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Experimental quantum simulation of non-Hermitian
dynamical topological states using stochastic Schrödinger
equation
Zidong Lin1,7, Lin Zhang 2,3,4,7, Xinyue Long1,7, Yu-ang Fan1, Yishan Li1, Kai Tang1, Jun Li 1,5,6, XinFang Nie1,6, Tao Xin 1,5,6✉,
Xiong-Jun Liu 2,3,5✉ and Dawei Lu 1,5,6✉

Noise is ubiquitous in real quantum systems, leading to non-Hermitian quantum dynamics, and may affect the fundamental states
of matter. Here we report in an experiment a quantum simulation of the two-dimensional non-Hermitian quantum anomalous Hall
(QAH) model using the nuclear magnetic resonance processor. Unlike the usual experiments using auxiliary qubits, we develop a
stochastic average approach based on the stochastic Schrödinger equation to realize the non-Hermitian dissipative quantum
dynamics, which has advantages in saving the quantum simulation sources and simplifying the implementation of quantum gates.
We demonstrate the stability of dynamical topology against weak noise and observe two types of dynamical topological transitions
driven by strong noise. Moreover, a region where the emergent topology is always robust regardless of the noise strength is
observed. Our work shows a feasible quantum simulation approach for dissipative quantum dynamics with stochastic Schrödinger
equation and opens a route to investigate non-Hermitian dynamical topological physics.
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INTRODUCTION
As a fundamental notion beyond the celebrated Landau-
Ginzburg-Wilson framework1, the topological quantum matter
has stimulated extensive studies in recent years, with tremendous
progress having been achieved in searching for various types of
topological states2–7. A most important feature of topological
matter is the bulk-surface correspondence2–4, which relates the
bulk topology to boundary states and provides the foundation of
most experimental characterizations and observations of topolo-
gical quantum phases, such as via transport measurements8–10

and angle-resolved photoemission spectroscopy11–13.
Despite the fact that topological phases are defined at the

ground state at equilibrium, quantum quenches in recent studies
provide a nonequilibrium way to investigate topological phy-
sics14–28. Particularly, as a momentum-space counterpart of the
bulk-boundary correspondence, the dynamical bulk-surface cor-
respondence was proposed29–34, which relates the bulk topology
of an equilibrium phase to a nontrivial dynamical topological
phase emerging on certain momentum subspaces called band-
inversion surfaces (BISs) when quenching the system across
topological transitions. This dynamical topology enables a broadly
applicable way to characterize and detect topological phases by
quantum dynamics and has triggered many experimental studies
in quantum simulations, such as in ultracold atoms35,36, nitrogen-
vacancy defects in diamond37–39, nuclear magnetic resonance
(NMR)40, and superconducting circuits41.
The quench-induced dynamical topological phase has been

mainly studied in Hermitian systems, while the system is generally
non-Hermitian when coupled to the environment42. Recently, the
interplay between non-Hermiticity and topology has attracted

considerable attention43,44, with rich phenomena being uncov-
ered, such as the exotic topological phases driven by exceptional
points45–48, the anomalous bulk-boundary correspondence46,49–51,
and the non-Hermitian skin effect52. Experimental observations of
the non-Hermitian topological physics have been reported in
classical systems with gain and loss, like the photonic systems53,54,
the active mechanical metamaterial55, as well as topolectrical
circuits56, and in quantum simulators, like the nitrogen-vacancy
center57,58, where the non-Hermitian effects are engineered by
coupling to auxiliary qubits.
As an important source of dissipation and non-Hermiticity, the

dynamical noise is ubiquitous and inevitable in the real quantum
simulations, especially for the quantum quench dynamics, and can
be described by the stochastic Schrödinger equation59,60. Without
the necessity of applying auxiliary qubits, the quantum simulation
using the stochastic Schrödinger equation may enable a direct
and more efficient way to explore non-Hermitian dynamical
phases, hence facilitating the discovery of non-Hermitian topolo-
gical physics with minimal quantum simulation sources. In
particular, the controllable noise can provide a fundamental
scheme to explore non-Hermitian dissipative quantum dynamics,
and the noise effects on the quench-induced dynamical
topological phase give rise to rich nonequilibrium topological
physics61. However, the experimental study is currently lacking.
In this article, we report the experimental observation of

quench-induced non-Hermitian dynamical topological states by
simulating a noising two-dimensional (2D) quantum anomalous
Hall (QAH) model on an NMR quantum simulator. Unlike previous
experiments using auxiliary qubits57,58, we achieve with advan-
tages the non-Hermitian quench dynamics via simulating the
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stochastic Schrödinger equation and by averaged measurements
over different noise configurations59–61. We observe the dynami-
cal topology emerging in the non-Hermitian dissipative quench
dynamics on BISs by measuring the time-averaged spin textures in
momentum space, and identify two types of dynamical topolo-
gical transitions classified by distinct dynamical exceptional points
by varying the noise strength. Moreover, the existence of a sweet
spot region with the emergent topology being robust under
arbitrarily strong noise is experimentally verified. Our experiment
demonstrates a feasible technique in simulating dynamical
topological physics with minimal sources.

RESULTS
Non-Hermitian QAH model
We consider the non-Hermitian 2D QAH model with the magnetic
dynamical white noise described by the Hamiltonian

Hðk; tÞ ¼ HQAHðkÞ þwðk; tÞ � σ; (1)

where HQAHðkÞ ¼ hðkÞ � σ describes the QAH phase62,63, with
Bloch vector h ¼ ðξso sin kx ; ξso sin ky ;mz � ξ0 cos kx � ξ0 cos kyÞ.
Here ξ0 (or ξso) simulates the spin-conserved (spin-flipped)
hopping coefficient, and mz is the magnetic field. The white noise
wi(k, t) of strength

ffiffiffiffiffi
wi

p
couples to the Pauli matrix σi and satisfies

hhwiðk; tÞiinoise ¼ 0 and hhwiðk; tÞwjðk; t0Þiinoise ¼ wiδijδðt � t0Þ,
where 〈〈⋅〉〉noise is the stochastic average over different noise
configurations. Without noise, the Hamiltonian HQAH hosts
nontrivial QAH phase for 0 < ∣mz∣ < ∣ξ0∣ with Chern number
C1= sgn(mz), and the phase is trivial for ∣mz∣ > ∣ξ0∣ or mz= 062.
The random noise can change the topology of the QAH model,
and plays a vital role on the quantum dynamics induced in the
present system. We start with the simple situation with a single
noise configuration. In this case the quantum dynamics governed
by the stochastic Schrödinger equation i∂t ψðk; tÞj i ¼
Hðk; tÞ ψðk; tÞj i describes a random unitary evolution, which can
be further converted into the so-called Itô form59,60 in simulation
(see “Methods” for details)

d ψðk; tÞj i ¼ �i½HeffðkÞdt þ
X
i

ffiffiffiffiffi
wi

p
σidWiðk; tÞ� ψðk; tÞj i: (2)

Here Heff ¼ HQAH � ði=2Þ
P

iwi is the effective non-Hermitian
Hamiltonian, such that the increment of a Wiener process
Wiðk; tÞ � ð1= ffiffiffiffiffi

wi
p Þ

R t
0 ds wiðk; sÞ is independent from the wave-

function function ψðtÞj i, for which we have the Itô rules
dtdWi(t)= 0 and dWi(t)dWj(t)= δijdt, and the corresponding
expectation value is zero. The formal solution of the above
equation reads ψðtÞj i ¼ UðtÞ ψð0Þj i with

UðtÞ ¼ T exp �i
Z t

0
½HQAHdsþ

X
i

ffiffiffiffiffi
wi

p
σidWiðsÞ�

 !
; (3)

where T denotes the time ordering. Note that while the equation
(3) describes a random unitary evolution in the regime with single
noise configuration, after the noise configuration averaging the
non-Hermitian dissipative quantum dynamics emerges and is
captured by the master equation

dρðtÞ
dt

¼ �i½HQAH; ρðtÞ� þ
X
i¼x;y;z

wi ½σiρðtÞσi � ρðtÞ�; (4)

where ρðk; tÞ � hh ψðk; tÞj i ψðk; tÞh jiinoise is the stochastic averaged
density matrix; see “Methods” for details. The configuration
averaging is a key point for the present quantum simulation of
non-Hermitian dynamical topological phases.

Quantum simulation approach
We next develop the quantum simulation approach by introdu-
cing the discrete Stochastic Schrödinger equation for the non-

Hermitian dissipative quantum dynamics, since the continuous
evolution cannot be directly emulated with digital quantum
simulators. Specifically, we discretize the continuous time as
tn= nτ with small-time step τ, where the integer n ranges from
zero to the total number of time steps M. The increment of the
Wiener process can be simulated by random numbers ΔWiðtnÞ ¼
NiðtnÞ

ffiffiffi
τ

p
for each noise configuration, and we obtain the

discretized stochastic Schrödinger equation

ψðk; tnþ1Þj i � ½1� i ~Hðk; tnÞτ� ψðk; tnÞj i (5)

with ~Hðk; tnÞ ¼ HeffðkÞ þ
P

i
ffiffiffiffiffi
wi

p
σiNiðk; tnÞ=

ffiffiffi
τ

p
. Here Ni(tn) is

sampled from the standard normal distribution to match the
expectation and variance of dWi, and the wavefunction is
normalized in each time step. The corresponding unitary evolution
operator from time tn to tn+1 reads

Uðtnþ1; tnÞ � e
�i½HQAHþ

P
i

ffiffiffiffi
wi

p
σiNiðtnÞ=

ffiffi
τ

p
�τ
; (6)

leading to the discrete equation of motion

ρðtnþ1Þ � ρðtnÞ � i½HQAH; ρðtnÞ�τ þ
X
i

wi ½σiρðtnÞσi � ρðtnÞ�τ

(7)

in the linear order of τ after stochastic average, which describes
the desired non-Hermitian quantum dynamics. We shall analyse
the quality of this discretization versus time step τ in the
experiment. The stochastic average of a physical operator Ô at
time tn can now be obtained by

Oðk; tnÞ � hhhÔðk; tnÞiiinoise ¼ Tr½ρðtnÞÔ�: (8)

This formalism can be directly simulated in experiment.
The above presents the essential idea for simulating the non-

Hermitian systems based on the stochastic Schrödinger equation.
This method is fundamentally different from that applied in the
previous experiments57,58 using auxiliary qubits, where the non-
Hermiticity is obtained from a Hermitian Hamiltonian in the
extended Hilbert space by tracing the auxiliary degrees of
freedom and careful designs of the quantum circuit with complex
unitary operations are required64,65. In contrast, our temporal
average approach based on the stochastic Schrödinger equation
saves the resources of qubits and avoids the implementation of
complex gates, which benefits the experimental platforms in
various scenarios. Moreover, this quantum simulation approach
can be directly extended to exploring higher dimensional non-
Hermitian topological phases and phase transitions.

Non-Hermitian dynamical topological phases
Before presenting the experiment, in this section, we briefly
introduce the non-Hermitian dynamical topological phases emer-
ging in the quench dynamics described by Eq. (4) and to be
studied in this work.
The system is initially prepared at the fully polarized ground

state ρ0 ¼ #j i #h j of a deep trivial Hamiltonian with ∣mz∣ ≫ ∣ξ0∣.
After quenching mz to a nontrivial value at time tn= 0, the system
starts to evolve under the post-quench Hamiltonian Hðk; tnÞ; see
Fig. 1a. Without noise, the spin polarization hσðk; tnÞi �
Tr½σ

Qn�1
i¼0 Uðtn�i; tn�i�1Þρ0

Qn�1
i¼0 Uyðtiþ1; tiÞ� precesses with respect

to the Hamiltonian vector h; see Fig. 1a. The post-quench QAH
phase can be determined by the dynamical topology emerging on
BISs29, identified as the momentum subspaces with hz= 0, where
the initial state is perpendicular to the SO field hso≡ (hx, hy),
leading to vanishing time-averaged spin polarizations.
In the presence of non-Hermiticity, the precession axis for each

noise configuration is distorted, leading to the deformation for the
BISs and dissipative effect. To characterize the noise effect, the
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spin polarization needs to be stochastically averaged as

sðk; tnÞ � hhhσðk; tnÞiiinoise ¼ Tr½ρðtnÞσ� (9)

over different noise configurations (Fig. 1b). Compared to the spin
polarization 〈σ(k, tn)〉 without noise, the stochastic averaged
s(k, tn) follows the non-Hermitian dynamics and exhibits dephas-
ing and amplitude decaying effects. We compensate the
amplitude decay by rescaling s(k, tn), leading to the rescaled spin
polarization ~sðk; tnÞ � s0ðkÞ þ sþðkÞe�iωðkÞtn þ s�ðkÞeþiωðkÞtn ,
where the coefficients s0,± and oscillation frequency ω are
extracted from the experimental data by fitting; see “Methods”.
Similar to the noiseless case, the time average

~sðkÞ � 1
M

XM�1

n¼0

~sðk; tnÞ (10)

vanishes on the deformed BISs (dubbed as dBISs)61, with the
number of steps M being large enough to minimize the error. The
non-Hermitian dynamical topological phase is captured by
the dynamical invariant W � 1

2π

H
dBISgðkÞdgðkÞ, which describes

the winding of dynamical field gðkÞ ¼ ð1=N kÞ∂k?ð~sxðkÞ;~syðkÞÞ
on the dBISs. Here k⊥ is perpendicular to the dBISs and N k is a
normalization factor. Under the dynamical noise, the non-
Hermitian dynamical topological phases and phase transitions
may be induced, as studied in the experiment presented below.

Experimental setup
The demonstration is performed on the NMR quantum simulator.
The sample is the 13C-labeled chloroform dissolved in acetone-d6,
with 13C and 1H nuclei denoted as two qubits. The 2D QAH model
is simulated by the qubit 13C, while the other qubit 1H enhances
the signal by Overhauser effect (see Fig. 1c and “Methods”). In the

double-rotating frame, the total Hamiltonian of this sample is

He ¼ πJσ1
zσ

2
z=2þ

X2
i¼1

πBi cosϕiσ
i
x þ sinϕiσ

i
y

� �
; (11)

where J= 215 Hz is the coupling strength, Bi is the amplitude of
the control pulse, and ϕi is the phase. We firstly initialize the
system into the fully polarized state #j i using the nuclear
Overhauser effect66. Then we quench mz to the nontrivial region
with ∣mz∣ < 2ξ0 and allow the system to evolve under the effective
Hamiltonian ~H, in which the non-Hermitian constant term i∑iwi

can be ignored. The evolution is realized by the Trotter
approximation combined with control pulse optimizations as
follows.
We study the non-Hermitian dissipative quantum dynamics

from time t= 0–30ms. For each noise configuration, numerical
results show that the discrete evolution approximates the
continuous evolution of the stochastic Schrödinger equation
quite well, when the total number of time steps is greater than
100; see Fig. 2. In the experiment, we discretize the time into
300 segments, such that the Hamiltonian in each interval is
approximately time-independent. As the interval τ is sufficiently
small, the evolution in the n-th step can be realized using the first-
order Trotter decomposition:

Uðtnþ1; tnÞ � e�iηxσxτe�iηyσyτe�iηzσzτ (12)

with ηx;y ¼ ξso sin kx;y þ
ffiffiffiffiffiffiffiffi
wx;y

p
Nx;yðtnÞ=

ffiffiffi
τ

p
and ηz ¼ mz �

ξ0 cos kx� ξ0 cos ky þ
ffiffiffiffiffiffi
wz

p
NzðtnÞ=

ffiffiffi
τ

p
. Here ξ0 is set to 1 kHz. Each

term on the right-hand side represents a single-qubit rotation with
a rotating angle 2ηiτ along axis σi, which can be experimentally
realized by tuning the amplitude and phase of the control pulse in
Eq. (11) (z-rotation can be indirectly realized via x- and y-rotations),
with further pulse optimization techniques to reduce control
errors; see Fig. 1c.
We measure the spin polarization 〈σ(k, t)〉 for single noise

configuration at every 20τ interval. After averaging over all noise
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Fig. 1 Noise-induced non-Hermitian dissipative quantum dynamics and experimental setup. a Quantum quench process. Upper panel: The
system is initialized to the fully polarized ground state #j i of pre-quench Hamiltonian with ∣mz∣ ≫ ∣ξ0∣. Then mz is quenched to a nontrivial
value, and the state evolves under the post-quench Hamiltonian. Middle panel: In the absence of noise, the spin polarization 〈σ(k, t)〉 (red
arrows) precesses with respect to the Hamiltonian vector h (black arrow). The corresponding trajectory is shown as the blue line. On the BIS
where hz= 0, the time-averaged spin texture hσðkÞi vanishes as the Hamiltonian vector h= (hx, hy) is orthogonal to the initial state. Across the
BIS hσðkÞi shows nontrivial gradients, which encode the topological invariant. Lower panel: In the presence of noise, the precession axis is
distorted, leading to the dissipative dynamics of stochastic averaged spin polarization s(k, t), as shown by the red arrows and distorted blue
trajectories. b The non-Hermitian dissipative dynamics can be interpreted as the stochastic average over different noise configurations. Here
the solid black arrows represent the Hamiltonian vector h without noise, and the dashed black arrows denote the Hamiltonian vector
distorted by time-dependent noise. For each noise configuration (small spheres), the spin polarization is on the surface of Bloch sphere and
obeys the unitary dynamics, in spite of the irregular blue trajectory caused by the noise-distorted Hamiltonian vector. However, the average
over all noise configurations (big sphere) leads to a globally dissipative effect and a deformation of BISs. c Pulse sequence for simulating the
2D non-Hermitian QAH model. 1H is initially decoupled, and 13C is rapidly prepared to the #j i state using the nuclear Overhauser effect. The
control pulse is designed according to Eq. (12), where the green and blue circles represent rotations about the x-axis and y-axis with A and φ
the amplitude and phase, respectively.
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configurations, we obtain the stochastic averaged spin polariza-
tion s(k, t), from which the rescaled spin polarization ~sðk; tÞ can be
constructed by fitting. We repeat the above procedures for the
whole momentum space to obtain the time-averaged spin
textures ~sðkÞ.

Experimental results
We start from the weak noise regime, where the noise strength is
chosen as wx= 0.05ξ0, wy= 0, and wz= 0.01ξ0 with ξso= 0.2ξ0.
The system is quenched to the topological phase with mz= 1.2ξ0.
In Fig. 3a, we plot the spin polarization 〈σ(t)〉 at the momentum
k= (1.286,−0.257) for four different noise configurations. For
each noise configuration, no notable decay exists in the spin
polarization, manifesting the unitary evolution. However, after
averaged over all noise configurations, the system clearly exhibits
the non-Hermitian dissipative quantum dynamics; see Fig. 3b.
Figure 3c shows the measured time-averaged spin textures ~siðkÞ

with fixed ky=−0.257 and kx ∈ [−1.8, 1.8], obtained by rescaling
the stochastic averaged spin polarization s(k, t). The momenta
with vanishing values represent dBIS points. To obtain the 2D
time-averaged spin texture, we discretize the whole momentum
space kx, ky∈ [−1.8, 1.8] into a 15 × 15 lattice and repeat the above
measurements. The results are shown in Fig. 3d, from which the
dBIS momenta can be identified. Although the corresponding
shape is slightly deformed from the ideal BIS with hz= 0 in the
absence of noise (see “Methods”), it is obvious that under weak
noise, the dynamical field g(k) can be defined everywhere on dBIS
and characterizes the nontrivial non-Hermitian dynamical topolo-
gical phase (Fig. 3e). Indeed, this emergent dynamical topology is
robust against the weak noise and is protected by the finite
minimal oscillation frequency on the dBISs, serving as a bulk gap
for the dynamical topological phase. The experimental minimum
oscillation frequency on dBISs is given by ωmin ¼ 0:4175 kHz, close
to the theoretical value 0.4063 kHz (Fig. 3b). Further, this non-
Hermitian dynamical topological phase may break down under
strong noise, with two types of dynamical transition being
observed below.
We now increase the noise strength to a strong regime with

wx= 0.1ξ0, wy= 0.05ξ0, and wz= 0.45ξ0. The averaged spin
polarization is measured in the same way as in the weak noise
regime. However, the quench dynamics are essentially different,
where the spin polarization s(t) at certain momenta, for instance
kx=−1.286 and ky=−0.257, displays pure decay without
oscillation; see Fig. 4a, b. For these momenta, the dynamical field

g vanishes. In Fig. 4c, we show the corresponding spin textures.
From the result for ~sz , we find that singularities emerges on the
dBISs and interrupt their continuity. Thus the dBIS breaks down,
while the deformation of the shape of dBIS is small, and the non-
Hermitian dynamical topological phase transition occurs. In Fig.
4d, we increase the noise strength to wx= 1.6ξ0, wy= 0, wz= 0.8ξ0
and set a strong SO coupling coefficient with ξso= 2ξ0. A
qualitatively different dynamical transition is uncovered, where
the dBISs are dramatically deformed by the noise and are
connected to the topological charge at k= 0. Due to this
singularity, the dynamical topology also breaks down. The above
two qualitatively different phenomena are referred to as type-I
and type-II dynamical transitions, respectively, which we examine
below in more detail.
We notice that the equilibrium topological phase transition

usually corresponds to the close of energy gap. In the
nonequilibrium regime, the analogous quantity is the oscilla-
tion frequency. Here we observe the corresponding momentum
distribution in Fig. 5a. One can see that the oscillation
frequency is in general nonzero but may vanish on certain
dBISs momenta when these two types of dynamical transition
occur, i.e., ωminðkcÞ ! 0. Indeed, the momenta (kc) with just
vanishing oscillation frequency are exceptional points of the
Liouvillian superoperator, on which the eigenvectors sLðRÞ±
coalesce61. Thus the dynamical transitions are driven by
exceptional points with vanishing oscillation frequency on
dBISs. To further distinguish these two types of dynamical
transition and the corresponding exceptional points, we treat
the Liouvillian superoperator as a three-level system; see
“Methods”. The coefficient s+ of rescaled dynamical spin
polarization ~sðk; tÞ contains the information of corresponding
eigenvectors sLðRÞ± . Like the spin-1 system, we measure the
Liouvillian polarization hLαi � syþLαsþ to characterize the Liou-
villian superoperator. Here the operator Lα is defined as

Lx ¼
0 0 0

0 0 �i

0 i 0

0
B@

1
CA; Ly ¼

0 0 i

0 0 0

�i 0 0

0
B@

1
CA; (13)

and Lz= i[Ly, Lx], which satisfies [Lα, Lβ]= iϵαβγLγ. The measured
momentum distribution of these quantities in the experiment is
shown in Fig. 5b, c, from which an important feature of
exceptional points is observed that the component 〈Lx〉 ≈ 0 and
〈Ly〉 ≈ 0 vanish on these points while 〈Lz〉 is in general nonzero
(e.g., see Fig. 5c). Therefore, the exceptional points are actually the
singularities in the two-component vector field (〈Lx〉, 〈Ly〉).
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0
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Fig. 2 Quality of discrete Stochastic Schrödinger equation approach versus the total number of time steps. a Residual sum of squares
(RSS) of the stochastic averaged spin polarizations s at momentum k= (1.2857, −1.8) between the discrete evolution and continuous
evolution at time t= 30 ms for different numbers of discrete-time steps M. The stochastic average is performed over 5,000 noise
configurations. b Corresponding average fidelity for different numbers of discrete-time steps M. When the number of time steps is greater
than 100, the fidelity is over 0.99. Here we set wx= 0.05ξ0, wy= 0, wz= 0.01ξ0, and ξso= 0.2ξ0.
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With this observation and to characterize the exceptional
points, we consider the Liouvillian polarization on a small loop S
enclosing the exceptional points, as shown in Fig. 6a, b. Although
the component 〈Lz〉 is nonzero on this loop, the trajectory
projected on the 〈Lx〉-〈Ly〉 plane indeed defines a winding
number61

NE ¼
1
2π

I
S
dðarctanhLyi=hLxiÞ; (14)

which distinguishes the two types of dynamical transitions. We
observe that for type-I transition, the winding number NE= 0 is
trivial, while the winding NE= 1 is nontrivial for the type-II
dynamical transition. Consequently, these distinct exceptional
points on dBISs shows the fundamental difference between the
type-I and type-II dynamical transitions. Moreover, regardless of
the shape and size of the loop S, the winding number NE only
depends on the topological properties of the enclosed exceptional
points as long as the loop does not cross any other singular points;
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Fig. 3 Weak noise regime of the non-Hermitian QAH model. a Spin polarization 〈σ(k, t)〉 under four different white noise configurations at
momentum k= (1.286, −0.257). No notable decay is observed for a single type of noise. b Corresponding stochastic averaged spin
polarization s(k, t) over all noise configurations and the rescaled spin polarization ~sðk; tÞ, which has the minimum oscillation frequency ω on
the dBIS at momentum k= (1.286, −0.257). The system is dissipative after stochastic average as an outcome of non-Hermitian dynamics.
c Time-averaged rescaled spin polarizations ~siðkÞ for fixed ky=−0.257 and kx∈ [−1.8, 1.8]. The zero values represent dBIS points. d Time-
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see Fig. 6a, b. Here we note that the topological charges are
always singularities of the field (〈Lx〉, 〈Ly〉) and have nontrivial
winding number61 (Fig. 6c, d). The loop S should be introduced
without enclosing any non-exceptional charge momentum in
characterizing the dynamical transitions and corresponding
exceptional points. This also tells that the type-II dynamical
transition is similar to the equilibrium topological phase transition,
in which the topological charges serve as singular points and the
transition occurs when they pass through the BISs29,30. On the
other hand, the type-I transition is a peculiar feature of the
quench-induced non-Hermitian dynamical topological phase
transition.
Although the non-Hermitian dynamical topological phase may

typically be destroyed in the strong noise regime, a quite
interesting feature of the present system is the existence of a
sweet spot region satisfying61

max½ðwy � wxÞξ20=ξ
2
so � 2jξsoj�<wz � wx

<min½ðwy � wxÞξ20=ξ
2
so þ 2jξsoj�;

(15)

in which regime the dynamical topology is always robust at any
finite noise strength, as characterized by the taper-type region in
Fig. 7. In particular, for the central line with wx=wy=wz, we
experimentally increase the noise strength wi in each direction
from 0.5ξ0 to a very large value wi≃ 10ξ0 (points O1,2,3) and
measure the corresponding time-averaged dynamical spin tex-
tures. We observe that although the noise strength is much large
compared with all other energy scales, the dBIS in ~sz remains
stable, without suffering singularities. Inside the taper-type region
the dynamical topology is well-defined on the dBIS, in sharp

contrast to outside points (P1,2). The experimental confirmation of
this sweet spot region may offer guidance in designing noise-
tolerant topological devices.

DISCUSSION
We have experimentally reported the quantum simulation of non-
Hermitian quantum dynamics for a 2D QAH model coupled to
dynamical noise based on a stochastic average approach of the
stochastic Schrödinger equation, and simulated non-Hermitian
dynamical topological phases and phase transitions. Our method
does not require the ancillary qubits and careful designs of
complex unitary gates, hence saving the simulation sources and
avoiding the implementation of complex gates in the experiment.
The dynamical topological physics driven by dynamical noise has
been observed, including the stability of non-Hermitian dynamical
topological states protected by the minimal oscillation frequency
of quench dynamics under weak noise and two basic types of
dynamical topological transitions driven by strong noise and
classified by distinct exceptional points. Moreover, a sweet spot
region is observed, where the non-Hermitian dynamical topolo-
gical phase survives at arbitrarily strong noise.
Our experiment has shown an advantageous quantum simula-

tion approach to explore the non-Hermitian dynamical topological
physics, in which only a minimal number of qubits are used. This
approach is directly applicable to high dimensions by taking into
account more, but still minimal number of qubits, in which the
rich phenomena are expected, and also to other digital quantum
simulators.
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METHODS
Stratonovich stochastic Schrödinger equation
We consider the non-Hermitian 2D QAH model (1) with the magnetic
dynamical white noise wi(k, t). Since the dynamical white noise is in some
sense infinite, the dynamical equation ∂t ψðk; tÞj i ¼ �iHðk; tÞ ψðk; tÞj i
cannot be considered as an ordinary differential equation. Instead, it
should be regarded as an integral equation

ψðk; TÞj i � ψðk; 0Þj i ¼
R T
0 d ψðk; tÞj i

¼ �i
R T
0 ½HQAHðkÞdt þ

P
i

ffiffiffiffiffi
wi

p
σidWiðk; tÞ� ψðk; tÞj i; (16)

where Wiðk; tÞ ¼ ð1= ffiffiffiffiffi
wi

p Þ
R t
0 ds wiðk; sÞ is a Wiener process. For brevity,

the symbols of integration are usually dropped, leading to the stochastic
Schrödinger equation

d ψðk; tÞj i ¼ �i½HQAHðkÞdt þ
X
i

ffiffiffiffiffi
wi

p
σidWiðk; tÞ� ψðk; tÞj i: (17)

In general, there are two definitions of stochastic integration, i.e., the
Stratonovich form

ðSÞf ðtÞdWðtÞ � 1
2
½f ðt þ dtÞ þ f ðtÞ�½Wðt þ dtÞ �WðtÞ� (18)

and the Itô form

ðIÞf ðtÞdWðtÞ � f ðtÞ½Wðt þ dtÞ �WðtÞ�: (19)

The basic difference is that the integrand f(t) and the increment dW(t) are
independent of each other in the Itô form, namely 〈〈f(t)dW(t)〉〉noise= f(t)
〈〈dW(t)〉〉noise= 0, while they are not independent in the Stratonovich
form. The Schrödinger equation (17) must be interpreted as a Stratonovich
stochastic differential equation59,60, such that the quantum mechanical
probability is preserved, i.e., d〈ψ(t)∣ψ(t)〉= 0.

Converting into the Itô form
Since the wavefunction ψðtÞj i and the increment dWi(t) are not
independent in the Stratonovich form, it is usually convenient to convert
the Stratonovich stochastic Schrödinger equation (17) into the Itô form,
which takes the form

ðIÞd ψðtÞj i ¼ �i½Heffdt þ
X
i

αidWiðtÞ� ψðtÞj i: (20)

Due to
ð1=2Þð ψðt þ dtÞj i þ ψðtÞj iÞ ¼ ½1� ði=2ÞðHeffdt þ

P
iαidWiðtÞÞ� ψðtÞj i, we

have the following relation between the Stratonovich integral and the
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Itô integral

ðSÞdWiðtÞ ψðtÞj i ¼ ðIÞdWiðtÞ ψðtÞj i � ði=2Þαidt ψðtÞj i; (21)

where we have used the Itô rules dtdWi(t)= 0 and dWi(t)dWj(t)= δijdt for
the increment of a Wiener process. Substituting this into the Itô stochastic
Schrödinger equation (20), we obtain

ðSÞd ψðtÞj i ¼ �i½ðHeff þ
i
2

X
i

α2i Þdt þ
X
i

αidWiðtÞ� ψðtÞj i: (22)

Compared with the original Stratonovich stochastic Schrödinger equation
(17), it is easy to find

αi ¼
ffiffiffiffiffi
wi

p
σi and Heff ¼ HQAH � ði=2Þ

X
i

wi : (23)

In the main text, we have shown that the formal solution of the Itô
stochastic Schrödinger equation (20) is given by a unitary evolution U(t)
[see Eq. (3)]. To prove that U(t) is indeed the solution of the Itô equation,
we shall note that

Uðt þ dt; tÞ ¼ e
�i½HQAHdtþ

P
i

ffiffiffiffi
wi

p
σidWiðtÞ�

¼
P1
n¼0

ð�iÞn
n! ½HQAHdt þ

P
i

ffiffiffiffiffi
wi

p
σidWiðtÞ�n

¼1� i½Heffdt þ
P
i

ffiffiffiffiffi
wi

p
σidWiðtÞ�;

(24)

where the terms other than dt and dWidWi= dt vanish according to the Itô
rules. Thus we recover the Itô stochastic Schrödinger equation, i.e.,
dUðtÞ ¼ Uðt þ dtÞ � UðtÞ ¼ �i½Heffdt þ

P
i
ffiffiffiffiffi
wi

p
σidWiðtÞ�UðtÞ.

Non-Hermitian dissipative quantum dynamics
We now consider the equation of motion for the stochastic density
operator ϱðtÞ ¼ ψðtÞj i ψðtÞh j, namely

dϱðtÞ ¼Uðt þ dt; tÞϱðtÞUyðt þ dt; tÞ � ϱðtÞ
¼� iHeffϱðtÞdt þ iϱðtÞHy

effdt þ
P
i
wiσiϱðtÞσidt

þ i
P
i
½ϱðtÞ;

ffiffiffiffi
w

p
iσi �dWiðtÞ:

(25)

Since the increments dWi(t) are independent of ϱ(t) in the Itô form, after
average over different noise configurations the last term vanishes and we
arrive at the Lindblad master equation (4) for the stochastic averaged

density matrix ρ(t)≡ 〈〈ϱ(t)〉〉noise, which describes the non-Hermitian
dissipative quantum dynamics.

Stochastically averaged spin dynamics
In this section, we show the stochastically averaged spin dynamics.
According to the master equation (4), the stochastically averaged spin
polarization s(k, t) is governed by the equation of motion

∂tsðk; tÞ ¼ LðkÞsðk; tÞ (26)
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Fig. 7 Sweet spot region in the non-Hermitian QAH model. The
critical surface of the region is coordinated by color points, where a
particular example is the straight line with wx=wy=wz. In
experiment, we increase the noise strength in each direction to
10ξ0, and measure the time-averaged rescaled spin texture ~szðkÞ.
The three cases O1, O2, and O3 in the sweet spot region with noise
intensities 0.5ξ0, 5ξ0 and 10ξ0 are plotted. For comparison, two cases
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Fig. 6 Winding number NE for dynamical transitions. a Trajectory of Liouvillian polarization 〈L〉 along the loop S (green dashed circle in (c))
for type-I dynamical transition. From top view along the 〈Lz〉 axis, the trajectory does not encircle the origin point of 〈Lx〉-〈Ly〉 plane but trivially
returns to its initial position when θ changes from 0 to π, manifesting a trivial winding number NI

E ¼ 0. b Trajectory of Liouvillian polarization
along the loop S (green dashed circle in (d)) for type-II dynamical transition. Unlike type-I transition, the trajectory projected on the 〈Lx〉-〈Ly〉
plane now encircles the origin point. Particularly, there is a jump in the values of arctan hLyi=hLxi along the loop S, manifesting a nontrivial
winding number NII

E ¼ 1. c, d Distribution of arctan hLyi=hLxi in the momentum space for type-I (c) and type-II (d) dynamical transitions. As long
as the loop S does not cross any other singular points, the winding number NE of exceptional point remains unchanged. Especially, for
exceptional points not in contact with topological charges, arctan hLyi=hLxi changes continuously. On the other hand, the charge momentum
k= 0 is always singular.
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with the Liouvillian superoperator

LðkÞ ¼ 2

�wy � wz �hzðkÞ hyðkÞ
hzðkÞ �wx � wz �hxðkÞ
�hyðkÞ hxðkÞ �wx � wy

2
64

3
75: (27)

The solution to this dissipative quantum dynamics can be written as

sðk; tÞ ¼ s0ðkÞe�λ0ðkÞt þ sþðkÞe�½λ1ðkÞþiωðkÞ�t

þ s�ðkÞe�½λ1ðkÞ�iωðkÞ�t ;
(28)

with the coefficients sαðkÞ ¼ ½sLαðkÞ � sðk; 0Þ�sRα for α= 0, ±. Here sLðRÞα

satisfying sLαðkÞ � sRβðkÞ ¼ δαβ are the left (right) eigenvectors of the
Liouvillian superoperator LTsLα ¼ �λαsLα , LsRα ¼ �λαsRα with eigenvalues λ0
and λ±= λ1 ± iω, respectively. The oscillation frequency is denoted as ω.
In experiments, the coefficients sα, decay rates λ0,1, and oscillation

frequency can be extracted by fitting the experimental data. By ignoring
λ0,1, we obtain the rescaled spin polarization ~sðk; tÞ.

NMR sample
The experiment is performed on the nuclear magnetic resonance
processor (NMR). The sample we used is the 13C-labeled chloroform
dissolved in rmacetone—d6. The 13C spin is used as the working qubit,
which is controlled by radio-frequency (RF) fields. The 1H is decoupled
throughout the experiment by Overhauser effect which can enhance the
signal strength of 13C.

Overhauser effect
Applying a weak RF field at the Larmor frequency of one nuclear spin for a
sufficient duration may enhance the longitudinal magnetization of the
others, this is the steady-state nuclear Overhauser effect (NOE). In modern
NMR, the steady-state NOE is mainly exploited in heteronuclear spin
systems, where the enhancement of magnetization is useful and dramatic.
For an ensemble of heteronuclear systems made up with a nuclei I with

gyromagnetic ratio γI and a nuclei S with gyromagnetic ratio γS, with
∣γI∣ > ∣γS∣, the thermal equilibrium state of the heteronuclear system is

ρ̂eq ¼ 1
4
1̂þ 1

4
βÎ Iz þ

1
4
βSŜz; (29)

where βI/βS= γI/γS, 14 Îz ¼ σ̂z � 1̂, 1
4 Ŝz ¼ 1̂� σ̂z . Assume that a continuous

RF field is applied at the I-spin Larmor frequency, inducing transitions
across two pairs of energy levels. After sufficient time, the RF field
equalizes the populations across the irradiated transitions. At that time, the
populations settle into steady-state values, which do not change any more,
as long as the RF field is left on. The steady-state spin density operator is

ρ̂ss ¼ 1
4
1̂þ ϵNOE

1
4
βSŜz : (30)

By comparing with thermal equilibrium Eq. (29), the S-spin magnetization
is enhanced by factor ϵNOE. For our experiment I= 1H and S= 13C.

Noise configurations
For the stochastic average, it is clear that the more noise configurations are
considered, the more reasonable result we obtain, as shown in Fig. 8. On
the other hand, the large number of noise configurations takes a lot of
time. We have performed numerical simulations, and found that the
average of 5000 noise configurations can precisely approximate the non-
Hermitian dissipative quantum dynamics; see Fig. 8d. However, in NMR
experiments, as the relaxation time is in the magnitude of seconds, a
complete implementation of all 5000 noise configurations requires an
extremely long-running time that we cannot afford.
An alternative method to solve the issue is to reduce the number of

noise configurations by numerical simulation prior to the implementation
of experiments. We test different number of noise configurations, and plot
their average dynamics in comparison with the ideal dynamics of the non-
Hermitian Hamiltonian; see Fig. 8a-d. The simulated results show that with
the increase of the number of noise configurations, the stochastic
averaged spin polarization 〈〈〈σ(k, t)〉〉〉noise would eventually approach to
the spin polarization s(k, t) solved by the Lindblad master equation61. The
opposite is that with the decrease of the number of noise configurations,
the performance of the approximation becomes more fluctuating (Fig. 8e).
But the 〈〈〈σ(k, t)〉〉〉noise always fluctuates above and below the theoretical
spin polarization s(k, t). After a sufficient number of averaging, the
stochastic averaged spin polarization that in the opposite side of
theoretical value will be offset by each other. We randomly generated
5000 noise configurations N(tn) that satisfy the normal distribution and
separate these noise configurations into two subgroups in which the noise
has an opposite effect on 〈〈〈σ(k, t)〉〉〉noise. Then we use numerical
simulations to select two noise configurations from these two subgroups
respectively such that the 〈〈〈σ(k, t)〉〉〉noise obtained from these four noise
configurations precisely approximate the one obtained from the 5000
configurations (Fig. 8f). From experimental results and the corresponding
fidelities, it can be concluded that the experiment is in excellent
accordance with the simulations. And the theory and experiment results
of each group of noise are in good agreement (Fig. 8g) So, it is somehow
reasonable to utilize four noise configurations to replace a full description
of the non-Hermitian dynamics under 5000 noise configurations. We
would like to emphasize that the above numerical simulations to reduce
the number of noise configurations does not affect the applicability of the
method. In many other quantum systems such as the superconducting
circuits or nitrogen-vacancy centers in diamond, the implementation of
experiments takes a much shorter time, so they can realize the stochastic
average with a larger number of noise configurations.

Experimental results vs. theoretical results
In this section, we show the agreement of our experimental results with
the theoretical calculations. In Fig. 9, we compare the experimental spin
textures with theoretical ones. Although the resolution of experimental
data is lower than that of numerical calculations, the experimental results
and the theoretical simulations reach the same conclusion. In Fig. 10,

ba
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1.90.7

0.6

-0.6

dBIS

0.1 0

0

-0.1

0.1
-0.1 0.10

dBIS

0.1 0

Fig. 10 Numerical result of exceptional points. a Exceptional points touch the dBIS (black line) for type-I transition. The noise strength is
wx= 0.1t0, wy= 0.05t0, wz= 0.45t0. b Exceptional point (white dot) emerges at the charge momentum (green dot) at k= 0, to which the dBIS
connects for type-II transition. The noise strength is wx= 1.6t0, wy= 0t0, wz= 0.8t0.
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we show the numerical calculations for exceptional points and the
corresponding winding numbers, which are consistent with our experi-
mental results (Fig. 7).

DATA AVAILABILITY
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from the corresponding author on reasonable request.
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