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Decoy-state quantum key distribution (QKD) is a standard technique in current quantum cryptographic im-
plementations. Unfortunately, existing experiments havetwo important drawbacks: the state preparation is
assumed to be perfect without errors and the employed security proofs do not fully consider the finite-key ef-
fects for general attacks. These two drawbacks mean that existing experiments are not guaranteed to be secure
in practice. Here, we perform an experiment that for the firsttime shows secure QKD with imperfect state
preparations over long distances and achieves rigorous finite-key security bounds for decoy-state QKD against
coherent attacks in the universally composable framework.We quantify the source flaws experimentally and
demonstrate a QKD implementation that is tolerant to channel loss despite the source flaws. Our implemen-
tation considers more real-world problems than most previous experiments and our theory can be applied to
general QKD systems. These features constitute a step towards secure QKD with imperfect devices.

Quantum key distribution (QKD), offering information-
theoretic security in communication, has aroused great in-
terest among both scientists and engineers [1–3]. Commer-
cial systems have already appeared on the market and var-
ious QKD networks have been developed. The most im-
portant question in QKD is its security. This fact has fi-
nally been proven in a number of important papers [4–6]
(see [2] for a review on this topic). However, for real-life
implementations that are mainly based on attenuated laser
pulses, the occasional production of multi-photons and chan-
nel loss make QKD vulnerable to various subtle attacks, such
as the photon-number-splitting attack [7]. Fortunately, the
decoy-state method [8–10] has solved this security issue and
dramatically improved the performance of QKD with faint
lasers. Several experimental groups have demonstrated that
decoy-state BB84 is secure and feasible under real-world con-
ditions [11–15]. As a result, decoy-state method has be-
come a standard technique in many current QKD implemen-
tations [16–24].

Until now, QKD experiments [11–24] have had two im-
portant drawbacks. The first one is that in the key rate for-
mula of all existing experiments, it is commonly assumed
that the phase/polarization encoding is doneperfectlywith-
out errors. Thus, the state preparation is assumed to be basis-
independent, i.e. the density matrices for the two conjugate
basis are assumed to be the same. These are highly unreal-
istic assumptions and may mean that the key generation is
actually not proven to be secure in a real QKD experiment.
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oratory of Electronics, Massachusetts Institute of Technology, 77 Mas-
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What if we use a key rate formula that takes imperfect en-
codings into account? Standard Gottesman-Lo-Lütkenhaus-
Preskill (GLLP) security proof [6] (see also [25, 26]) does
allow one to do so. Unfortunately, the key rate will be re-
duced substantially because the GLLP formalism is very con-
servative and the resulting protocol is not tolerant to channel
loss [27]. We remark that source flaw is a serious concern
in not only decoy-state BB84 but also measurement-device-
independent QKD [18, 19], quantum coin flipping [28, 29]
and blind quantum computing [30].

To address the source flaw problem, Tamaki et al. put for-
ward a proposal [31], which allows QKD protocols that are
tolerant to channel loss despite the source flaws. We call
it a loss-tolerant protocol. The key insight is that as long
as the single-photon components of the four BB84 states re-
main inside a two-dimensional Hilbert space (which we call
a qubit assumption), Eve can not enhance state-preparation
flaws by exploiting the channel loss and Eve’s information can
be bounded by the rejected data analysis [32]. Nevertheless,
Ref. [31] is only valid in the asymptotic limit with an infinite
number of signals and decoy states, and thus it has a number
of important limitations when it is applied in practice. These
limitations include: (i) How to extend it to the practical case
with only a finite number of types of decoy states? (ii) How
to extend it to the case with a finite number of transmitted sig-
nals (which is normally called finite-key analysis)? (iii) How
to verify the qubit assumption made in the theory? (iv) How
to quantify the source flaws in practice? (v) How to imple-
ment the loss-tolerant protocol in experiment? In this paper,
we overcome these five limitations (see discussions below).

The second drawback in previous experiments is that the
finite-key security claims were made with the assumption that
the eavesdropper (Eve) was restricted to particular types of
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attacks (e.g., collective attacks) or that the finite-key anal-
ysis was not rigorous (e.g., the security did not satisfy the
universally composable security definition [33, 34]). Unfor-
tunately, such assumptions cannot be guaranteed in practice.
While Ref. [35] has reported an attempt implementing the rig-
orous finite-key analysis proposed in [36], a slight drawback
is that both the theory and experiment assume a perfect single-
photon source without decoy states. Very recently, Lim et al.
provide, for the first time, tight and rigorous security bounds
against general quantum attacks (i.e., coherent attacks) for
decoy-state QKD [37] (see also [38]). These bounds are ob-
tained by combining the finite-key analysis of [36] and the
finite-data analysis of [39]. Nonetheless, Ref. [37] still as-
sumes basis-independent state preparation. A theory that re-
moves the assumption of basis independency, and a QKD ex-
periment that implements such an advanced theory have not
been reported yet.

In this paper, we offer a link between the theory and ex-
periment to consider both source flaws and finite-key effect
in practical QKD. We overcome the limitations in the loss-
tolerant protocol and implement this protocol in experiment.
The advances of our work are both theoretical and experi-
mental. On the theoretical side, our contributions are as fol-
lows. First, we provide both a finite-key analysis and a prac-
tical decoy state method for the loss-tolerant protocol, thus
making this protocol applicable in a real experiment. Our
parameter estimation method considers general source flaws
and does not rely on the assumption of basis independency
of prepared states. Second, we perform a detailed simulation
for the loss tolerant protocol and show that this protocol can
substantially outperform GLLP in a practical setting with a
reasonable data-set. We note in passing that the loss-tolerant
protocol only requires three states for the security analysis,
thus it can simplify conventional BB84 implementations, es-
pecially for those based on four laser sources [13, 14, 17],
where one could keep one laser just as back-up in case certain
laser fails, without any decrease in performance. Third, we
perform a comprehensive analysis on the qubit assumption in
a standard one-way phase-encoding system and have verified
such assumption with high accuracy by using standard optical
devices.

On the experimental side, by modifying a commercial
plug&play QKD system, we perform the first QKD demon-
stration considering source flaws. We quantify these flaws ex-
perimentally and include them in the key rate formula. Based
on the loss-tolerant protocol, we successfully generate secure
keys over different channel lengths, up to 50 km standard
telecom fibers. In contrast, not even a single bit of secure
key can be extracted with GLLP security proof. Moreover,
in our implementation, we apply a tight finite-key analysis
– that does not rely on the assumption of basis-dependent
state preparation – to generate keys, which are secure against
the most powerful (coherent) attacks in the universally com-
posable framework. We emphasize that our implementation,
security analysis and parameter estimation procedure can be
applied to general discrete-variable QKD systems. Very re-
cently, similar progress on the continuous-variable QKD sys-
tem has been reported in [40].

Theory

Three-state QKD:The loss-tolerant protocol is a general
method that works not only for the standard BB84 protocol,
but even for the three-state protocol [41, 42] where there is a
strong asymmetry between the two bases. The loss-tolerant
protocol includes basis mismatch events for security analysis
to beat eavesdroppers. The three-state QKD runs almost the
same as BB84 except that: i) Alice sends Bob only three pure
states{|0z〉, |0x〉, |1z〉}, where|ij〉 (i ∈{0,1} and j ∈{Z,
X}) denotes the state associated with bit “i” in j basis; ii) the
rejected data (i.e., the detection events when Alice and Bob
use different basis) are used for the estimation of the phase
error rate [32]. Based on the security analysis with biased ba-
sis choice, Alice and Bob can generate a secret key only from
those instances where both of them select theZ basis [31].

The qubit assumption and its verification:The qubit as-
sumption is normally required in the security proofs [2] to
avoid subtle attacks such as unambiguous state discrimina-
tion attack [43]. With the qubit assumption in place, using
large deviation techniques (e.g. Hoeffding’s inequality [44]
or quantum de Finetti theorem [45]), one can show that ef-
fectively Eve can only apply the same super-operator on each
transmitted qubit. This greatly simplifies the security proofs.
In practice, however, no previous works have verified this as-
sumption. Note that a specific attack to exploit the higher di-
mensionality of state preparation has been proposed in [46]
recently. Here we have verified that the qubit assumption can
be made valid (to a large degree) in practice, while further
work needs to be done to make it more rigorous. The detailed
results are shown in Supplementary Material.

Finite-key analysis:So far, the loss-tolerant protocol was
only proven in the asymptotic case, i.e., the legitimate users
have unlimited resources [31]. Such an asymptotic case is
impossible in practice. Here, to implement the loss-tolerant
protocol, we extend it to a general practical setting with finite
keys and finite decoy states by synthesising [31] and [36, 37].
Theεsec-secret key length in theZ basis is given by

ℓ ≥ sLz,0 + sLz,1[q − h
(

eUx,1
)

]− leakEC (1)

−6 log2
21

εsec
− log2

2

εcor
,

whereh(y)=−y log2 y − (1 − y) log2(1 − y) is the binary
entropy function;sLz,0, sLz,1 andeUx,1 are the lower bound of
vacuum events, the lower bound of single-photon events, and
the upper bound of the phase error rate, associated with the
single-photon events inZ basis, respectively;q is the max-
imum fidelity between states prepared inZ basis and states
prepared inX basis, which characterizes the quality of the
source [36]; leakEC = nz,µfeh (ez) is the size of the infor-
mation exchanged during error-correction, wherenz,µ andez
denote respectively the gain counts for signal state and quan-
tum bit error rate (QBER) andfe ≥ 1 is the error correction
inefficiency function (we choosefe = 1.16 in this paper);
6 log2

21
εsec

and log2
2
εcor

are respectively the secrecy and cor-
rectness parameter;ℓ quantifies the lower bound of final key
length and the key rate (per optical pulse) is given byRL=ℓ/N



3

with N denoting the total number of signals (optical pulses)
sent by Alice. This key formula uses a security proof that is
based on an uncertainty relation for smooth entropies [36] and
it fulfills the composable security definition [33, 34].

Finite decoy-state protocol:In practice,sLz,0, sLz,1 andeUx,1
are estimated using the decoy-state method. Here, we pro-
pose a novel method for the estimation of the phase error
rateeUx,1. In our analysis, besides the signal stateµ, we con-
sider two additional decoy states,ν andω, whereµ, ν and
ω are the mean photon numbers of weak coherent pulses and
they satisfyµ > ν > ω ≥ 0. Hence, the intensity setting
k ∈ {µ, ν, ω}. The key novelty to estimateeUx,1 is obtained
by estimating the transmission rate of a virtual quantum signal
sent by Alice (see Supplementary Material). The estimationof
this transmission rate uses the rejected detection counts [32],
i.e., considering the detection events associated with single
photons when Alice and Bob use different bases. By doing
so, we have the key advantage of removing the assumption of
basis-independent state preparation entirely. The estimation
result is shown in Eq. (8) of Methods. sLz,0 andsLz,1 can be
estimated using a method similar to [37], from the detection
eventsnz,k. See Methods for the details of our decoy state
protocol.

Experiment

System description:We implement the loss-tolerant proto-
col with a modified commercial ID-500 plug&play QKD sys-
tem (manufactured by ID Quantique) [47]. Nonetheless, we
remark that our methods of parameter optimizations, finite key
analysis, the quantification of phase modulation errors andthe
implementation of loss-tolerant protocol can also be applied
to one-way QKD systems. Here, we use the plug&play QKD
system simply as an example to illustrate ourgeneralmeth-
ods.

The initial plug&play system employs the phase-coding
QKD scheme and it works as follows (see Fig.1) [48]. Bob
first sends two laser pulses (i.e., signal and reference pulse)
to Alice. Alice uses the reference pulse as a synchronization
signal (detected by her classical photo-detector) to activate her
phase modulator (PM). Then Alice modulates the phase of the
signal pulse only, attenuates the two pulses to single photon
level, and sends them back to Bob. Bob randomly chooses his
measurement basis by modulating the phase of the returning
reference pulse and detects the interference signals with his
two single-photon detectors (SPDs).

Now, we present our modifications on top of ID-500 in
order to realize the loss-tolerant protocol with decoy states.
To implement the decoy-state protocol, we add two acousto-
optic modulators (AOMs, Brimrose) to achieve polarization-
insensitive intensity modulation. AOM1 – driven by a wave-
form with random patten generated from a function generator
(FG1, Agilent 88250A) – is used for the decoy modulation,
while AOM2 – driven by a fixed waveform generated from
FG2 – is used to compensate the phase shift caused by the fre-
quency shift of the AOM [11]. To implement the three-state
protocol, we adopt another FG, i.e., FG3, to control the phase

λ ed ηBob Y0 f

1551.71 nm 2.35% 5.05% 4.01 × 10
−5 5 MHz

TABLE I: Parameters measured in ID-500 commercial QKD sys-
tem, including laser wavelengthλ, optical misalignment errored (the
probability that a photon hits the erroneous detector), Bob’s overall
quantum efficiencyηBob, dark count rate per pulseY0 for each de-
tector and system repetition ratef .

modulation of PMA. FG1 and FG3 are loaded with random
numbers generated from a quantum random number genera-
tor [49]. We have measured the main system parameters as
shown in TableI.

System θ D1,θ D2,θ δ̄θ

ID-500 0 630 867678 -

π/2 456735 444336 0.013

π 856245 4744 0.134

3π/2 464160 436962 0.030

Clavis2 0 727 1075320 -

π/2 546724 527735 0.023

π 1111574 6990 0.145

3π/2 566813 531417 0.037

TABLE II: Raw counts and modulation errors for Alice’s phasemod-
ulator in ID-500 and Clavis2 commercial plug&play systems.D1,θ

(D2,θ) represents the detections counts of SPD1 (SPD2). δ̄θ , given
by Eq. (2), is the upper bound of modulation error for a given phase
θ.

Quantifying modulation error:We quantify the modula-
tion errorδθ in the source through calibrating Alice’s PM, a
LiNbO3 waveguide based electro-optical modulator, on two
plug&play QKD systems – ID 500 and Clavis2 [48]. δθ is
defined as the difference between the actual phase and the ex-
pected phaseθ ∈{0, π/2, π 3π/2}. We find that in ID-500,
the voltages{0, 0.30Vm, 0.62Vm, 0.92Vm} modulate the ex-
pected phases{0, π/2, π 3π/2}, whereVm ≈ 3.67 V is a
maximal value allowed on Alice’s PM. The calibration pro-
cess is as follows. Alice is directly connected to Bob with
a short fiber (about 1 m), Alice scans the voltages applied to
her PM, Bob sets his own PM at a fixed unmodulated phase
{0} and records the detection counts of his two SPDs. These
counts are denoted byD1,θ andD2,θ. The detections counts
on ID-500 and Clavis2 are shown in TableII .

In ID-500, to quantifyδθ, we first determine the detector ef-
ficiencies (ηd1, ηd2) and the dark count rates (Y0,d1, Y0,d2) for
Bob’s two SPDs and find thatηd1 = 5.05% andηd2 = 4.99%
andY0,d1 ≈ Y0,d2 = 4.01 × 10−5. In TableII , D1,0 quan-
tifies the amount of global misalignment between Alice and
Bob (i.e. the summation of the dark counts and the imperfect
visibility). This global misalignment can increase QBER, but
it is irrelevant to bound Eve’s information in the loss-tolerant
protocol [31]. Only the relative orientation between the three
states prepared by Alice quantifies the source flaws that can
be potentially exploited by Eve. Hence, we subtractD1,0 in
the quantification ofδθ. In our analysis of the statistics, we
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FIG. 1: Experimental setup. SPD1/SPD2, single-photon detector; C, circulator; PMA/PMB , phase modulator; BS, beam splitter; PBS, polar-
ization beam splitter; CD, classical photo-detector; VOA,variable optical attenuator; AOM1/AOM2, acousto-optic modulator; FG, function
generator; DL, delay line; FM, Faraday mirror. PMA, controlled by FG3, randomly selects a phase from{0, π/2, π} for the experiment.
AOM1 randomly modulates the intensity of each pulse to be either signal state level or decoy state level, while AOM2 compensates the phase
shift due to AOM1.

use Hoeffding’s inequality [44] to guarantee the definition of composable security. The upper bound ofδθ is given by:

δθ ≤ δ̄θ = |θ − 2 arctan(

√

((D1,θ +∆(D1,θ, ε))− (D1,0 −∆(D1,0, ε)))/ηd1
((D2,θ −∆(D2,θ, ε))− (D1,0 +∆(D1,0, ε)))/ηd2

)|, (2)

where∆(Di,θ, ε)=
√

Di,θ/2 log(1/ε) (with i ∈ {0, 1}) [44].
In general, ifY0,d1 6= Y0,d2 in a practical system, in Eq. (2),
we can useDi,θ to subtract the dark counts of detectordi.
Here, we choose a failure probabilityε = 10−10 (i.e. a con-
fidence level1 − 2 × 10−10). The upper bounds ofδθ are
shown in TableII . From this table, the errorδ in ID-500 is
upper bounded by the case ofδπ, i.e.,δ ≤ δ̄π = 0.134.

Using the same method for Clavis2, we find thatδ is upper
bounded byδ ≤ δ̄π = 0.145. Notice thatδ can also be esti-
mated using the interference visibility or the extinction ratio of
the PM [27]. In a system with an advanced phase-stabilized
interferometer [50], the value ofδ ≤ 0.062 corresponds to
about 99.9% visibility or 30 dB extinction ratio.

Implementation of loss-tolerant protocol:In our demon-
stration, we implement the loss-tolerant protocol over stan-
dard fibre lengths (L) of 5, 20 and 50 km. In the 5 and 20
km experiments, we performed a real decoy-state QKD im-
plementation with optimized parameters. We use FG1 to ran-
domly modulate the signal and decoy states and use FG3 to
randomly modulate the three states of{|0z〉, |0x〉, |1z〉}. Be-
fore the experiment, we performed a numerical simulation to
optimize the implementation parameters. Our optimization
routine is similar to [51], while the difference is that we use
the rigorous finite-key security bounds (see Eq. (1)) to predict
the key rate. The optimal parameters are shown in TableIII ,
which include intensities ofµ (signal),ν (decoy),ω (vacuum),
intensity-probabilities ofPµ,Pν ,Pω (Pω = 1−Pµ−Pν ), and
basis-probabilities ofPz andPx (which are identical for Al-
ice and Bob). In the 50 km experiment, we removed the two
AOMs due to their high loss (over 3 dB each) and used the
VOA in Alice to modulate the decoy intensities for a proof of

concept decoy-state modulation.

Experimental results: Our measurement and post-
processing are different from previous experiments in that
we directly measure the detectioncountsinstead of detection
probabilities (so-called gains in former experiments [11–16])
and we also record the basis-mismatch counts. In the 5 km
and 20 km experiments, we chose to operate the system for a
few hours and collected about 75 sets of data, with each set
of about 104.5 million pulses, which corresponds to a total
number of pulsesN = 7.84× 109. In the 50 km experiment,
we collected about 500 sets of data and sent a total number of
N = 5.23 × 1010 pulses. The details of these experimental
counts are shown in Supplementary Material.

In our analysis of experimental data, we consider a con-
servative security parameter (i.e. the summation of all failure
probabilities)ǫtot = 10−10. From the model of Eq. (3) and
the modulation errors of TableII , we find thatq = 0.79 (see
Eq. (1)). By plugging the experimental counts into the decoy-
state estimations (see Methods) and using Eq. (1), we obtain
the experimental results listed in TableIII and Fig.2. The
system’s QBER is below 3%. Based on the loss-tolerant anal-
ysis, a secure key rate (per optical pulse) of1.40× 10−3 was
generated at 5 km, while at 50 km it was2.14× 10−5. Given
the 5 MHz repetition rate, the key rates per second are 7 kbps
and 107 bps respectively. Over 1 kilobit of unconditionally
secure keys are exchanged between Alice and Bob. The se-
curity of these keys considers source flaws and satisfies the
composable security definition, and it can withstand general
attacks by Eve. With state-of-the-art high speed QKD system
working at GHz repetition rate [16], our loss-tolerant analysis
can easily enable a key rate of megabit per second.
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Channel Parameters Estimation Performance

L (km) Attn (dB) N µ ν Pµ Pν Pz sLz,0 sLz,1 eUx,1 ez l RL

5 1.4 7.84 × 10
9 0.41 0.05 0.64 0.27 0.707.40 × 10

4
3.02 × 10

7 6.28% 2.67% 1.06× 10
7

1.40× 10
−3

20 4.5 7.84 × 10
9 0.37 0.06 0.40 0.50 0.606.15 × 10

4
6.58 × 10

6 8.67% 2.74% 8.07× 10
5

1.03× 10
−4

50 10.5 5.23× 10
10 0.55 0.06 0.74 0.18 0.503.36 × 10

5
1.33 × 10

7 8.46% 2.98% 1.07× 10
6

2.14× 10
−5

TABLE III: Implementation parameters and experimental results.N is the total number of pulses sent by Alice.Pµ,Pν ,Pω = 1−Pµ−Pν

are the probabilities to choose different intensities.Pz andPx = 1− Pz are the probabilities to choose the two bases.ω is about 0.001 for 5
and 50 km experiments, and it is about 0.003 for 20 km experiment. The estimation results are obtained by plugging the experimental counts,
shown in Supplementary Material, into the decoy-state estimation equations shown in Methods. The key rate is obtained from Eq. (1).
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FIG. 2: Experimental final secret key rate (blue circle) and QBER
(green dot) versus distance.

As a comparison to previous security analysis (e.g., GLLP),
with the source flawsδ=0.134, no matter how many decoy
states we choose or how large the data size we use, the key
generation rate will hit zero at only about 10 km based on
GLLP [6, 27]. In other words, at 20 km and 50 km, not
even a single bit could be shared between Alice and Bob
with guaranteed security with previous GLLP security proof.
This means that if considering source flaws in previous long-
distance decoy-state experiments [11–17], the key generation
might not be proven to be secure. In contrast, our analysis
with the loss-tolerant protocol can easily achieve high secure
key generation rate over long distances even in the presence
of source flaws.

Discussion and Conclusion

Numerical simulation: With δ and the parameters in Ta-
ble I, we perform a simulation to numerically study our secu-
rity analysis in a practical setting. Fig.3 shows the simula-
tion results, where similar to our 50 km experiment, we use
N=5× 1010 andǫtot=10−10. For comparison, this figure also
includes the key rate for the decoy-state BB84 based on the
GLLP security analysis (See Methods for the model). The
power of our security analysis is explicitly shown by the fact
that GLLP delivers a key rate that decreases rapidly whenδ in-
creases. The maximal tolerant distance is about 9 km for our
QKD system. This is because GLLP considers the worst case
scenario where losses can increase the fidelity flaw [6, 27].
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FIG. 3: Numerical simulation of decoy-state QKD with sourceflaws
in a practical setting. The simulation is conducted with parameters in
TableI,N=5×10

10 andǫtot=10−10. The main figure is for the three-
state protocol based on our loss-tolerant security analysis, while the
inset figure is for the decoy-state BB84 protocol based on theGLLP
security analysis (see Methods for the model). The power of our
security analysis is explicitly shown by the fact that GLLP delivers
a key rate that decreases rapidly whenδ increases. The maximal
tolerant distance is about 9 km for our QKD system (green dashed-
dotted curve in the inserted figure). In contrast, our analysis can
substantially outperform GLLP and it is loss-tolerant to source flaws.
Our QKD set up can be made secure over 60 km and the secure key
rate is almost the same as the case without considering source flaws
(i.e., assumingδ=0).

Our security analysis, however, can substantially outperform
GLLP and it is loss-tolerant to source flaws. Our QKD set
up can be made secure over 60 km and the secure key rate is
almost the same as the case without source flaws.

Conclusion:We have demonstrated decoy-state QKD with
imperfect state preparation and employed tight finite-key se-
curity bounds with composable security against coherent at-
tacks. By overcoming the limitations of the loss-tolerant pro-
tocol and quantifying the source flaws, we take the real-world
imperfections that were not addressed before, into the con-
sideration of security analysis to provide enhanced for prac-
tical QKD systems. Our work constitutes an important step
towards secure QKD with imperfect devices in practice. In
our paper, we ignore certain imperfections in the source such
as the intensity fluctuations of signal/decoy states, whichhave
a small effect and can be taken care of using previous re-
sult [52]. Also, we assume that there is no unwanted infor-
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mation leakage from the source. How to protect the source
against Eve’s active influence will be a subject for future in-
vestigations [53]. Moreover, to guarantee the qubit assump-
tion, a device-independent dimension witness could be used
to verify the dimension of the source [54]. Furthermore, it
will be interesting to work out a refined security proof that in-
clude all possible (small) imperfections and side channelsin
the source and extend our results to MDI-QKD [18]. Thus,
one can solve the problem of not only imperfect source but
also remove all loopholes in the detection system. This may
incubate the first practical side-channel-free QKD.

Methods

GLLP security analysis with source flaws

We discuss the standard GLLP security analysis for BB84
with source flaws [6, 27], which is used for our simulation of
Fig.3. We focus on phase encoding BB84 and assume{δ1, δ2,
δ3} to be Alice’s phase modulation errors for{π/2, π, 3π/2},
thus the four BB84 imperfect states sent by Alice are given by

|φ0z 〉 = |0z〉
|φ1z 〉 = sin δ2|0z〉+ cos δ2|1z〉
|φ0x〉 = cos δ1|0x〉+ sin δ1|1x〉
|φ1x〉 = sin δ3|0x〉+ cos δ3|1x〉

(3)

Based on GLLP for imperfect sources, theεsec-secret key
length is similar to Eqn.1, except for the phase error rate,
which includes the correction due to basis-dependent flaws
and is revised to [6]

ēUx,1 ≤ eUx,1 + 4∆′ + 4
√

∆′eUx,1 + ǫph (4)

Here,∆′, called the balance of a quantum coin [6, 27], quanti-
fies the basis-dependent flaws of Alice signals associated with
single-photon events.∆′ is given by [6]

∆′ ≤ ∆

Y1

∆ =
1− F (ρz, ρx)

2

(5)

whereY1 (typically called the yield of single photons [9]) is
the frequency of successful detections associated with single-
photons;F (ρz, ρx) is the fidelity of the density matrices for
the Z andX basis. Using Eq. (3), we can easily calculate
F (ρz, ρx) given{δ1, δ2, δ3}. In our QKD system, with{δ1,
δ2, δ3} upper bounded by 0.127, we haveF (ρz, ρx)=1−1.9×
10−3. So, from Eq. (5), ∆=9.45× 10−4.

In GLLP analysis, the imperfect fidelityF (ρz, ρx) can in
principle be enhanced by Eve via exploiting the channel loss,
which is clearly shown in Eq. (5), i.e.,∆ is enhanced to∆′.
Combined with the decoy-state estimations discussed in [37],
we can derive the key length and obtain the inset curves in
Fig. 3.

Loss-tolerant protocol in a practical setting

Our decoy-state analysis builds on [37], which discusses
the decoy-state BB84. Our new contribution is estimating the
phase error rateeUx,1. In decoy-state BB84,eUx,1 is estimated
from the counts inX basis [37]. In the loss-tolerant protocol,
however,eUx,1 is estimated from the rejected counts, i.e., con-
sidering the detection events associated with single photons
when Alice and Bob use different bases. Notice also that our
estimation focuses directly on the detectioncountsannounced
by Bob, which is different from previous analysis that is based
on detection probabilities [9, 10].

In original decoy-state method [9, 10], Alice first randomly
chooses an intensity setting (signal state or decoy state) to
modulate each laser pulse and then she announces her inten-
sity choices after Bob’s detections. One can imagine avirtual
but equivalent protocol: Alice has the ability to first sendn-
photon states and then she only decides on the choice of in-
tensity after Bob has a detection. Letsz,n be the number of
detection counts observed by Bob given that Alice sendsn-
photon states inZ basis. Note that

∑∞
n=0 sz,n = nz is the

total number of detections (gain counts). In the asymptotic
limit with two decoy states, we have

n̂z,k =

∞
∑

n=0

Pk|nsz,n, ∀k ∈ {µ, ν, ω},

wherePk|n is the conditional probability of choosing the in-
tensity k given that Alice prepares ann-photon state. For
finite-data size, from Hoeffding’s inequality [44], the exper-
imental measurementnz,k satisfies

|n̂z,k − nz,k| ≤ ∆(nz, ε1),

with probability at least1 − 2ε1, where ∆(nz , ε1) =
√

nz/2 log(1/ε1) andn̂z,k is the expected value ofnz,k. Note
that our analysis considers the mostgeneraltype of attack –
joint attack – consistent with quantum memories. The above
equation allows us to establish a relation between the asymp-
totic values and the observed statistics. Specifically,

n̂z,k ≤ nz,k +∆(nz, ε1) = nU
z,k,

n̂z,k ≥ nz,k −∆(nz, ε1) = nL
z,k,

are respectively the upper and lower bound of the gain counts
nz,k for a given intensity settingk ∈ {µ, ν, ω}.

An analytical lower-bound onsz,0 can be established by
exploiting the structure of the conditional probabilitiesPk|n

based on Bayes’ rule:Pk|n = Pk

τn

e−kkn

n! , where τn =
∑

k∈{µ,ν,ω} Pke
−kkn/n! is the probability that Alice pre-

pares ann-photon state. Based on an estimation method
in [51], we have

sLz,0 =
τ0

(ν − ω)

(

νeωnL
z,ω

Pω

−
ωeνnU

z,ν

Pν

)

, (6)
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sLz,1 =
µτ1

µ(ν − ω)− (ν2 − ω2)

[

eνnU
z,ν

Pν

−
eωnL

z,ω

Pω

(7)

+
ν2 − ω2

µ2

(

sLz,0
τ0

−
eµnU

z,µ

Pµ

)]

.

Different from [37], the phase error rateeUx,1 in the loss-
tolerant protocol is estimated using the rejected data analy-
sis [31]. That is,eUx,1 can be obtained by estimating the trans-
mission rate of a fictitious (virtual) quantum signal sent byAl-
ice. This transmission rate can be exploited by using the basis
mismatch events. Supplementary Material shows the details
for such an estimation in the asymptotic case. After consider-
ing the finite-data analysis,eUx,1 is given by

eUx,1 =
svir,U0x|1x,1

+ svir,U1x|0x,1

svir,L0x|0x,1
+ svir,L0x|1x,1

+ svir,L1x|0x,1
+ svir,L1x|1x,1

. (8)

where

[

Pzs
vir,λ

0x|jx,1

Pzs
vir,λ

1x|jx,1

]

= B ×A−1







2Pxs
λ
jx|0z,1

2Pxs
λ
jx|1z,1

Pzs
λ
jx|0x,1






,

wherePz andPx are the probabilities that Alice and Bob
chooseZ andX basis,j ∈ {0, 1}, λ ∈ {U,L} and A and
B are given by (see Supplementary Material)

A =







1 1 0

1 − cos(2δ2) sin(2δ2)

1 sin(2δ1) cos(2δ1)







B =
1

12

[

(1 + sin δ2) sin δ2(1 + sin δ2) cos δ2(1 + sin δ2)

(1− sin δ2) − sin δ2(1− sin δ2) − cos δ2(1 − sin δ2)

]

.

Here sU
jx|iz,1

(sL
jx|iz,1

) denotes the upper (lower) bound of
single-photon events when Bob has detections associated with
bit “j” in X basis, given that Alice sends a state ofiz with
i ∈ {0, 1}. sL

jx|iz ,1
can be estimated equivalently by plugging

nL
jx|iz ,k

(nU
jx|iz,k

) into Eqs. (6) and (7) to replacenL
z,k (nU

z,k).

sU
jx|iz ,1

can be estimated by

sUjx|iz ,1 = τ1
nU
jx|iz ,ν

− nL
jx|iz,ω

ν − ω
.
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Supplementary Material

A. Experimental counts

In TableIV, we list the raw experimental counts for each
distance. In the 5 and 20 km experiments, we collected about
75 sets of data, with each set of about 104.5 million pulses sent
out by Alice. This corresponds to a total number of pulses
N = 7.84 × 109. In the 50 km experiment, we collected
about 500 sets of data and sent a total number ofN = 5.23×
1010 pulses. The experimental gain counts (nz,k, nx,k), error
counts (nez,k, nex,k) and rejected counts (n0x|z,k, n1x|z,k) are
listed in the Table.

B. Phase error rate in the asymptotic setting

Here, we present the details of our method for phase error
rate estimation. For simplicity, our discussion focuses onthe
asymptotic case, while the extended result for the finite-data
case has been presented in the main text. The key idea is to
apply the loss-tolerant protocol [31] into our qubit model to
estimate the phase error rate. Our qubit model, as defined in
the main text, is given by Eq. (3).

The phase error rate can be obtained by estimating the
transmission rate of afictitious quantum signal sent by Al-
ice [31]. This transmission rate can be exploited by using the
basis mismatch events (i.e., rejected-data analysis).

1. Definition

The density matrices for the three encoding states|φ0z 〉,
|φ1z 〉, |φ0x〉 are:

ρ0z = |φ0z 〉〈φ0z | = (I + σz)/2, (9)

ρ1z = |φ1z 〉〈φ1z | =
[

sin2 δ2 sin δ2 cos δ2
sin δ2 cos δ2 cos2 δ2

]

=
1

2
I − 1

2
cos(2δ2)σz +

1

2
sin(2δ2)σx,

(10)

ρ0x = |φ0x〉〈φ0x | =
1

2

[

1 + sin(2δ1) cos(2δ1)

cos(2δ1) 1− sin(2δ1)

]

=
1

2
I +

1

2
sin(2δ1)σz +

1

2
cos(2δ1)σx,

(11)

Here σx,y,z denote Pauli matrices andI is identity matrix.
The equivalent entanglement states between Alice and Bob
are [31]

|Ψz〉 = (|0z〉|φ0z 〉+ |1z〉|φ1z 〉)/
√
2

|Ψx〉 = |0x〉|φ0x〉.
(12)
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Distance nz,µ nz,ν nz,ω nx,µ nx,ν nx,ω

5km 7.84 × 10
7
2.23 × 10

6
2.60 × 10

4
7.17 × 10

6
4.08 × 10

5
4.70 × 10

3

20km 8.09 × 10
6
1.50 × 10

6
2.71 × 10

4
3.40 × 10

6
6.31 × 10

5
1.36 × 10

4

50km 2.01 × 10
7
6.94 × 10

5
4.81 × 10

4
2.06 × 10

6
7.10 × 10

5
4.82 × 10

4

nez,µ nez,ν nez,ω nex,µ nex,ν nex,ω

5km 1.01 × 10
6
6.40 × 10

4
6.80 × 10

3
1.32 × 10

5
1.25 × 10

4
1.76 × 10

3

20km 2.22 × 10
5
6.13 × 10

4
6.78 × 10

3
5.67 × 10

4
2.68 × 10

4
2.65 × 10

3

50km 5.98 × 10
5
8.46 × 10

4
2.28 × 10

4
6.40 × 10

5
8.89 × 10

4
2.23 × 10

4

n0x|z,µ n0x|z,ν n0x|z,ω n1x|z,µ n1x|z,ν n1x|z,ω

5km 7.65 × 10
6
4.94 × 10

5
6.60 × 10

3
8.32 × 10

6
4.64 × 10

5
4.80 × 10

3

20km 2.71 × 10
6
4.79 × 10

5
9.13 × 10

3
2.68 × 10

6
5.19 × 10

5
9.17 × 10

3

50km 1.14 × 10
7
3.25 × 10

5
2.21 × 10

4
1.12 × 10

7
3.53 × 10

5
2.51 × 10

4

TABLE IV: Experimental raw counts.

2. Phase error rate estimation

Let Y ω
sβ ,jα

with ω ∈ {Z,X} ands, j ∈ {0, 1} denote the
joint probability that Alice (Bob) obtains a bit value j (s) con-
ditional on the state preparation of|Ψω〉 and her (his) basis
choiceα (β), then the joint probabilities for different states
are [31]:

Y z
sx,0z =

2

6
Tr[Dsxσ

z
B,0z ] =

1

6
Tr[Dsxρ0z ]

= (qsx|I + qsx|z)/6,
(13)

whereσz
B,0z

= TrA[|0z〉〈0z | ⊗ I|Ψz〉〈Ψz|] = 1
2 |φ0z 〉〈φ0z |,

andqsx|(I,x,z) = Tr[DsxσI,x,z]/2;

Y z
sx,1z =

2

6
Tr[Dsxσ

z
B,1z ] =

1

6
Tr[Dsxρ1z ]

= [qsx|I − cos(2δ2)qsx|z + sin(2δ2)qsx|x]/6,
(14)

whereσz
B,1z

= TrA[|1z〉〈1z | ⊗ I|Ψz〉〈Ψz |] = 1
2 |φ1z 〉〈φ1z |;

Y x
sx,0x =

1

6
Tr[Dsxσ

x
B,0x ] =

1

6
Tr[Dsxρ0x ]

= [qsx|I + sin(2δ1)qsx|z + cos(2δ1)qsx|x]/6,
(15)

whereσx
B,0x

= TrA[|0x〉〈0x| ⊗ I|Ψx〉〈Ψx|] = 1
2 |φ0x〉〈φ0x |.

Eqs. (13)-(15) can be rewritten as







Y z
sx,0z

Y z
sx,1z

Y x
sx,0x






=

1

6







Y z
sx|0z

Y z
sx|1z

Y x
sx|0x






=

1

6







1 1 0

1 − cos(2δ2) sin(2δ2)

1 sin(2δ1) cos(2δ1)













qsx|I
qsx|z
qsx|x







≡ 1

6
A







qsx|I
qsx|z
qsx|x






.

(16)
HereY z

sx|0z
denotes the conditional probability that Bob ob-

tains bit s in basisx given that Alice sends0z. The same
definition is applied toY z

sx|1z
andY x

sx|0x
. Note that all these

quantities can be measureddirectly in experiment.

To estimate the phase error rate, we consider avirtual pro-
tocol: Alice first prepares|Ψz〉 and then both Alice and Bob
measure systems A and B in theX basis [31]. The joint prob-
abilities of the virtual statesY z,vir

sx,jx
are:

Y z,vir
sx,0x

=
1

12
Tr[Dsxσ

z,vir
B,0x

] =
1

3
[(1 + sin δ2)qsx|I + sin δ2(1 + sin δ2)qsx|x + cos δ2(1 + sin δ2)qsx|x],

Y z,vir
sx,1x

=
1

12
Tr[Dsxσ

z,vir
B,1x

] =
1

3
[(1− sin δ2)qsx|I − sin δ2(1− sin δ2)qsx|x − cos δ2(1− sin δ2)qsx|x].

(17)

Eq. (17) can be rewritten as
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[

Y z,vir
sx,0x

Y z,vir
sx,1x

]

=
1

12

[

(1 + sin δ2) sin δ2(1 + sin δ2) cos δ2(1 + sin δ2)

(1 − sin δ2) − sin δ2(1− sin δ2) − cos δ2(1− sin δ2)

]







qsx|I
qsx|z
qsx|x






≡ B







qsx|I
qsx|z
qsx|x






. (18)

Combining it with Eq. (16), we can obtain the rate of virtual
states based on experimental results, which is

[

Y z,vir
sx,0x

Y z,vir
sx,1x

]

= B × A−1







Y z
sx|0z

Y z
sx|1z

Y x
sx|0x






. (19)

Finally the phase error can be estimated by

ex =
Y z,vir
1x,0x

+ Y z,vir
0x,1x

Y z,vir
0x,0x

+ Y z,vir
1x,0x

+ Y z,vir
0x,1x

+ Y z,vir
1x,1x

. (20)

The extended result of Eq. (20) for the finite-data case is pre-
sented in the Methods of the main text.

C. Qubit assumption

We verify the qubit assumption, i.e., that the four BB84
states remain in two dimensions. This assumption is com-
monly made in various QKD protocols including decoy-
state BB84 and MDI-QKD. We focus on a standardone-
way phase-encodingsystem, which has been widely imple-
mented in experiments [12, 15, 16, 55]. In this system,
LiNbO3 waveguide-based phase modulator (PM) is com-
monly used to encode/decode phase information. Fig.4 illus-
trates the schematic of such PM [56]. For commercial prod-
ucts, see [57]. To guarantee the qubit assumption, Alice’s PM
is supposed to have the same timing, spectral, spatial and po-
larization mode information for different BB84 states. We find
that timing and spatial information can be easily guaranteed
without any additional devices, while spectral and polariza-
tion information can also be guaranteed with standard low-
cost optical devices such as wavelength filter and polarizer.
Therefore, based on standard devices, we can verify the qubit
assumption with high accuracy. We remark that our method
serves as a specific example to practically verify the qubit as-
sumption. In future, it will be interesting to work towards
constructing a more general theory on the verification of the
qubit assumption.

In the following, we discuss timing, spectral, spatial and
polarization properties for different encoding phases.

Temporal-spectral mode

Temporal mode:Fig. 4 shows the schematic of the phase
modulation based on LiNbO3 crystal. When phase modulator
(PM) modulates different phases, the electrical-optical effect

inside the LiNbO3 waveguide changes the principal refractive
indexnz. At first sight, it might appear that the timing in-
formation is indeed changed for different phase modulations.
However, we will show that such change is so small that it can
be neglected.

According to the EM theory in LiNbO3 waveguide, the re-
lations among the principal refractive indexnz, the group re-
fractive indexng and the extraordinary refractive indexne are
given by [56]

ng = nz + ω0
dnz(ω)

dω
|ω0

nz = ne −
1

2
n3
erz

V

d

(21)

whereω0 is the central frequency of the optical field,rz is
the electro-optical coefficient alongz axis, V is the voltage
applied onto the crystal, andd is the thickness of the crystal.
Thus the timing difference∆t between{0} and phase modu-
lation{π} is given by

∆t = [
1

2
n3
erz

Vπ

d
+

3

2
n2
erz

Vπ

d
ω0

dne(ω)

dω
|ω0

]
l0
c

(22)

whereVπ = λ0d
n2
erzl0

is the half-wave voltage that provides a

phase modulation{π} [56], l0 is the length of the crystal and
c is the speed of light.

For a typical LiNbO3 crystal working in the telecom wave-
lengthλ0 ∼ 1550 nm, it is well known that the relation be-
tweenne andλ0 is given by [58]

n2
e = 1 +

2.980λ2
0

λ2
0 − 0.020

+
0.598λ2

0

λ2
0 − 0.067

+
8.954λ2

0

λ2
0 − 416.08

(23)

Notice that in a waveguide based PM, one has to use the
effective index, i.e.,neff , to include the waveguide effect.
We remark however that, for LiNbO3 material,neff andne

are almost the same [59]. Hence, by plugging Eq. (23) into
Eq. (22), we have∆t ≈ 4× 10−6 ns. In a QKD implementa-
tion, the optical pulse is typically around 1 ns width [12–14]
or 0.1 ns [15, 16, 55], thus∆t ≪ 0.1 ns. Assuming that
the optical pulse is Gaussian,∆t corresponds to a fidelity of
F (ρ0, ρπ) ≈ 1 − 10−8 between{0} and {π}. Therefore,
timing remains (almost) the same for different phase modula-
tions.

Spectral mode:First, in a standard one-way system, Alice
can locally synchronize the devices so that the optical pulse
passes through Alice’s PM in the middle of the electrical mod-
ulation signal (flat response). Hence, the optical pulse experi-
ences a correct modulationwithout spectral change [60, 61].
In a two-way system, Alice can monitor the timing infor-
mation between the signal and reference pulse to guarantee
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FIG. 4: Schematic of an electro-optic phase modulator basedon
LiNbO3 crystal [56]. Commercial products can be seen in [57]. The
double-headed arrows show the direction of polarization ofthe op-
tical beam. The crystal is cut in a configuration so that the applied
electrical field (voltage) is along the direction of the principal (z)
axis. To take the advantage of the largest electro-optical coefficient
in thez axis, an optical beam is propagating along thex axis, with
the direction of polarization parallel to thez axis.

the correct modulation and defend against side-channel at-
tacks [60, 61]. Second, to guarantee single spectral mode
from the output of a laser, one can use a standard wavelength
filter. For instance, a recent QKD experiment used an off-the-
shelf wavelength filter with a full-width at the half maximum
(FWHM) of ∆ν =15 GHz for a different purpose [55]. In this
case, given a Gaussian pulse with FWHM∆t = 0.1 ns in the
time domain [55], it is quite close to the lower bound of time-
bandwidth product [56], i.e., ∆t × ∆ν ≥ 2ln2

π
. Wavelength

filters with narrow bandwidth have already been widely avail-
able on the market [62]. Hence, single spectral mode can be
guaranteed with high accuracy by using a wavelength filter.

Spatial mode

For a standard single-mode fiber (SMF), the core diame-
ter is around 10 um. Theory and experiments have already
confirmed that a SMF in the telecom wavelength rejects all
high-order modes and conducts only one fundamental trans-
verse mode [63]. The cutoff wavelength of a standard SMF is
about 1260 nm1. Using the software of BeamPROP, we have
also performed a numerical simulation with a standard multi-
mode fiber propagating into a SMF. The results show that after
only about one millimeter, SMF rejects almost all high-order
modes. The high-order modes decay exponentially, thus af-
ter about ten millimeters, there is no high-order component
left (less than10−10 proportion). Notice that, the input of a
standard commercial PM usually has a certain length of pig-
tail fiber (about one meter) [57]. Therefore, the single mode
assumption on spatial mode can be easily guaranteed in prac-
tice.

Polarization mode

The input of a commercial PM is normally a pigtail of po-
larization maintaining fiber [57], which can ensure that the

input polarization is perfectly aligned with the principalaxis
of PM. Experimentally, before this polarization maintaining
fiber, one can use a fiber polarization beam splitter (PBS) to
reject other polarization modes. A standard PBS has about
30 dB extinction ratio. In the following, we discuss the error
due to this finite extinction ratio (30 dB). Ideally, if the PBS
has infinite extinction ratio, the input state is perfectly aligned
with the principal axis (z axis in Fig.4) and Alice modulates
the four BB84 states as

|φj〉 =
1√
2
(eij

π
2 |Sz〉+ |Rz〉),

wherej ∈{0, 1, 2, 3} denotes the four BB84 states and|Sz〉
(|Rz〉) denotes the signal (reference) pulse with polarization
alongz axis. However, due to the finite extinction ratio of
PBS, the signal and reference pulse are expressed as

|S〉 = α|Sy〉+ β|Sz〉,
|R〉 = α|Ry〉+ β|Rz〉,

where|Sy〉 denotes the polarization component alongy axis.
For 30 dB extinction ratio,α2 ≈0.001. Thus Alice’s imperfect
modulations can be described by

|φ′
j〉 =

1√
2
(αeij

π
6 |Sy〉+ βeij

π
2 |Sz〉+ α|Ry〉+ β|Rz〉,

(24)
where we assume that the relative modulation magnitude ra-
tio between the polarization aligned with the principal axis
(z axis) and the orthogonal polarization (y axis in Fig.4) is
1:3 [56, 60]. Using three new bases{|e1〉, |e2〉, |e3〉}, Eq. (24)
can be written as (similar to [46])

|φ′
j〉 =

1√
2
(αβ(eij

π
6 − eij

π
2 )|e1〉+ (α2eij

π
6 + β2eij

π
2 )|e2〉+ |e3〉),

(25)
Hence, the four imperfect states is spanned to three dimen-
sions in Hilbert space, i.e., the information encoded by Al-
ice is not only in the time-phase mode but also in the polar-
ization mode. However, for 30 dB extinction ratio, we find
that it is almost impossible for Eve to attack the system, be-
cause the fidelity between|φj〉 and |φ′

j〉, F (ρ|φj〉, ρ|φ
′

j〉) =

tr

√

√

ρ|φj〉ρ|φ
′

j〉
√

ρ|φj〉, is about1 − 10−7 for j ∈{0, 1, 2,
3}. This shows that the imperfect states are highly close to
the perfect BB84 states. Most importantly, one can derive a
refined security proof to include this small imperfection into
the secure key rate formula, which will be a subject of future
investigation.
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