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In any natural science, measurements are the essential link between theory and observable reality. Is it possible
to obtain accurate and relevant information via measurement whose action on the probed system is unknown?
In other words, can one be convinced to know something about the nature without knowing in detail how
the information was obtained? In this paper, we show that the answer is, surprisingly, yes. We construct and
experimentally implement a quantum optical probing measurement where measurements on the probes, i.e., the
photons’ polarization states, are used to extract information on the systems, i.e., the frequency spectra of the
same photons. Unlike the preexisting probing protocols, our measurement does not require any knowledge of
the interaction between the probe and the system.

DOI: 10.1103/PhysRevA.102.022232

I. INTRODUCTION

As a necessary part of any natural science, measurements
lie at the heart of understanding the observable universe.
They are needed both to test the existing theories and to
inspire new branches of theoretical research. In addition to
purely scientific purposes, measurements are also necessary
for technological applications. More specifically, the readout
of the outcome of a quantum computer or quantum simulator
is extracted by measuring the system acting as the information
carrier. Sometimes, measurements are also needed to monitor
the performance of the device while it is running.

Despite their useful purposes, measurements also have
harmful effects. Every nontrivial measurement disturbs the
system state [1–3]. In some cases, direct measurement may
even destroy the whole system of interest. To avoid this
problem, so-called nondemolition [4,5] and quantum probing
measurements have been proposed and experimentally imple-
mented [6–10]. In a quantum probing measurement, the idea is
to avoid directly measuring the system of interest by coupling
it to a disposable probe system instead. The system-probe cou-
pling causes the probe state to change and, from the change,
one can deduce how the system of interest was before the
coupling [11–13]. The existing protocols are heavily based on
fully knowing the system-probe coupling, and implementation
of such protocols requires faithful experimental realization of
that specific coupling. As any experimental implementation
has its limitations, the coupling is never perfectly known or
controlled.

In addition to the above-mentioned quantum probing
schemes, it is also worth mentioning here the recent

*henri.s.lyyra@jyu.fi

developments in quantum hypothesis testing; see,
e.g., [14–16]. The motivating question—for hypothesis
testing—is which one of the a priori introduced hypotheses is
consistent with the obtained measurement data. For example,
in the open system context, it is possible to test which one
of the possible Rabi frequencies was actually used to drive
a two-level system [14]. Moreover, hypothesis testing also
has applications, e.g., in quantum illumination [17], to check
whether a low-reflectivity object existed—or not—in a given
target region [15,16]. For quantum probing, the starting point
is slightly different. Here, the aim, in the best case, is to obtain
a precise quantitative value—with bounds and without prior

information or hypotheses—on a property of a given degree
of freedom while measuring another degree of freedom.

In [18], a new approach to quantum probing was proposed.
These protocols are based on the properties of so-called α

fidelities, which were shown to satisfy a generalized data-
processing inequality which was found useful for multiple
purposes [18]. The inequality was applied to study the Hilbert
space dimension of the programmable quantum processor
in approximate implementation of quantum channels, and to
make predictions of unsolvable quantum dynamics. Interest-
ingly, it was also shown to allow one to construct probing
measurements without knowing anything about the system-
probe coupling. In this sense, the protocol should give accu-
rate information even though it is impossible to know how the
measurement actually happens.

In this paper, we present an experimental implementation
of such probing measurement. Our system of interest is the
frequency degree of freedom of a single photon and our
probe is the polarization of the same photon. This system
has attracted a lot of attention lately [19–27]. We show
how measuring two polarization states before and after their
interaction with the frequency can be used to extract upper
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bounds for the width of the corresponding frequency spec-
tra. We demonstrate how the protocol works even in cases
where the coupling is unknown. As a trade-off of performing
the probing without knowing the system-probe coupling, we
need to perform full tomography for the probe system. Our
measurement data do not yield to estimate for the exact value
of the unknown parameter, but instead we obtain upper or
lower bounds, derived analytically from the generalized data-
processing inequality.

The paper is structured as follows: In Sec. II, we briefly
discuss the open quantum system picture, the α fidelities,
and the generalized data-processing inequality. In Sec. III,
we present our photonic system and apply the generalized
data-processing inequality to derive the bounds for the un-
known width to be determined by the probing measurement.
In Sec. IV, we present the experimental setup and the mea-
surement results. Finally, in Sec. V, we summarize our results
and discuss future aspects.

II. OPEN QUANTUM SYSTEMS, QUANTUM PROBING,

AND α FIDELITIES

We say that a quantum system A is open if it interacts
with some other system B, the environment. Commonly, it is
assumed that A and B are uncorrelated before the dynamics
begins. In the dynamics, the total state of the combined system
AB undergoes a change, described by a unitary U . The evolved
state of system A can be solved as

�(ρ) = trB[U (ρ ⊗ ξ )U †], (1)

where ρ and ξ are the initial states of systems A and B, re-
spectively, and trB[X ] is the partial trace of X over the Hilbert
space of B [11–13]. By this construction, � is a completely
positive and trace-preserving (CPTP) map or, in other words, a
channel. The effects of CPTP maps have been widely studied
and it has been shown that information in terms of trace
distance [28] and quantum entanglement can only be lost in
(local) CPTP transformations [29], and fidelity between two
states can never decrease [28]. For trace distance and fidelity,
this means that they satisfy data-processing inequalities.

Despite its harmful effects, open system dynamics can also
be useful. One of its applications is the quantum probing

measurements. In quantum probing, the goal is to obtain
information of some property of the system S without directly
measuring it. This can be the case when S is a part of a device,
such as a quantum computer or a quantum simulator, and
one wants to monitor the device without having to stop it to
perform a measurement. In quantum probing, S is unitarily
coupled to a disposable probe system P and measurements
on the evolved probe are used to gain information about S.
In the above description of open quantum system dynamics,
the system of interest S corresponds to the environment B and
the probe P is the open system A. Commonly, the probing
protocols rely on knowing the coupling U and they are based
on the solvable connection between the unknown parameters
of S and the channel � of P, caused by the interaction, as
in Fig. 1.

On the other hand, if the coupling U is not known, the
unknown parameters of S cannot be mapped to the transfor-
mation � of the probe state. Consequently, the traditional

ρ Φ(ρ)

ξ

U(ρ⊗ ξ)U†

χ

S

P P

S

P

S

FIG. 1. The common quantum probing approach. The system S

and the probe P interact under the unitary coupling U . After the
interaction, measurements on P in the evolved state �(ρ ) are used
to determine unknown properties of S. Here, U is known and the
unknown parameters of ξ are mapped to the state transformation
ρ �→ �(ρ ) of P.

probing approach cannot be applied. To see how the quantum
probing can be performed in such situation, let us consider the
two cases in Fig. 2. When the coupling U has been fixed, the
dynamics of the probe P depends on the initial state ξ of the
system S. As a consequence, preparing S in different states ξ1

and ξ2 and coupling it to P can induce different channels �1

and �2 to P, even if the coupling U is the same in both cases.
This observation was exploited in [18] to form a math-

ematical tool for studying open quantum systems based on
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FIG. 2. The unknown coupling quantum probing approach. The
system S interacts with the probe P. In cases (a) and (b), the unitary
coupling U between S and P is the same. The unknown parameter in
the system states ξ1 and ξ2 is the same, but some control parameter
is different. As a consequence, the induced probe channels �1 and
�2 may be different. Even though the coupling U is unknown,
and consequently so are the channels �1 and �2, comparison of
the measured probe states �1(ρ1) and �2(ρ2) can be used to gain
accurate information on the unknown parameter.
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the comparison between the initial environment states and the
channels they induce. The α fidelity of states was defined for
α ∈ (0, 1) as [18]

Fα (ρ1, ρ2) := tr
[(

ρ
1−α
2α

2 ρ1 ρ
1−α
2α

2

)α]

. (2)

In the special case α = 1/2, we note that F1/2 is the commonly
used fidelity of states.

Now, let us consider the α fidelities in the context of Fig. 2.
The unitary coupling U between P and S is fixed, but in
Figs. 2(a) and 2(b), the initial states of P and S can be dif-
ferent. Thus, different choices of states ξ1 and ξ2 of S induce
channels �1 and �2 to P in the interaction, respectively. In
this open system picture, it was shown that the α fidelities
satisfy the following inequality:

Fα (ρ1, ρ2)Fα (ξ1, ξ2) � Fα (�1(ρ1),�2(ρ2)), (3)

for all α ∈ [1/2, 1) [18]. It is worth noting that Eq. (3)
does not explicitly depend on the coupling U , so it gives
a fundamental bound for the relation of the channels �1

and �2 that two states ξ1 and ξ2 can induce. Conversely,
it sets restrictions to the states ξ1 and ξ2 that can induce
two given channels �1 and �2. This property makes it
useful for different applications. Equation (3) can also be
interpreted as a generalization of the data-processing inequal-
ity F1/2(ρ1, ρ2) � F1/2(�(ρ1),�(ρ2)) of the common fidelity
function by adding the freedom of parameter for α ∈ [1/2, 1),
giving us Fα (ρ1, ρ2) � Fα (�(ρ1),�(ρ2)), and even further to
the case of different channels �1 and �2, as in Eq. (3).

Interestingly, Eq. (3) allows us to construct quantum prob-
ing protocols with no knowledge of the coupling in the
following way: Assume that S is prepared in the state ξ (x, y)
and our task is to extract information of the value of parameter
x, and y is some controllable parameter. The experimenter has
control over the initial state of P and the parameter y. By
preparing P in some known states ρ1 and ρ2, and evolving
them with the channels �1 and �2, induced by states ξ (x, y1)
and ξ (x, y2) of S, respectively, the experimenter obtains the
values of Fα (ρ1, ρ2) and Fα (�1(ρ1),�2(ρ2)). When the x and
y dependence of ξ (x, y) is known, different values of x can
be numerically tested in Fα (ξ (x, y1), ξ (x, y2)). The values of
x which cause violation of Eq. (3) are immediately known
to be incorrect and bounds of the actual value of x can be
obtained. In cases where Fα (ξ (x, y1), ξ (x, y2)) is bijective in
terms of x, analytical bounds for the unknown x can be derived
as functions of Fα (ρ1, ρ2), Fα (�1(ρ1),�2(ρ2)), y1, and y2.

Next, we construct and analyze such a protocol by fixing
the system and probe, and then we implement the probing
protocol in an all-optical experiment.

III. THE PHOTONIC SYSTEM AND PROBING

Our system of interest is the frequency degree of freedom
of a single photon. We assume that the central frequency μ

of Gaussian intensity distribution |g(ω)|2 can be shifted in a
controlled way. Instead, the standard deviation σ is unknown
and our goal is to get information about it. The frequency
states are given by

ξk =
∫

|gk (ω)|2|ω〉〈ω|dω, (4)

1 2

|g( ) 2

2 2

FIG. 3. Illustration of the frequency states ξ1 and ξ2. The stan-
dard deviation σ is the same in both Gaussian distributions |g1(ω)|2
and |g2(ω)|2, and it is the unknown parameter of our interest. In
the probing protocol, we control the difference between central
frequencies �μ = |μ2 − μ1|, and thus it is known.

where

|gk (ω)|2 =
1

√
2πσ 2

e
− (ω−μk )2

2σ2 , k ∈ {1, 2}, (5)

σ is the unknown standard deviation, and μk is the mean
or central frequency of the Gaussian distribution |gk (ω)|2, as
illustrated in Fig. 3. Here, ω are the frequency values with
amplitudes gk (ω).

Now, the α fidelity between two frequency states becomes

Fα (ξ1, ξ2) = e
−(1−α)α �μ2

2σ2 , (6)

where we have denoted �μ = |μ2 − μ1|. In the experi-
ment, �μ is our known controllable parameter. We note
that Fα (ξ1, ξ2) is monotonically increasing in σ and α, and
monotonically decreasing in �μ when α ∈ [1/2, 1). In this
optical setup, our probe is the polarization qubit of the photon.

Now, we consider what kinds of bounds can be derived
from Eq. (3) for the three cases Fα (�1(ρ1),�2(ρ2)) <

Fα (ρ1, ρ2), Fα (�1(ρ1),�2(ρ2)) = Fα (ρ1, ρ2), and Fα (�1

(ρ1),�2(ρ2)) > Fα (ρ1, ρ2). First, assuming Fα (�1(ρ1),
�2(ρ2)) < Fα (ρ1, ρ2), �μ > 0, and using the initial system
states of Eq. (4), Eq. (3) yields to

σ � B1(α) :=

√

α(α − 1)�μ2

2 ln[Fα (�1(ρ1),�2(ρ2))/Fα (ρ1, ρ2)]
.

(7)

Thus, measuring �1(ρ1) and �2(ρ2) results directly to
an α parametrized family of upper bounds for the un-
known standard deviation σ . We note that in our case,
Fα (ξ1, ξ2) = Fα (ξ2, ξ1), but generally Fα is not symmetric
with respect to the inputs, namely, Fα (�1(ρ1),�2(ρ2)) 	=
Fα (�2(ρ2),�1(ρ1)) and Fα (ρ1, ρ2) 	= Fα (ρ2, ρ1). As a con-
sequence, the same measurement data give us an additional
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D0
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Idler

Measurement stageξ ξk:

U = ?

μ μk

σ = ?
U(ρk ⊗ ξk)U†

QPIF PBSQWPHWP
Signal

FIG. 4. The experimental setup. The photon source (PS) produces a pair of photons. The signal photons’ polarization state is prepared
at PS to |+〉〈+| by passing it through a polarizer fixed to 45 degree angle with respect to the ↔ axis. The idler photon is detected with the
single-photon detector D0, which triggers the coincidence counting electronics (CC) to wait for the signal photon to arrive at detector D1.
After PS, the central frequency μ of the signal photon can be adjusted by tilting the interference filter (IF). After the state preparation, the
signal photon goes to the probing measurement stage. First, frequency (the system) is coupled with polarization (the probe) when the photon
goes through quartz plates (QP). After the interaction, the evolved state �(ρ ) of the polarization qubit (probe) is determined by performing a
tomographic measurement with a combination of a half-wave plate (HWP), quarter-wave plate (QWP), and a polarizing beam splitter (PBS).

family of bounds:

σ � B2(α) :=

√

α(α − 1)�μ2

2 ln[Fα (�2(ρ2),�1(ρ1))/Fα (ρ2, ρ1)]
.

(8)

On the other hand, if Fα (�1(ρ1),�2(ρ2)) = Fα (ρ1, ρ2) or
�μ = 0, the initial system states of Eq. (4) in Eq. (3) lead
to the trivial condition σ � 0. Lastly, assuming Fα (ρ1, ρ2) <

Fα (�1(ρ1),�2(ρ2)), �μ > 0, and using the initial system
states of Eq. (4) in Eq. (3) gives us

σ 2
�

α(α − 1)�μ2

2 ln[Fα (�1(ρ1),�2(ρ2))/Fα (ρ1, ρ2)]
(9)

and

σ 2
�

α(α − 1)�μ2

2 ln[Fα (�2(ρ2),�1(ρ1))/Fα (ρ2, ρ1)]
, (10)

as above. With the above assumptions, the right-hand side in
Eqs. (9) and (10) is genuinely negative. Thus, if Fα (ρ1, ρ2) <

Fα (�1(ρ1),�2(ρ2)), the probing protocol does not give us
any relevant information. This observation suggests that in
order to guarantee relevant information, one should maximize
Fα (ρ1, ρ2) by choosing ρ1 = ρ2 = ρ, as there is very little
control over Fα (�1(ρ1),�2(ρ2)) in the case of unknown
coupling U .

We note here that due to the similar role of σ and �μ in
Eq. (6), our probing protocol can be used to get bounds for
unknown frequency shift �μ if σ is known instead. In this
case, the same measurement data could be used and lower
bounds for �μ would be determined as

�μ �

√

2σ 2 ln[Fα (�1(ρ1),�2(ρ2))/Fα (ρ1, ρ2)]

α(α − 1)
, (11)

�μ �

√

2σ 2 ln[Fα (�2(ρ2),�1(ρ1))/Fα (ρ2, ρ1)]

α(α − 1)
, (12)

when Fα (�1(ρ1),�2(ρ2)) < Fα (ρ1, ρ2) and Fα (�2(ρ2),
�1(ρ1)) < Fα (ρ2, ρ1), respectively. Similarly, if both �μ and
σ were unknown, we could get lower bounds for their ratio
�μ/σ .

The above analysis was performed for the full generality of
the α fidelities, but the same would also hold for the common
fidelity of quantum states, obtained by choosing α = 1/2. As
suggested by the theoretical results in [18], freedom to choose
α can lead to improved precision in probing protocols, so here
we exploit the whole range α ∈ [1/2, 1) to get as tight bounds
as possible.

Next, we implement the two frequency states with �μ >

0 and experimentally determine the values of Fα (ρ1, ρ2),
Fα (ρ2, ρ1), Fα (�1(ρ1),�2(ρ2)), and Fα (�2(ρ2),�1(ρ1)) to
get upper bounds for σ with our probing protocol.

IV. THE EXPERIMENT

In Fig. 4, we present the experimental setup. The photon
source (PS) is a type-I beta-barium borate crystal, which is
pumped with a tightly focused continuous-wave laser of the
wavelength 405 nm. The crystal randomly produces a pair of
photons through the spontaneous parametric down-conversion
process in a wide spectrum around 810 nm. At PS, the signal

photons’ polarization is prepared to an initial probe state ρ

by passing it through a polarizer rotated to a fixed angle with
respect to the ↔ plane. Here, � and ↔ correspond to vertical
and horizontal polarizations, respectively. The idler photon in
the upper branch is registered by the single-photon detector
D0, which triggers the coincidence counting electronics (CC)
to monitor the single-photon detector D1 for data collection of
the signal photon in the lower branch.

The signal photon first goes through the interference filter
(IF). Tilting the IF changes its transmission bandwidth and,
as a consequence, the central frequency μ of the Gaussian
frequency distribution, while keeping its standard deviation σ

as it was. This controlled transformation allows us to change
the initial frequency state ξ into ξ1 and ξ2, and thus choose
�μ, which needs to be nonzero for our protocol to work.
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FIG. 5. The experimentally determined upper bounds of the unknown parameter σ . Here, the coupling is a 5 mm quartz plate. The panel
on the left-hand side illustrates the upper bounds of the unknown σ . We see that as α approaches 1, this measurement gives the tighter upper
bound B2 as 1.82 × σ , where the actual standard deviation is σ = 5.68 × 1011 Hz. The panel on the right-hand side presents the fractions
Fα (�1(ρ1),�2(ρ2))/Fα (ρ1, ρ2) and Fα (�2(ρ2),�1(ρ1))/Fα (ρ2, ρ1), corresponding to the bounds in the left panel. We see that in both cases,
the fraction is less than one for α ∈ [1/2, 1), and thus the use of the bounds B1(α) and B2(α) is justified.

The probing measurement is performed at the measure-
ment stage. First the system (frequency) and the probe (po-
larization) are coupled as the signal photon goes through
birefringent quartz plates (QP). This causes the channels �1

and �2, which change the polarization states ρ1 and ρ2,
respectively.1 After the QP, the signal photon passes through
a combination of a half-wave plate (HWP), a quarter-wave
plate (QWP), and a polarizing beam splitter (PBS). Rotating
the QWP and the HWP changes the measurement basis of the
PBS, and allows for full state tomography of the polarization
states �1(ρ1) and �2(ρ2). For each measurement basis, we
used 60 s integration time.

Measurement of how channels �1 and �2 change some
initial probe states can give insight on how the optimal ini-
tial probe states should be chosen: In our case, polarization
tomography after interaction with frequency shows that the
diagonal terms in the {↔,�} basis remain constant and there
is decay and rotation of the complex phase in the off-diagonal
terms when the quartz plates in the experimental setup are
fixed in the same orientation. This suggests a dephasing-
type dynamics for the probe, for which optimal initial states
were shown to be ρ1 = ρ2 = |+〉〈+|, where |+〉 = 1√

2
(|↔〉 +

|�〉) [18]. As a consequence, we choose to prepare our initial
probe states close to

ρ1 = ρ2 = ρ := |+〉〈+|. (13)

The initial probe states in the experiment were determined
to be

ρ1 =

(

0.513 0.482 − 0.006i

0.482 + 0.06i 0.487

)

, (14)

ρ2 =

(

0.535 0.496 − 0.017i

0.496 + 0.017i 0.465

)

, (15)

1We emphasize that even though the dynamics induced by a QP
coupling is well known once its optical axis is fixed, any assumption
on the coupling or the channels is not used to derive our protocol and
it would work similarly for any other coupling, as illustrated later by
fixing randomly rotated orientations to each QP in combinations.

where we have used the matrix representation |↔〉 = (1, 0)T

and |�〉 = (0, 1)T. We fixed the control parameter as �μ =
7.95 × 1011 Hz (in wavelength �λ = 1.73 nm). We used
multiple different thicknesses of quartz plates and their com-
binations, corresponding to different system-probe couplings
U . As an example, in the case of a 5 mm quartz plate as the
coupling, the corresponding evolved probe states were

�1(ρ1) =

(

0.51 0.435 + 0.073i

0.435 − 0.073i 0.49

)

, (16)

�2(ρ2) =

(

0.509 0.257 + 0.329i

0.257 − 0.329i 0.491

)

. (17)

In Fig. 5, we plot the upper bounds of Eqs. (7) and (8)
for the unknown σ as a function of the parameter α. The
upper bounds are given in units of the actual value of standard
deviation σ = 5.68 × 1011 Hz (about 1.24 nm in wavelength).
We note that the freedom to choose α leads to significantly
tighter bounds: increasing α towards α = 1 tightens the upper
bound significantly, from σ̃ � 2.22σ to σ̃ � 1.82σ . In this
case, it is clear that the lack of input symmetry in Fα leads to
two different bounds B1(α) and B2(α), and B2(α) leads to a
tighter upper bound.

The protocol was repeated for multiple other couplings,
implemented with different thicknesses x of quartz plate
combinations rotated in different orientations. The results
are summarized in Fig. 6. Here, the thicknesses x are listed
for completeness, but knowledge of the QP thickness—as
any other properties of the coupling—is irrelevant for our
protocol. For each coupling, the validity of the bounds was
checked and the tightest bound was determined by comparing
B1(α) and B2(α) for different values of α, as explained for the
example case of 5 mm quartz plate in Fig. 5.

In Fig. 6, the blue crosses are the tightest upper bounds de-
termined with the quartz plate combinations of different thick-
ness x with the optical axes in the same direction. The solid
blue line is the corresponding theoretical prediction, plotted
by using the solution of polarization dynamics in [19]. We
note that first the bounds become tighter as the thickness in-
creases, but after 7 mm, the bounds become less and less tight.
This tells us that from 2 to 7 mm, the evolved probe states
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FIG. 6. The experimentally determined tightest upper bounds of
the unknown parameter σ for different couplings U (color online).
The x axis is the used quartz plate combination thickness, corre-
sponding to different couplings and Binf is the smallest value of the
functions B1(α) and B2(α) for the optimal value of α, in units of
the actual σ . The blue crosses correspond to measurements where all
quartz plates are aligned in the same direction and the blue line is the
corresponding theoretical prediction for the measured upper bound
as a function of the QP thickness. The slanted red crosses correspond
to measurements where the orientation of each quartz plate was fixed
by rotating it in a randomly chosen angle. The slanted red cross at
7 mm corresponds to a combination of 2 and 5 mm quartz plates, the
slanted red cross at 15 mm corresponds to a combination of 5 and
10 mm quartz plates, and the slanted red cross at 17 mm corresponds
to a combination of 2, 5, and 10 mm quartz plates, all rotated in
randomly picked and unknown angles. The error bars are due to the
photon-counting statistics, and they are standard deviations of bound
values calculated by the Monte Carlo method.

�1(ρ1) and �2(ρ2) become less and less similar to each other
with respect to α fidelity, decreasing Fα (�1(ρ1),�2(ρ2)) as
the thickness x increases. After 7 mm, the bounds become
less and less tight, which means that the evolved states
�1(ρ1) and �2(ρ2) become more and more similar, increasing
Fα (�1(ρ1),�2(ρ2)). The measurement with coupling that
corresponds to the 20 mm quartz plate combination is not
shown in Fig. 6 because in that case, the evolved probe
states became more similar than the initial states, and thus
we got Fα (ρ1, ρ2) < Fα (�1(ρ1),�2(ρ2)), which meant that
the measurement data do not give any nontrivial bounds.

The slanted red crosses in Fig. 6 are the tightest upper
bounds determined with the quartz plate combinations of dif-
ferent thickness x with the optical axes fixed in randomly cho-
sen and unknown directions, corresponding to truly unknown
couplings. For these cases, the orientation of quartz plates in
the combinations is set by choosing a random and fixed direc-
tion independently for each of the quartz plates. Then, state
tomography is performed for the evolved polarization states
after interaction with the frequency in the QP combination.
We note that in the case of x = 7 mm, the coupling with
randomly fixed QP orientations leads to a slightly less tight
bound than in the case of the fixed orientation. On the other
hand, when x = 15 mm, the bounds given by the randomly
oriented quartz plates give a significantly tighter bound than
the same combination with all the plates set in the same orien-
tation. This case is the tightest bound that we achieved in all of
the measurements. Thus, with our protocol, modifications of
the system-probe coupling can be used to tighten the obtained

bounds even if the effect of the modification in the resulting
probe dynamics cannot be analyzed.

In [30], it was shown that the quantum Rényi divergences
are continuous functions with respect to their argument states.
As the α fidelities are continuous functions of the Rényi diver-
gences, the α fidelities are also continuous, and thus small de-
viations in the tomography are not critical for the determined
α-fidelity values. To experimentally test the sensitivity of our
protocol with respect to the precision of probe tomography,
we performed initial probe state tomography again by using
only 10 s integration time for each basis. The smaller sample
size changed the resulting states only slightly, and the average
difference between the bounds obtained from 60 and 10 s
tomography was 4.19% of the bound with 60 s tomography.
This serves as experimental evidence for the robustness of our
approach.

As illustrated by Eq. (7), Eq. (8), and our experimental
data, this approach can give only analytically derived bounds
for the unknown parameter to be determined and not its
actual value. This is a trade-off of allowing the measurement
protocol to function with no knowledge of the coupling U

which the probing is based on.

V. CONCLUSIONS AND OUTLOOK

In this paper, we presented an experimental realization
of a quantum probing protocol that works with unknown
system-probe coupling. Our system of interest was the fre-
quency of a photon and the unknown parameter of interest
was the standard deviation of its Gaussian spectrum. The
frequency spectrum was realized in two Gaussian distribu-
tions with different means and each of them was coupled to
their corresponding polarization probes. Comparison of the
evolved polarization states was applied in the generalized
data-processing inequality, which gave us analytically derived
upper bounds for the standard deviation as functions of the
measured probe states.

We repeated the measurement for multiple system-probe
couplings, implemented with quartz plate combinations of
different thicknesses. To emphasize how our protocol does not
rely on any knowledge of the coupling, we performed it by
also using combinations of quartz plates whose orientations
were fixed in randomly chosen and unknown angles. The
experimentally determined standard-deviation upper bounds
showed that there was no benefit of knowing the quartz plate
orientations and, actually, the tightest upper bound for the
unknown parameter was obtained with an unknown coupling.
These experiments pave the way for different kinds of mea-
surement protocols that do not rely on high-precision imple-
mentation and control of some desired coupling or knowledge
of the coupling scheme at all. On a more foundational level,
these results broaden the understanding of the limitations and
possibilities of measurements more generally.

In this work, we have performed full tomography for both
evolved probe systems. For qubit systems, tomography is fast
in many cases, but for higher-dimensional systems, the num-
ber of parameters to be determined increases quadratically as
a function of the dimension. As our probing protocol requires
only the values of α fidelities, the natural question arises: is it
necessary to perform full tomography for both probes?
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If tomography of the first measured probe system shows
that its density matrix has full rank, then full tomography of
the other probe system is necessary. This is a consequence
of a result in [31], which states that the fidelity F1/2(σ, ξ )
between a known fixed reference state σ and an entirely
unknown state ξ can be estimated without full tomography
if and only if σ does not have full rank. This result is
easily generalized to α fidelities. Thus, if tomography is done
first for one of the evolved probes and its density matrix is
not full rank, the α fidelity can be measured without full
tomography of the second probe. The mathematical tools for
constructing such measurements have been introduced in [31]
and experimentally implemented to fidelity of two-photon
polarization states in [32]. This demonstrates that estimating
α fidelities for our probing purposes can be performed more
efficiently, especially in the case of higher-dimensional polar-
ization probes. Furthermore, if the first evolved probe state
is determined to be pure, namely, �1(ρ1) = |φ〉〈φ|, then full
tomography for the other evolved probe state is not necessary.
In this case, we have Fα (�1(ρ1),�2(ρ2)) = [〈φ|�2(ρ2)|φ〉]α ,
where 〈φ|�2(ρ2)|φ〉 is the probability of outcome |φ〉〈φ| in
the binary projective measurement {|φ〉〈φ|, 1 − |φ〉〈φ|}.

Also, a priori information about the channels can be
exploited: If some matrix elements are known to remain
invariant in channel �1 and/or �2, it suffices to measure only
the matrix elements that change. In our case, the diagonal
elements remain almost unchanged and thus the number of
projective measurement bases could be reduced from 3 to 2,
but for higher-dimensional probe systems, the improvement
could be more significant.

In the polarization-frequency model, the transition from
Markovian to non-Markovian polarization dynamics has been
detected experimentally [19]. In that case, the relation of the
heights of two Gaussian peaks in a double-peaked frequency
spectrum controlled the transition when the widths and the
distance of the Gaussians were fixed. With some modifica-
tions, our approach could be used to estimate the relative
heights, and possibly to also deduce the Markovian or non-
Markovian character of the dynamics. This would allow one
to make accurate conclusions about the global properties of
the polarization dynamics by performing measurements only
at single unknown point in time.
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