
tions are of great interest due to their applicability, ranging from
machine learning algorithms7,8 to search algorithms9–11 and
Boson sampling12–16. With respect to the security, it is also shown
that in any practical encryption application perfect privacy is not
required, as long as the maximum amount of information
potentially available to an attacker is sufficiently small. Note that
we are addressing the task of encrypting a quantum computation,
so the security should not be compared with existing classical
techniques for classical computation.

RESULTS

Input encoding

In this experiment, we use single-photon qubit input states and an
integrated-optics server to experimentally demonstrate the
quantum homomorphic protocol described by Rohde et al.6.
Quantum walk inputs are typically n photons distributed over m
spatial modes, with no more than one photon in each mode. The
protocol of ref. 6 hides the distribution of these photons by using
the photons’ polarization to encode Alice’s input for the quantum
walk: taking advantage of the fact that orthogonally polarized
photons do not interfere. Otherwise empty modes are populated
with ancilla photons.
Thus, to implement an m-mode quantum walk of n “walker”

photons, rather than inputting one photon into each of n modes
and leaving the remaining m− n empty, we also input m− n
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“dummy” photons in the otherwise empty modes, with polariza-
tions orthogonal to the n photons representing the walkers. For
example, an input state Ψinj i ¼ 1; 0; 0; 0j i for a traditional
quantum walk (written in the occupation-number basis) would
be encoded in this scheme as Ψin; encoded

�

�

�

¼ H; V ; V ; Vj i, where
Hj ið Vj iÞ represents horizontal (vertical) polarization. Measuring
the output photons in the {H, V} basis then yields the same result
as the traditional occupation-number quantum walk. The purpose
of this approach is to enable polarization encryption of Alice’s
input state: without knowing the basis in which Alice’s input is
encoded, Bob can guess Alice’s input state with only limited
probability of success. To encrypt the input state Ψin, Alice
randomly chooses a key, a polarization state Xj i taken from a set
of d uniformly distributed points on the Poincaré sphere, where d
is the number of polarization basis choices available to her. To
encrypt her data, Alice rotates the polarizations of her qubits from
Hj i and Vj i to Xj i and X?�

�

�

: Alice sends this encrypted state to
Bob, who performs the quantum walk. Bob returns the output
photons to Alice, and she measures them in the {X, X⊥} basis,
obtaining the result of the quantum walk (Fig. 1).
If Bob tried to decipher Alice’s encrypted state, the amount of

information he could extract is bounded by the Holevo quantity17.
One straightforward attack Bob could employ is to randomly

choose a basis, in which to measure all m photons: in fact, this
attack is close to optimal, almost saturating the Holevo bound.
In the limit of large d and m, the success probability of this attack

is pB ¼ 1=
ffiffiffiffiffiffiffi

πm
p

. For an in-depth description of the protocol see
ref. 6. The protocol also ensures the privacy of Bob’s algorithm.
Since Alice only knows the input and output states of the
computation, the amount of information that she can extract
about Bob’s algorithm is proportional to that of a “black-box”
function: the more queries she is allowed to send, the more
accurately she can guess the function. It is important to note that
both Alice and Bob have an interest in performing a certain
computation on a certain input state exactly once, since both of
them increasingly compromise the privacy of their respective
secrets with increasing number of repetitions of the computation.
The no-go theorem4 asserts that this limitation is unavoidable.

Experimental realization

In our experimental demonstration, Alice produces four photons
using two spontaneous parametric down-conversion (SPDC)
sources (see “Methods”) and prepares them in a randomly chosen
polarization state using a polarizer, half-wave plate (HWP), and
quarter-wave plate (QWP) for each photon. Alice can create input
states of any polarization with a fidelity of (99.5 ± 0.1)%, the main
source of error being imperfect polarization compensation of the
single-mode fibers leading to the chip. After preparing the
encrypted input state, Alice sends the photons to Bob, who
performs the quantum walk.
In order for the scheme to work, Bob’s chip must implement the

same unitary for the photons’ path degree of freedom regardless
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Fig. 1 Homomorphic encryption scheme. a Phase shifters and directional couplers can be used to implement any desired unitary
transformation for arbitrary dimensions, either for single- or multi-photon states27,28. In the case of indistinguishable photons entering the circuit
simultaneously, quantum interference leads to nontrivial outputs of a so-called quantum walk computation. b If two orthogonally polarized
photons enter the circuit at the same time they are distinguishable and therefore no quantum interference takes place. c In the implemented
quantum homomorphic encryption scheme, Alice prepares her input state by encoding the desired photon-number state in the {H, V}
polarization basis and then encrypting it by applying a randomly chosen polarization transformation on all photons. Bob performs the quantum
computation on the encrypted state and returns the photons to Alice. Alice undoes the previous transformation (R−1) and measures the photons
in the {H, V} basis, obtaining the outcome of the quantum computation. Since Bob has no information about the polarization basis chosen by
Alice, his information about Alice’s input state is limited.
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of the input polarizations used—otherwise, the outcome would
depend on Alice’s choice of key. Although laser-written wave-
guides support propagation of all polarizations, they typically have
slightly different refractive indices for H and V polarizations (Δn ≈
10−5), making it a challenge to implement nontrivial polarization-
independent path unitaries. To achieve this, we used an annealing
procedure to fabricate waveguides with birefringences Δn < 10−6

(see “Methods”).
After the quantum walk, Bob returns the photons to Alice, who

projects them in her previously chosen polarization basis using
QWPs, HWPs, polarizing beam splitters (PBSs), and single-photon
detectors. To demonstrate the fidelity of the homomorphic-
encrypted quantum walk, we chose a canonical set of two
mutually unbiased polarization bases and performed quantum
walks with one, two, and three walkers using two different
unitaries, each with m= 4 inputs and outputs. We used {H, V}
(parallel and orthogonal, respectively, to the chip surface) and {D,
A} ( Dj i ¼ 1

ffiffi

2
p ð Hj i þ Vj iÞ and Aj i ¼ 1

ffiffi

2
p ð Hj i � Vj iÞ). We character-

ized the unitary and compared the output probability distributions
with theoretical predictions, finding the mean overlap (Bhatta-
charyya distance18) between the predictions and results from all
quantum walks to be (0.995 ± 0.014)% for the first unitary and
(0.986 ± 0.012)% for the second (Fig. 2). Note that the fluctuation
in the size of the error bar of the simulated data is due to the
nonlinear behavior of the sine function: the same error in
estimating the phase of the unitary can lead to different errors
in output probabilities. The table of the unitaries can be found in
Supplementary Note 1.

Security guarantees

The security guarantees for Alice’s plaintext input state can be
quantified in various ways. The trace distance between the
different input states that she can produce with four photons is
0.81 for Hamming distances 1 and 3, and 0.85 for Hamming
distance 2 (ref. 19). As a result, Bob cannot perfectly distinguish any

pair of possible plaintexts. Furthermore, the mutual information
between her plaintext string and Bob is bounded by the Holevo
quantity to be no >1.96 bits (see “Supplementary Information”). To
experimentally verify the security of Alice’s input, we implemented
the attack described above: Bob measures all of Alice’s four
photons in a randomly chosen basis (here we choose Hj i for
simplicity). Alice encrypts her plaintext input state (here we use
1; 1; 1; 1j i � H;H;H;Hj i) by choosing between d= 2, 3, 4, 6, 12
different linear polarization bases (keys). The probability of Bob
guessing Alice’s plaintext input state can then be determined from
the fraction of fourfold coincidence detections Bob measures with
polarization H;H;H;Hj i (see Fig. 3a). In the case of m= 4 and d=
2, Bob has a 50% chance of guessing the correct polarization basis.
As the number of bases is increased, Bob’s probability of
determining the input states asymptotically approaches p= 0.27.
The privacy of Alice’s input state increases with both the number
of modesm and number of keys d: Fig. 3b shows this dependence.
It is important to note that current technology already enables
almost arbitrarily large d, using high-quality phase retarders, and
m on the order of dozens, thanks to rapid developments in
integrated optics.

DISCUSSION

We have demonstrated homomorphic-encrypted quantum com-
putations for single-photon transformations and quantum walks
with up to three walkers. Our photonic system’s specially
engineered features allowed us to encrypt Alice’s plaintext input
state in polarization, while performing computations using the
path degree of freedom. The security of Alice’s plaintext input is
necessarily limited by the number of modes used, i.e., by the
number of available photons—however, the continuing advances
in photon-source technology will enable similar demonstrations
using more modes in the future. As mentioned earlier, in this
protocol, a computation can only be attempted once, since each
successive attempt would reduce security for both parties; to

Fig. 2 Experimental setup. A Ti:Sapphire laser is used to pump two nonlinear β-barium borate crystals, each probabilistically producing
exactly one pair via type-II spontaneous parametric down conversion. These photons are spectrally filtered and sent through polarizers to
prepare a pure, separable four-photon state. The four photons are coupled to single-mode fibers and synchronized in the delay stage, using
adjustable free-space delays (indicated by the double arrows). Using half-wave plates (HWPs) and quarter-wave plates (QWPs) Alice can
prepare arbitrary polarization states before sending the photons to Bob, who will perform the quantum walk. After exiting Bob’s chip, the four
output modes are collimated by a lens and sent back to Alice. She uses the detection stage (HWP, QWP, polarizing beam splitter (PBS), and
single-photon detector for each photon) to projectively measure the photons and recover the outcome of the quantum walk.
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make this technique practical, we would require advances in
quantum error correction to increase the probability of successful
operation in the presence of loss. Further improvements can be
made by encrypting in a different photonic degree of freedom
with more than two levels. For example, orbital angular
momentum enables, in principle, arbitrarily high-dimensional
encoding, and transmission of such states in optical fiber has
already been demonstrated20. Using an a-level degree of freedom
for encoding, instead of polarization, the amount of hidden
information can be improved from log 2ðmÞ scaling to
m log 2ða=mÞ þm ðlog ð2ÞÞ�1

(ref. 21). As we have shown here,
although perfect security for universal computation (without
exponential resource overhead) is forbidden4,5, relaxing these
conditions can enable interesting applications. Determining the
ideal mix of security, performance, and generality of the
computation remains an active topic of research.

METHODS

Experimental setup

Our experimental setup is shown in Fig. 4. We generate all four photons
using degenerate, noncollinear type-II SPDC. Two separate 2-mm thick
β-barium borate (BBO) crystals are pumped by a Ti:Sapphire laser
(Coherent Chameleon Ultra II, 789 nm, 150 fs duration, 80 MHz repetition
rate, and 3.6 W average power) which has been frequency doubled to
394.5 nm using second harmonic generation in a 5-mm thick lithium
triborate crystal. The photons emitted by the crystals pass through 1-mm
thick BBO crystals of the same cut angle as the SPDC crystals to
compensate for spatial and temporal walk-off before being spectrally
filtered by 3-nm bandwidth spectral filters centered at 789 nm, and
spatially filtered by single-mode optical fibers (SMFs) of type Nufern 780-
HP. All photons pass through polarizers to create pure polarization states
and then through a HWP and QWP to enable the creation of arbitrary
polarizations states. The QWP and HWP were rotated using highly precise
motorized rotation mounts with a precision of 0.02°. Adjustable free-space
delay lines are used to synchronize the photons such that they all arrive at
the chip within their coherence time of ~300 fs. The photons are coupled
to the chip using a 127-µm pitch v-groove array of Nufern 780-HP fibers.
The (5 × 5) µm fiber mode field has a high overlap with the mode field of
the waveguides, which are of equivalent size. On the output facet of the
chip, the photons are collimated using a lens and sent to the detection
stage. Using a QWP, HWP, and a PBS and avalanche photodiodes (APDs),
the photons can be detected in any desired polarization basis. The overall
transmission (from fiber in-coupling to APDs) was measured to be (50 ±
5)%.

Waveguide details

The four-mode optical circuit for our quantum walk was fabricated by
direct laser writing in Corning Eagle-XG borosilicate glass. The laser source
we employed was a Yb:KYW cavity-dumped oscillator at 1030 nm
wavelength, emitting pulses of 300 fs duration, and at 1 MHz repetition
rate. The laser beam was focused into the bulk of the glass substrate using
a 50×, 0.6 NA microscope objective, and the inscription of the optical
waveguides was performed by translating the glass (with respect to the
objective’s focus), with a computer-controlled three-axis Aerotech
FiberGlide 3D series stage, at a tangential velocity of 40mm/s. The
waveguides were inscribed at a depth of 170 µm, with 270mW of laser
power, using a multiple irradiation approach (five times per waveguide),
and then they were annealed. The thermal processing makes the optical
circuits polarization insensitive22, and leads to more favorable bending
losses23. Overall, we were able to achieve transmissivities of up to (52.6 ±
3)% for 22mm long devices, with bending radii of 90 mm. We fabricated
several different photonic circuits with the geometry shown in Fig. 4, and
tuned the power splitting of the directional couplers by modifying their
interaction length. We reconstructed the unitary transformations imple-
mented (see “Supplementary Information”), using methods demonstrated
in refs. 24,25 and subsequent numerical optimization. The unitaries
implemented were chosen randomly by designing a default circuit and
adjusting the coupling constant in each of the directional couplers. By
carefully designing the optical path lengths and characterizing the
coupling constants any desired unitary can be implemented with
high precision.

Holevo information

To analyze the amount of information Bob can gain from a single copy of
Alice’s state, we calculate the Holevo quantity

χðmÞ ¼ �Trðρlog 2ρÞ þ
1

2m

X

2m�1

i¼0

Trðρi log 2ρiÞ; (1)

where ρ ¼ 1
2m

P2m

i¼1 ρi and ρi ¼
Pd�1

N

k¼0 Rðkπ
d
Þ Pij
�

�

�

´ Pij
�

�

�Rð� kπ
d
Þ and

Pij
�

�

�

¼ Hj i, when the jth bit of i is 0, otherwise Pij
�

�

�

¼ Vj i (ref. 6). In our

experiment m= 4 and 12, yielding

χð4Þ ¼ 1:9694 : (2)

Note that for elliptical polarization encodings the Holevo information is
halved, but the scaling in m remains the same (see “Supplementary
Information”).

Bob’s random attack

The simplest attack is realized by measuring all photons in the same basis
as described in ref. 6. The probability of inferring the correct state is then
given by

p ¼ 1

d

X

d�1

j¼0

cos2m
jπ

d

� �

(3)

with the number of spatial modes m and the number of possible
polarization bases d.

Measurement errors

The main drawback of down-conversion sources is that their emission is
probabilistic. This is especially problematic for our experiment, where the
probability of simultaneously generating exactly one pair in each crystal, as
desired, equals the probability of generating exactly two pairs in one of the
crystals. In our setup, we circumvented this problem by making the pairs
from the two sources distinguishable by polarization. For input states, in
which one photon has polarization orthogonal to that of the other three,
the input polarization could be set to either H;Hj i or V; Vj i for source 1, as
needed, and H; Vj i for source 2: then Alice’s final polarization measure-
ment would distinguish the events of interest from those in which one
crystal created all four photons. We can also deal with input states with
two Hj i photons and two Vj i photons by having sources 1 and 2 produce
H;Hj i and V; Vj i, respectively, and rewiring the input channels to the chip
as needed. Double-pair emission for input states H;H;H;Hj i and
V; V; V; Vj i cannot be dealt with this way, but these states are not of
interest for a quantum walk.
Having suppressed errors from double-pair emission, we must now

consider triple-pair emission. The noise contributed by these events is on
the order of the sources’ per-pulse emission probability, which is 0.14%.
To quantify the spectral distinguishability of our photons, we measured

Hong-Ou-Mandel interference visibility for all four combinations of signal
and idler from source 1 with signal and idler from source 2. After
subtracting statistically expected higher-order noise, we measured the
visibilities to be

V ¼ Cmax � Cmin

Cmax

¼ 0:88± 0:05; (4)

and V= 0.77 ± 0.05 without subtracting higher-order noise. This is the
main contributing error, diminishing the overlap with the simulated output
distribution in the random walk, and it explains the lowering of the fidelity
with increasing photon number. For more discussion of experimental
errors in quantum walks, see ref. 26. We assumed Poissonian error for all
single-photon detection rates, so that for N detections, we assume an error
of ϵ ¼

ffiffiffiffi

N
p

.
The error in the reconstructed unitary propagates from errors in our

intensity measurements, which are in turn used to infer amplitudes and
phases. Here, we are able to limit the error on the inferred transmission
amplitudes and phases to 1% and 50mrad, respectively. The discrepancy
in error-bar size for the various output possibilities stems from the nature
of the unitary: phase errors can lead to large changes in some output
probabilities, while having hardly any effect in others.
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