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To increase dramatically the distance and the secure key generation rate of quantum key distribution
(QKD), the idea of quantum decoys—signals of different intensities—has recently been proposed. Here,
we present the first experimental implementation of decoy state QKD. By making simple modifications to
a commercial quantum key distribution system, we show that a secure key generation rate of 165 bit=s,
which is 1=4 of the theoretical limit, can be obtained over 15 km of a telecommunication fiber. We also
show that with the same experimental parameters, not even a single bit of secure key can be extracted with
a non-decoy-state protocol. Compared to building single photon sources, decoy state QKD is a much
simpler method for increasing the distance and key generation rate of unconditionally secure QKD.
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Quantum key distribution (QKD) [1,2] was proposed as
a method of achieving perfectly secure communications.
Any eavesdropping attempt by a third party will neces-
sarily introduce an abnormally high quantum bit error rate
in a quantum transmission and thus be caught by the users.
With a perfect single photon source, QKD provides proven
unconditional security guaranteed by the fundamental laws
of quantum physics [3,4].

Most current experimental QKD setups are based on
attenuated laser pulses which occasionally give out multi-
photons. Therefore, any security proofs must take into
account the possibility of subtle eavesdropping attacks,
including the photon-number splitting attack [5]. A hall-
mark of those subtle attacks is that they introduce a photon-
number dependent attenuation to the signal.

Fortunately, it is still possible to obtain unconditionally
secure QKD, even with (phase randomized) attenuated
laser pulses, as theoretically demonstrated in [6] and by
Gottesman-Lo-Lütkenhaus-Preskill (GLLP) [7]. However,
one must pay a steep price by placing severe limits on the
distance and the key generation rate. See also [8].

A key question is this: How can one extend the distance
and key generation rate of secure QKD? A brute force
solution to this problem would be to use a (nearly) perfect
single photon source. Despite much experimental effort
[9], reliable perfect single photon sources are far from
practical.

Another solution to increase the transmission distance
and key generation rate is to employ decoy states, using
extra states of different average photon number to detect
photon-number dependent attenuation. It has attracted
great recent interest. The decoy method was first discov-
ered by Hwang [10]. In [11], we presented the first rigorous
security proof of decoy state QKD. We showed that the
decoy state method can be combined with the standard
GLLP result to achieve dramatically higher key generation
rates and distances. Moreover, we proposed practical pro-
tocols with vacua or weak coherent states as decoys.
Subsequently, the security of practical protocols have
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been analyzed by Wang [12] and us [13]. See also [14].
In particular, we [13] demonstrated theoretically the clear
practicality of decoy state QKD using only one-decoy
state. We call such a protocol a one-decoy protocol.

However, until now, all decoy state QKD papers [10–14]
have been theoretical and there has been no experimental
demonstration. Here, we present, for the first time, an
experimental realization of decoy state QKD.

We remark that additional errors will appear in experi-
mental implementation of a decoy state protocol. An ex-
ample of a source of additional errors is intensity
modulation, which, as will be discussed below, is required
for the implementation of decoy state QKD. Those addi-
tional errors will change the parameters and thus the
quantitative results in the simulations done in previous
papers [11–13]. Therefore, to quantify the advantage of
decoy state QKD in practice, it is crucial to perform a real
experiment and analyze the data obtained experimentally.

In our experiment, we use acousto-optic modulators
(AOMs) to achieve polarization insensitive modulation,
which is important for our setup. While already used in
telecommunications, we believe that this is the first time
that AOMs have been introduced in a QKD experiment. In
summary, our experiment demonstrates a new approach—
decoy state QKD—with a new experimental component—
AOM—in QKD.

We will first discuss the GLLP result and how the decoy
state method can be combined with GLLP to achieve a high
key generation rate and distance. The GLLP [7] method
can be used to prove the security of QKD based on a phase
randomized weak coherent state source. With the GLLP
method the secure key generation rate, which is defined as
the ratio of the length of the secure key to the total number
of signals sent by Alice, is given by [11]

R � qf�Q�f�E��H2�E�� �Q1�1�H2�e1��g; (1)

where q depends on the protocol [15], the subscript� is the
average photon number per signal in signal states, Q� is
the gain [16] of signal states, E� is the quantum bit error
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FIG. 1 (color online). Schematic of the experimental setup in
our system. Inside Bob (Jr. Alice): Components in Bob’s
(Alice’s) package of id Quantique QKD system. Our modifica-
tions: CA, compensating AOM; CG, compensating generator;
DA, decoy AOM; DG, decoy generator. Original QKD system:
LD, laser diode; APD, avalanche photon diode; �i, phase
modulator; PBS, polarization beam splitter; PD, classical photo
detector; DL, delay line; FM, faraday mirror. Solid line, SMF28
single mode optical fiber; dashed line, electric cable.
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rate (QBER) of signal states, Q1 is the gain of the single
photon states (i.e., the probability that Alice generates
exactly a single photon which is finally detected by Bob)
in signal states, and e1 is the error rate of single photon
states in signal states. f�x� is the bidirectional error cor-
rection rate [17], and H2�x� is the binary entropy function:
H2�x� � �xlog2�x� � �1� x�log2�1� x�. Both Q� and
E� can be measured directly from experiments, while Q1

and e1 have to be estimated (because we could not measure
the photon number of each pulse).

Owing to the loss in a fiber, its length determines the
gains and QBERs (as denoted by Q�;Q1; E�; e1) and
therefore the key generation rate R. At the distance
where the key generation rate R hits zero, the QKD
protocol is no longer secure (with the standard classical
postprocessing protocol which uses only one-way classical
communications).

Clearly, to estimate the key generation rate, the main
task is to estimate a lower bound ofQ1 and an upper bound
of e1. However, in nondecoy state approaches, the estima-
tions are quite poor. This is the reason why, with nondecoy
state approaches, QKD can be proven to be secure only at a
very limited key generation rate and distance. While ex-
perimental QKD has been demonstrated at 122 km in
telecommunication fibers [18], most of the previous ex-
periments do not appear to satisfy the strict security analy-
sis demanded in nondecoy approaches [7,19]. Given that
security is the most crucial issue in QKD, this is a highly
unsatisfactory situation.

Fortunately, decoy state QKD comes to the rescue. As
discussed below, decoy state QKD allows dramatic im-
provement in our estimations of Q1 and e1, compared to
nondecoy approaches. The basic idea of decoy state QKD
is as follows: In addition to the signal state with average
photon number �, one introduces some ‘‘decoy’’ states
with some other average photon numbers �i and blends
signal states with decoy states randomly on Alice’s side
[20]. For instance, in a one-decoy state protocol [13], the
average photon number of a decoy state is much lower than
that of the signal state. After Bob’s acknowledgement of
receipt of signals, Alice broadcasts which pulses are signal
states and which are decoy states. Alice and Bob can
therefore analyze the statistical characteristics (i.e., trans-
mittance and QBER) of each type of signal separately.
Since one assumes all characteristics (except photon-
number distribution) of the signal state and the decoy state
are the same, Eve’s eavesdropping attack can depend on
the actual photon number in each pulse, but she has no
knowledge of which state (signal or decoy) the pulse is in.
Eve’s attack will modify the characteristics (transmittance
or QBER) of decoy states and/or signal states and will be
caught. For instance, in a one-decoy state protocol, if Eve
introduces a photon-number dependent attenuation to the
channel, then the transmittance of the decoy state (which
has a much lower average photon number than the signal
state) will generally be much lower than what Alice and
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Bob would expect under normal operations. Note that
decoy states are used only for catching an eavesdropper,
and not for key generation. It has been shown [11–13] that,
in theory, decoy state QKD can substantially enhance the
security and performance of QKD.

Before describing our experiment, we would like to
point out that if one already had a unidirectional QKD
system [18,21] in place, the implementation of decoy state
QKD would have been much easier: one can simply drive
the laser source directly to various power levels.

Modified ‘‘plug-and-play’’ setup.—Unfortunately, most
existing commercial QKD systems are bidirectional (plug-
and-play) in the sense that Bob sends out a chain of strong
signals to Alice, who attenuates each signal to a single
photon level and modulates (i.e., encodes quantum infor-
mation on) it before sending it back to Bob, who performs
the measurement (i.e., decoding of quantum information),
after which a new chain of strong signals will be sent to
Alice. Therefore, the intensity modulation by Alice has to
be carefully synchronized with Bob’s laser source.

Here, we show that, even with such a commercial system
(manufactured by id Quantique in our current setup), one
can successfully implement decoy state QKD by making
simple modifications.

Our experiment.—Figure 1 illustrates the schematic of
our system. The commercial QKD system consists of Bob
and Jr. Alice. In our experiment, Alice consists of Jr. Alice
and four new optical and electric components: an AOM
(DA in Fig. 1), a function generator (DG in Fig. 1), a
compensating AOM (CA in Fig. 1), and a compensating
generator (CG in Fig. 1). Their functions will be discussed
below.

We implement the one-decoy state protocol proposed by
our group in [13] on top of the standard Bennett-Brassard
1984 [1] protocol. In a one-decoy state protocol, Alice
must randomly modulate the intensity of each signal to
either signal state level or decoy state level before sending
it back to Bob. We add an AOM (DA in Fig. 1) on Alice’s
side. A function generator (DG in Fig. 1) controls the
transmittance of the AOM.
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TABLE I. Experimental data and some parameters (Para.) we
used in our experiment. As required by GLLP [7], bit values for
double detections are assigned randomly by the quantum random
number generator.

Para. Value Para. Value Para. Value

Q� 8:757	 10�3 E� 9:536	 10�3 q 0.4478
Q� 1:360	 10�3 E� 2:689	 10�2 f�E�� [17] 
1:22

PRL 96, 070502 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
24 FEBRUARY 2006
A critical issue in our setup is to compensate the phase
shift due to our AOM. Since the Mach-Zehnder interfer-
ometer (MZI) on Bob’s side is asymmetric, the frequency
shift introduced by AOM causes a significant phase shift
between the two pulses that go through different arms of
the MZI. To compensate this phase shift, another AOM, the
‘‘compensating AOM’’ (CA in Fig. 1) is employed to make
the total phase shift multiples of 2�. This AOM is driven
by the second function generator, ‘‘compensating genera-
tor’’ (CG in Fig. 1) [22].

Optimization of parameters.—We perform a numerical
simulation [13] with parameters of our setup [23] and
optimally set � and � to 0.80 and 0.12 photons, respec-
tively. The actual distribution of the states is produced by
an id Quantique quantum random number generator.
Around 10% of the signals are assigned as decoy states,
which is optimal according to numerical simulation [13].
This random pattern is generated and loaded to the decoy
generator before the experiment [24].

Except for the modulation period, the transmittance of
decoy AOM (DA) is set to maximum. As the classical
detector (PD in Fig. 1) inside Alice detects the first pulse
from Bob, it triggers the decoy generator (DG). The DG
will then hold a delay time td before outputting the random
pattern to modulate different states. The compensating
AOM (CA) is used only for the purpose of phase compen-
sation. Thus, its transmittance is set to be constant.

Recall that each signal in a plug-and-play setup consists
of two time-separated pulses. To keep visibility high, the
two pulses of the same signal must be attenuated equally,
which means the delay time must be very precise. In our
experiment, the delay time td was determined with an
accuracy of 10 ns.

In our experiment, a total of N � 105 M raw bits (in-
cluding both signal states and decoy states) were sent using
quantum key distribution from Alice to Bob. The trans-
mitting time was less than 4 min.

After the transmission of all the N signals, Bob an-
nounced which signals had actually been received by him
and in which basis. Alice broadcasted to Bob the distribu-
tion of decoy states as well as basis information. We
assume Alice and Bob announced the measurement out-
comes of all decoy states as well as a subset of the signal
states. From those experimental data, Alice and Bob then
determined Q�, Q�, E�, and E�, whose values are now
listed in Table I.

Analysis of experimental results.—Alice and Bob have
to derive a lower bound on the key generation rate, R, by
applying the theory of one-decoy state protocol to their
experimental data. To begin, we discuss the theory of one-
decoy state protocol. The one-decoy state protocol was first
proposed in [11] and analyzed in [13]. In such a protocol,
only one-decoy state is used (in principle, more decoy
states might increase key generation rate), whose average
photon number is �. The transmittance or gain of the decoy
state Q� and its error rate E� could also be acquired
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directly from experiments. Taking statistical fluctuations
into account, the lower bound ofQ1 and the upper bound of
e1 are given by [13]

Q1 � QL
1 �

�2e��

��� �2
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where N� is the number of pulses used as decoy states [25]
and e0 (�1=2) is the error rate for the vacuum signal, and
therefore the lower bound of key generation rate is

R � RL � qf�Q�f�E��H2�E�� �Q
L
1 �1�H2�e

U
1 ��g:

(4)

In our analysis of experimental data, we estimated e1

and Q1 very conservatively as within 10 standard devia-
tions (i.e., u� � 10), which promises a confidence interval
for statistical fluctuations of 1–1:5	 10�23.

The experimental results listed in Table I are the inputs
for Eqs. (2)–(4), whose output is a lower bound of the key
generation rate, as shown in Table II. Even with our very
conservative estimation of e1 andQ1, we got a lower bound
for the key generation rate RL � 3:6	 10�4 per pulse, or
165 bits=s, which means a final key length of about L �
NR ’ 38 kbit. We also calculated Rperfect, the theoretical
limit from the case of infinite data size and infinite decoy
states protocol, by using Eq. (1). We remark that our lower
bound RL is indeed good because it is roughly 1=4 of
Rperfect. This fact suggests that it is not necessary, or rather
not economical, to use either a very large quantity of data
or a lot of different decoy states.

Based on the method described in [7,11,13], we care-
fully performed numerical simulations with [23]. We found
that without decoy method, no matter what value of � we
choose or how large the data size we use, the key genera-
tion rate, R, will hit zero at only 9.6 km. In other words, at
15 km, not even a single bit could be shared between Alice
and Bob with guaranteed security. In contrast, our numeri-
cal simulations show that, with decoy states, our QKD
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TABLE II. The lower bounds of Q1, R, and the upper bound of
e1. The values are calculated from Eqs. (2)–(4). As a compari-
son, we also gave the theoretical limit, Rperfect. It represents the
situation of infinitely long data size and infinitely many decoy
states. Our result shows that even a simple one-decoy state
protocol can achieve one-fourth the theoretical limit.

Para. Value Para. Value

QL
1 2:140	 10�3 RL 3:588	 10�4

eU1 3:902	 10�2 Rperfect 1:418	 10�3
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setup can be made secure over 50 km, which is substan-
tially larger than the secure distance (9.6 km) without
decoy states.

In summary, we have performed the first experimental
demonstration of decoy state QKD, over 15 km of tele-
communication fibers. Our experiment shows that, with
rather simple modifications (by adding commercial
AOM) to a commercial QKD system, the decoy method
allows us to achieve much better performance with sub-
stantially higher key generation rate and longer distance
than is otherwise possible. We conclude that, with careful
conceptual design and optimization, decoy state QKD is
easy to implement in experiments. It is, therefore, ready for
immediate commercial applications.
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