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Experimental quantum verification in the presence of

temporally correlated noise
S. Mavadia1,2, C. L. Edmunds1,2, C. Hempel1,2, H. Ball1, F. Roy1, T. M. Stace3 and M. J. Biercuk1,2

Growth in the capabilities of quantum information hardware mandates access to techniques for performance verification that
function under realistic laboratory conditions. Here we experimentally characterise the impact of common temporally correlated
noise processes on both randomised benchmarking (RB) and gate-set tomography (GST). Our analysis highlights the role of
sequence structure in enhancing or suppressing the sensitivity of quantum verification protocols to either slowly or rapidly varying
noise, which we treat in the limiting cases of quasi-DC miscalibration and white noise power spectra. We perform experiments with
a single trapped 171Yb+ ion-qubit and inject engineered noise / σ̂zð Þ to probe protocol performance. Experiments on RB validate
predictions that measured fidelities over sequences are described by a gamma distribution varying between approximately
Gaussian, and a broad, highly skewed distribution for rapidly and slowly varying noise, respectively. Similarly we find a strong gate
set dependence of default experimental GST procedures in the presence of correlated errors, leading to significant deviations
between estimated and calculated diamond distances in the presence of correlated σ̂z errors. Numerical simulations demonstrate
that expansion of the gate set to include negative rotations can suppress these discrepancies and increase reported diamond
distances by orders of magnitude for the same error processes. Similar effects do not occur for correlated σ̂x or σ̂y errors or
depolarising noise processes, highlighting the impact of the critical interplay of selected gate set and the gauge optimisation
process on the meaning of the reported diamond norm in correlated noise environments.
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INTRODUCTION

Quantum characterisation, validation, and verification (QCVV)
techniques are broadly used in the quantum information
community in order to evaluate the performance of experimental
hardware. A variety of techniques have emerged including
randomised benchmarking (RB),1,2 purity benchmarking,3 process
tomography,4–7 adaptive methods,8 and gate-set tomography
(GST).9,10 Each protocol has relative strengths and weaknesses; for
instance, RB has low experimental overhead but only provides
average information about gate performance, while process
tomography provides more information at the cost of unfavour-
able scaling in measurement overhead.11 Despite their differences,
these protocols share the common theme that they were
originally developed and mathematically formalised assuming
that error processes are statistically independent and do not
exhibit strong correlations in time.1,2,10

Even in highly controlled laboratory environments there are a
range of noise sources that, when applied to a qubit concurrent
with logical gate operations, produce effective error models that
diverge significantly from the assumptions underlying most QCVV
protocols. For example, slow variations in ambient magnetic fields
or drifts in amplifier gain can produce temporally correlated noise
processes, often characterised through a power spectral density
possessing large weight at low frequencies.12–14 Moreover, these
error processes may exhibit gate-dependent behaviour. So far
such processes have been largely ignored in experimental QCVV,

with predominantly phenomenological attempts used to explain
deviations from ideal outputs.15 Understanding that such an
approach is untenable when attempting to rigorously compare
QCVV results to metrics relevant to quantum error correction has
recently led to an expansion of theoretical activity in this
space.3,16–20

In this work our objectives are to experimentally characterise
and explain the impact of temporally correlated noise processes
on the outputs of QCVV protocols, and to identify potential
modifications enabling users to improve the utility of the
information returned. We perform QCVV experiments using a
single trapped 171Yb+ ion as a long-lived, high-stability qubit. Our
study implements engineered frequency noise / σ̂zð Þ in the
control system in order to study the impact of different temporal
noise correlations on QCVV results. We apply noise in the two
extremes, either quasi-DC offsets or noise with an effective white
power spectrum to approximate slowly and rapidly varying noise,
respectively. Measurements reveal that QCVV outputs diverge
significantly when subject to these different types of noise,
highlighting potential circumstances where the information
extracted from a given protocol may no longer accurately
represent the true error processes experienced by individual
gates. Our experiments are compared against analytic calculations
linking the underlying structure of the QCVV sequences with the
manifestation of specific characteristics associated with the
presence of noise correlations.
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We examine two common QCVV protocols in the experimental
quantum information community: RB and GST. The construction of
these protocols follows a similar pattern, a series of unitary
quantum operations is applied to one or more qubits sequentially
in time, followed by a projective measurement (Fig. 1a).
Experimental measurements are acquired and combined, then
experimental parameters are changed according to some
prescription (e.g. changing the sequence length J) and further
data are collected. The variation in QCVV protocols predominantly
comes from the different constituent operations that are applied
and the analysis techniques by which measurement results are
post-processed to extract information.
In RB, sequences are constructed by concatenating unitary

operations Ul selected at random from the 24 Clifford operations
Cl. The final operation in a sequence of length J is selected to

invert the net rotation UJ ¼
QJ�1

l¼1 Cl

� ��1
, such that the sequence

implements a net identity
QJ

l¼1 Cl ¼ Î. In experimental GST as
defined by the pyGSTi package, by contrast, operations are
selected deterministically according to a tabulated routine
comprising specifically crafted sequences that are designed to
maximise overall sensitivity to all detectable error types. These
operations are constructed by concatenating so-called “germs”,
short sequences implementing predefined unitary rotations,
which, in our case, are constructed from a subset of Clifford
gates. The first and last unitaries U1,J∈ {Fα, Fβ}, termed the
“fiducial” operations, effectively set the reference frame for state-
preparation and measurement (Fig. 1a); see “Methods” for further
detail.
In our experiments we engineer noise in order to permit

quantitative analysis of QCVV outputs under known conditions.
We compare the outputs obtained from both RB and GST for two
distinct noise-correlation regimes. Firstly, where the engineered
noise is implemented as a constant miscalibration over the entire
sequence, which is the extreme case for slowly varying noise and
produces temporally correlated errors. Secondly, where the
engineered noise is rapidly varying (yielding an approximately
white power spectrum), which leads to errors that are uncorre-
lated between gates (Fig. 1b). We now introduce a framework for
interpreting the impact of sequence structure and noise correla-
tions on measurement outcomes to facilitate an analysis of our
results.

RESULTS

Mapping noise to measured error in RB

The key analytic tool for our study is a formalism mapping an
applied noise model to an output error for a given Clifford
sequence, following a procedure derived in ref. 17. Error
accumulation over a given Clifford sequence maps to a “random
walk” in a three-dimensional vector-space representing the action
of sequential error unitaries in the operator space spanned by the
Pauli operators, σ̂fx;y;zg (Fig. 1c). For σ̂z noise, the lth step of the
walk is calculated by conjugating σ̂z with the entire operator
subsequence Kl�1 �

Ql�1
q¼1 Uq up to the (l − 1)th gate, with

multiplication performed from the left. This conjugation always
results in a member of the Pauli group, allowing us to compactly
write Pl � K

y
l�1σ̂zKl�1 ¼ r̂l �~σ, where ~σ ¼ σ̂x ; σ̂y ; σ̂z

� �

and
r̂l 2 ± x̂; ± ŷ; ± ẑf g. The direction of Pl in Pauli space therefore
maps to the Cartesian unit vector r̂l associated with the lth step of
a J-step walk ~R �

PJ
l¼1 δl r̂l . For our chosen error model, the step

length, δl, captures the integrated phase between the driving field
and qubit during execution of the single gate Ul. In terms of
experimental parameters, δl = Δ/Ω, where Δ/Ω is the detuning
expressed in terms of the experimental Rabi frequency Ω (see
“Methods”).
The overall form of the walk is a statistical measure of how the

sequence itself interacts with the noise process to produce a net,
measurable accumulation of error. Sequences that are highly
susceptible to error accumulation produce walks that migrate far
from the origin, while sequences exhibiting error suppression
produce walks that meander back towards the origin. The net
walk length is captured in the mean-squared distance from the

origin k~Rk2
D E

, averaged over noise realisations. This links to the

trace fidelity, defined as F trace ¼ Tr
QJ

l¼1
~Ul

� �
�

�

�

�

�

�

2
� �

=4, where ~U

are modified unitary operations to take into account the effect of
the σ̂z noise. We then define the infidelity

I trace ¼ 1� F trace ’ k~Rk2
D E

.
Appropriately linking this picture of error accumulation to

standard laboratory measurements requires consideration of the
measurement routine itself. In typical measurements the qubit
Bloch vector at the end of the sequence is projected onto the
quantisation axis, z, with basis states |0〉 and |1〉. A measurement
of this type is therefore insensitive to net rotations around that

a

b

Slowly varying noise Rapidly varying noise 

RB:

GST:

c

Fig. 1 QCVV sequence construction and mapping to accumulated error. a Overview of unitary sequence construction for RB and GST, using
Clifford gates, Cl or fiducial operations, Fα,β and repeated germs (G)n respectively. b Schematic representation of slowly and rapidly varying
noise with relevant time scales defined by the sequence where δ represents the instantaneous noise values drawn from a normal distribution
with σ2 variance. Grey lines are other possible noise realisations. For RB, the noise is sampled from this distribution and varies shot-to-shot
between noise realisations, while in GST a single value is selected for the entire set of experiments. c Sequence-dependent “random walk”
calculated for an arbitrary QCVV sequence (here according to the RB prescription) with J= 100 in Pauli space. Green dot indicates origin and
black triangle indicates sequence terminus. Blue line represents the 3D walk, which can be used to calculate the trace infidelity while the grey

line represents the 2D projection, measurable in a standard projective measurement. The green arrow indicates the net walk vector, ~V2D , given
unit step size
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axis of the Bloch sphere, meaning that it only probes a 2D
projection of the 3D walk onto the xy-plane. Our preferred metric
is the survival probability, P, that may be linked directly to such a

2D projection (grey line, Fig. 1c) as k~R2Dk
2

D E

¼ 1� P where

P ¼ 0
QJ

l¼1 Ul

�

�

�

�0
D E
�

�

�

�

�

�

2
� �

, k~R2Dk
2

D E

¼ k~Rk2
D E

� k~Rzk
2

D E

, and

k~Rzk
2

D E

is the mean-squared walk length along the quantisation

axis (see Supplementary Material for details).
At this stage we must link the correlation properties of the noise

to the form of the walk for a specific sequence. Considering
only the underlying properties of the sequence, we may assume
unit-length steps, resulting in a deterministic sequence-
dependent walk with length ~V �

PJ
l¼1 r̂l . The presence or

absence of temporal noise correlations is now captured through
a rescaling of the individual steps in the deterministic walk
for a specific sequence. In the case of slowly varying noise,
and to first-order approximation, the net error can be separated
into two independent parts, k~Rk2 ¼ δ2k~Vk2, where δ is the value
of the noise and k~Vk is the net unit-step walk specific to a
particular sequence.17 However, in the case of rapidly varying
noise these two terms are no longer separable and the net error
must be calculated as the convolution of the noise value at each
timestep and each individual step in the random walk,
k~Rk2 ¼ k

PJ
l¼1 δl r̂lk

2.

Experimental platform and engineered noise

We perform experiments using the hyperfine qubit in a single
trapped 171Yb+ ion driven by microwaves near 12.64 GHz, with
basis states 0j i � 2S1=2 F ¼ 0;mF ¼ 0j i and 1j i � 2S1=2 F ¼ 1;j
mF ¼ 0i. Our calibration process permits accurate determination
of the (first-order magnetic-field-insensitive) qubit transition
frequency to within approximately 1 Hz. In our laboratory, this
qubit and the associated control system have been demonstrated
to possess a coherence time of T2 ~ 1 s, measurement fidelity of
~99.7% limited by photon collection efficiency, and error rates
from intrinsic system noise of pRB ≈ 6 × 10−5 using “baseline” RB
experiments (see Supplementary Figures). Details of the control
system and experimental protocols for QCVV techniques used
here are presented in the Methods, and information about various
detection procedures in use for estimating P (including a Bayesian
method) are found in the Supplementary Materials.
We engineer σ̂z noise applied concurrently with Clifford

operations through the application of a detuning, Δ, of the qubit
driving field from resonance using an externally modulated vector
signal generator. As the detuning is applied concurrently with
driven qubit rotations about x and y axes, rotation errors arise
along multiple directions on the Bloch sphere, rather than being
purely σ̂z in character. An additional violation of typical assump-
tions employed in RB is that different Clifford gates are physically
decomposed into base rotations with different durations, which
means that our formal error model will also be gate-dependent.19

For each of our two limiting noise cases we engineer N different
noise “realisations” in order to average over an appropriate
ensemble. In our experiments, we set the distribution of noise
Δ=Ω � N 0; σ2ð Þ, where σ2 is the variance of the distribution, such
that the root-mean-square value is approximately equivalent in
both cases once averaged over all noise realisations. The specific
implementation of noise engineering and its impact on the
conduct of RB and GST is described in “Methods”, and additional
details on the error model are provided in the Supplementary
Materials.
Experiments involve state preparation in the |0〉 state, applica-

tion of a unitary sequence appropriate for a QCVV protocol while
subject to noise, and projective measurement of the qubit along

the quantisation axis. The sequence of operations applied and the
measurement procedure are determined by the protocol in use.

RB survival probability distributions

In the limit of rapidly varying noise, all sequences of randomly
ordered Clifford gates with length J are equivalent under noise
averaging, and all sequence survival probabilities tend towards
the mean. Recent theoretical studies have demonstrated that
measurements on RB sequences in the presence of temporal noise
correlations, can produce a divergence between average and
worst-case reported trace fidelities.17,20 Thus we find that
measurement outcomes for different RB sequences are charac-
terised by distributions with distinctly different shapes depending
on the temporal correlations in the noise. The standard practice of
combining all measurements to extract an RB error rate, pRB, from
the decay of the mean over all J-gate sequences as a function of J,
results in a global ensemble average and does not take advantage
of this information (formally, as the noise we implement exhibits
temporal correlations, the value of pRB one extracts may not be
meaningful as a measure of average Clifford gate error). Our
analysis takes advantage of the additional information which is
always present in an RB experiment in order to evaluate the
impact of noise correlations and deduce useful information about
the underlying error process.
In our experimental study we measure the noise-averaged

survival probabilities for a set of sequences {ηi}J, indexed by i and
of length J, for different lengths 25≤ J≤ 200 (Fig. 2a), where we
implement the same set of J-gate sequences under application of
either slowly or rapidly varying detuning noise. For an arbitrary
individual sequence, ηi and a single noise realisation, n, we
perform r nominally identical repetitions of the experiment. We
combine the information from the outcomes of these individual
repetitions to produce a maximum-likelihood estimate of survival
probability, P i;n (see Supplementary Materials). The use of multiple
repetitions under identical conditions reduces quantum projection
noise in the qubit measurement and assists in isolating specific
quantitative contributions to the distribution of survival probabil-
ities, though this is not possible without noise engineering. In
general, we average measured outcomes over a fixed number of
noise realisations to yield P i; �h i for a fixed sequence ηi. From here
on, we will refer to this noise-averaged survival probability as P.
In the case of rapidly varying noise we observe the distribution

of sequence outcomes is symmetrically spread around the
sequence-averaged mean survival probability, P Jð Þ, and the entire
distribution shifts away from zero error with increasing J (red data,
Fig. 2a). The presence of slowly varying noise, by contrast,
produces a broad distribution of measured P over each set {ηi}J,
demonstrating a positively skewed set of outcomes and the
persistence of a long tail at higher error rates (lower survival
probabilities). In this case, as J increases the distribution broadens
but remains skewed. Under both noise correlation cases, the
measured P Jð Þ remain approximately the same. The differences in
the distribution of measured survival probabilities over sequences
under these two noise models reproduces the central predictions
of ref.17

We compare the characteristics of the distributions themselves
against analytic predictions for both slowly and rapidly varying
noise, beginning with the measured expectation, E Ið Þ, and
variance, V Ið Þ (Fig. 2b, c), finding good agreement by taking
only the applied noise strength as an input into a theoretical
model (see Supplementary Materials). More specifically, theoretical
predictions suggest that the distribution of outcomes under both
noise models – as well as intermediate models described by
coloured power spectra – should be well described by a gamma
distribution.17 The general gamma distribution probability density
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function is given by

Γ α; βð Þ : f xð Þ ¼
xα�1

Γ αð Þβα
exp �

x

β

	 


; (1)

where α and β are the shape and scale parameters and Γ(x) is the
gamma function. The form of the gamma distribution will vary
significantly between the limiting noise cases treated here,
tending towards a symmetric Gaussian for rapidly varying noise
and a broader positively skewed distribution in the presence of
slowly varying noise, as determined by the values of α and β.
Figure 2d–g shows histograms of RB sequence survival

probabilities in the presence of the extreme case of slowly
varying noise, quasi-DC miscalibration. We overlay gamma
distributions calculated from first principles using no free
parameters (black lines) as Γ(1, (2Jσ2/3) (1/2 + π2/96)), and fixing
α = 1 while allowing β to vary as a fit parameter (green lines). The
theoretical prediction captures both the measured skew towards
high survival probabilities and the approximate “length” of the tail
at low survival probabilities. We believe that residual

disagreement between data and first-principles calculations arises
due to both limited sequence sampling and contributions from
higher-order analytic error terms when the approximation Jσ2 �
1 is no longer valid. Importantly, data and theory show the mode
of the distribution is close to unity survival probability P ¼ 1ð Þ
and therefore corresponds to a lower error than the mean. For
details on modifications to the theory presented in17 accounting
for the specific noise and gate-dependent error model employed
in our experiments, contributions from higher-order terms, and
expanded data sets including larger sequence numbers, see
Supplementary Material.

Modification of RB for identification of model violation

The fact that the distribution of sequence survival probabilities
under slowly varying noise does not converge to the mean
indicates sequence-dependence in the resulting error accumula-
tion. The emergence of this phenomenology is elucidated through
an examination of the walks for different sequences. Under this
type of noise certain sequences possess walks with large ~V2D

�

�

�

�

2
,

hence amplifying the accumulation of error, while others tend
back towards the origin and show reduced accumulated error (Fig.
3a, b). We classify sequences as “long-walk” if they possess a 2D
projection beyond the diffusive mean-squared limit for an
unbiased random walk, ~V2D

�

�

�

�

2
> 2

3 J.
We link between the sequence walk in Pauli space and the

noise-averaged survival probability by displaying the experimen-
tally measured 1� P for sequences of fixed length J = 200 against
the calculated 2D walk length, ~V2D

�

�

�

�

2
(Fig. 3c). Data are presented

for both rapidly varying (red open markers) and slowly varying
(grey solid markers) noise, where the same set of sequences is
used between the noise models. Measurements for rapidly varying
noise are fit with a line possessing a slope approximately
consistent with zero, while for the same sequences under slowly
varying noise, the measurements show a positive dependence on

~V2D

�

�

�

�

2
as expected. We believe the significant scatter in the plot

is partially due to a concurrently acting noise source and higher-
order contributions to error, neither of which are incorporated in

the first principles calculation of the walk, ~V2D

�

�

�

�

2
(see Supple-

mentary Material and Appendix C of ref. 17). Nonetheless, the
effect of sequence structure on measured survival probability is
clearly visible for the case of slowly varying noise.
In aggregate, this phenomenology gives rise to the skewed

gamma distribution under slowly varying noise described above,
and the convergence of all noise-averaged survival probabilities
for individual sequences to the ensemble average when the noise
is rapidly varying. However, preselection of RB sequences
possessing large calculated, unit-step walks also provides a
mechanism to both identify the presence of temporally correlated
errors and extract an RB outcome that more closely approximates
worst-case errors. In Fig. 3d we plot 1� P vs. J for a subset of
sequences preselected to possess long walks as in Fig. 3a, whose
error rates we denote pLWRB Jð Þ. We choose that the preselection of
long walks is based on the condition ~V2D

�

�

�

�

2
>2 ´ 2

3 J.
When these long-walk sequences are subjected to rapidly

varying noise, the distribution of survival probabilities over
sequences remains approximately Gaussian about the mean,
and the expectation value over this subset closely approximates
the expectation value over an unbiased random sampling of the

24J possible J-gate sequences, P
rapid

LW � P
rapid

, (Fig. 3d, red solid
line and blue dashed line). However, in the presence of slowly

varying noise we observe a larger spread in P
slow

LW than that
achieved with unbiased sampling. The difference between the
sequence-averaged survival probabilities in these noise cases
arises solely because of the intrinsic properties of the sequences in
use.

Fig. 2 RB distributions over sequences in the presence of different
noise correlations. a Standard RB protocol showing survival
probability as a function of J for the same set of sequences
implemented under slowly varying (grey) or rapidly varying (red)
noise with ΔRMS= 1 kHz. In these experiments the Rabi frequency, Ω
= 22.5 kHz. Each experiment is repeated r= 25 to r = 30 times under
fixed conditions, and each sequence fidelity is averaged over 200
noise realisations. Lines represent exponential fits to the sequence-

averaged survival probability 1� P Jð Þ ¼ 0:5� 0:5� κð Þe�pRBJ ,
weighted by the variance over sequences for each J, and are used
to extract the error-rate pRB. Here κ= 3 × 10−3 represents state
preparation and measurement error. b, c Scaling of E Ið Þ and V Ið Þ
against sequence length J, comparing experimental values (markers)
against first-principles theory (lines) as per17 modified to state
fidelity (2D walk) and noise applied concurrently with gate
implementation. See Supplementary Material for details. d–g
Histograms for data in panel a in the presence of slowly varying
noise. Green line: fitted gamma distribution with shape parameter
fixed, α= 1. Black line: gamma distribution using input parameters
calculated from first principles (see text). χ2 values for calculated
(fitted) gamma distributions are {0.354(0.091), 0.212(0.078), 0.241
(0.204), 0.348(0.348)}
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Extracting an RB gate-error-rate, p
LWð Þ
RB from PLW Jð Þ in the

presence of slowly varying noise, we typically find an increase

p
LWð Þ
RB � 2� 5 ´ pRB relative to standard sequence sampling,

depending on the number of long-walk sequences employed,

and the threshold value of ~V2D

�

�

�

�

2
used to define a “long walk”

(Fig. 3c). This approach effectively constitutes the construction of
an RB protocol that increases the reported error rate by enhancing
sensitivity to a particular noise type, which in our case is ∝σ̂z .
Alternative sequences may also be calculated that are more
sensitive to σ̂x or σ̂y noise than randomly selected RB sequences.
These error enhancing sequences give a clear, qualitative
signature of the violation of the assumption that the error process
is uncorrelated in time, although we do not claim that such a
signature is in general uniquely associated with the presence of
temporal noise correlations. Furthermore, because calculation of

~V2D

�

�

�

�

2
and sequence preselection is performed numerically in

advance, this approach alleviates the requirement to average
extensively in experiment over sequences in order to reveal the
skewed fidelity distribution.

Experimental GST in the presence of correlated noise

We now apply the sequence-dependent Pauli walk framework to
the default experimental GST gate set in order to understand the
interplay of sequence structure and temporal noise correlations in
the experimental GST estimation procedures. We begin by
collating all standard experimental GST sequences up to 256

gates in length using gates GI � Î, the identity, Gx, a π/2 σ̂x
rotation and Gy defined similarly. We define sequences to include
fiducial operations and germs (see “Methods” and ref.10), and
calculate the corresponding walk lengths. Here we assume unit
step size under application of either a constant σ̂z or σ̂x unitary
error process (Fig. 4a, b) such that k~Rk2 ¼ δ2k~Vk2, and plot
~V2D

�

�

�

�

2
as a proxy for projected sequence error vs. J. We overlay

the results on the calculated probability distribution of unit-step
walks for RB sequences, presented as a colour scale for
comparison. Points appear clumped due to the experimental
GST prescription using different fiducials (leading to different
sequence lengths) surrounding a reported germ, as highlighted in
Fig. 4b.
Examining these data indicates that GST sequences used in the

default package broadly sample the range of expected fidelities in
the presence of strongly correlated σ̂x errors, more effectively so
than RB. However, their structure appears to systematically
suppress measured errors in the presence of correlated σ̂z errors.
This mimics the positive skew of RB sequence survival probabil-
ities in the presence of slowly varying noise, as observed in the
colour scale. In the presence of correlated σ̂z errors, only GST
sequences consisting of repeated GI germs, formally equivalent to
Ramsey experiments,21 show sensitivity to this kind of error. We
now explore the impact of these observations in further detail by
both numerical investigations and experiments involving engi-
neered unitary σ̂z errors.
Given measurement outcomes (experimental or simulated) for

the prescribed sequences, the open-source analysis package
pyGSTi22 is used to extract a large set of results characterising the
performance of the gate set. One important metric calculated by
the protocol for each gate is the diamond distance, Gideal � Gk k},
which is meant to provide a worst-case bound on the distance to
the ideal gate operation. Experimental GST has found wide
adoption in part because of its ability to calculate this metric,
which is postulated to be important for formal analyses of fault-
tolerance in the context of quantum error correction.
In our first test, we numerically probe the sensitivity of the

experimental GST analysis procedure to correlated error using the
aforementioned pyGSTi toolkit. We introduce constant σ̂x , σ̂y , or σ̂z
errors via concurrent unitary rotations added to the formerly ideal
operations. Therefore the exact mathematical representation of
each gate (GI,x,y) is known from analytical transformations and we
have two paths to evaluate gate performance (Fig. 4c). First, we

directly calculate the diamond distance Gideal � Gerrk k}

� �

using

the matrix representation of Gerr, maintaining the initial frame of
reference. Second, we estimate it by employing pyGSTi to
simulate data using Gerr and determine the diamond distance

Gideal � G
estð Þ
err

�

�

�

�

�

�

}

� 

of the estimate G
estð Þ
err obtained by the toolkit’s

fitting routines.
As a self-consistent QCVV implementation, the experimental

GST estimation procedure incorporates a gauge optimisation by
construction, as it makes no assumptions in regard to the qubit
and its measurement basis. It performs two rounds of gauge
optimisation, allowing identification of a frame in which to
minimise the distance of the entire set of estimated gates in
relation to the target gates. The relevance of this gauge freedom
on RB-derived estimates of gate performance was highlighted
recently in.23 To illustrate how gauge freedom affects the results,
we separately calculate the diamond distance with and without
gauge optimising our analytic gate set Gerr using routines included
in the pyGSTi toolkit.
We plot the calculated and estimated diamond norms for GI,x,y,

subject to processes similar to either a constant overrotation (i.e.
proportional to σ̂x or σ̂y depending on the gate in question, with
no error on GI operations), or a constant detuning error (i.e.
proportional to σ̂z), as shown Fig. 4d, e. Here we see that the

Fig. 3 RB using long-walk sequences. a, b Schematic representa-
tions of long a and short b length walks in 3D (coloured lines) and
2D (black lines), defined relative to a limit deduced from diffusive
behaviour, as indicated by the blue circle. c Noise-averaged fidelity
distributions of the same sequences as a function of walk length in

the 2D plane. Measured infidelity vs. 2D walk length, ~V2D

�

�

�

�

2
, when

subject to slowly varying (grey) and rapidly varying (red) noise with
linear fit overlaid. The slope of this fit is (0.8± 1) × 10−5, consistent
with zero. d RB using long-walk sequences. Solid red line
corresponds to RB performed using 20 long-walk sequences and

rapidly varying noise. Extracted p
LWð Þ
RB matches that extracted under

the same conditions using an unbiased sampling of all sequences
(dashed line). Grey line corresponds to RB using the same long-walk
sequences and slowly varying noise. For the exponential fits, state-
preparation and measurement error, κ, is fixed to 3 × 10−3
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estimated diamond distance for operators GI,x,y closely matches
the calculated value in the presence of numerical overrotation
errors. When used with its standard gate set {Gx, Gy, GI}, pyGSTi’s
estimate of Gx and Gy errors arising from constant unitary σ̂z errors
differs significantly, however, and only the diamond norm

estimate for GI appears similar to the directly calculated value.
Other estimated quantities such as process infidelity and the
associated Choi matrices are affected in a similar way (see
Supplementary Material). However, performing gauge optimisa-
tion on the analytically calculated matrices Gerr as well (within the
pyGSTi package) reduces the difference in the reported diamond
distance for σ̂z errors, and produces agreement with the much
lower Gx,y diamond distance reported by the GST estimation
procedure (Fig. 4e). Among the error models we have tested, for
this gate set such behaviour is only manifested in the presence of
temporally correlated σ̂z errors and does not appear using various
other error processes built into the pyGSTi analysis package (see
Supplementary Material for details). We note that full gauge
optimisation is a requirement for self-consistency of results within
GST.
To further investigate the influence of the gauge degree of

freedom, we repeat our numerical analysis under the application
of identical unitary errors, but extend the gate set by adding
negative rotations −Gx, −Gy corresponding to −π/2 σ̂x and σ̂y
rotations and incorporating a number of associated compound
germs (Fig. 4f, g). The resulting gauge-optimised calculated and
estimated diamond-distance values now increase, moving closer
to the analytic calculation obtained without gauge optimisation.
The behaviour of estimated diamond distances for operations −Gx

and −Gy are indistinguishable from those presented to within
numerical uncertainty. This simple change in the gate set directly
reveals the role of gauge optimisation in the discrepancies we
noted above. The additional information now available to
experimental GST via the extended gate and germ set effectively
constrains the optimisation procedure, allowing it to detect errors
that could previously be absorbed in a gauge transformation.
We follow up on these numerical investigations by performing

experiments using experimental GST sequences subjected to
engineered unitary σ̂z-errors of varying strength. As before, we
generate an operation with known error magnitude and form,
allowing us to directly produce a matrix representation for the
gate and hence calculate the diamond distance for the
(deliberately) imperfect gates we apply to our trapped-ion system.
Again the experimental GST procedure produces an estimate of
the diamond distance that matches the calculation for GI, but
yields estimates of the diamond distance from experimental data
approximately an order of magnitude below the (unoptimised)
calculated value for Gx,y (Fig. 4h). Allowing gauge optimisation on
the calculated diamond distance changes its scaling with error
magnitude as in simulations above. We do not find strong
agreement between data for Gx,y and this gauge-optimised
scaling, but cannot exclude the possibility that other finite
sampling effects may cause saturation of small reported diamond
distances.
In addition to the cases presented above we have also

performed experimental GST with a wide variety of engineered,
time-varying errors. These include detuning and amplitude noise
exhibiting 50 Hz fluctuations and slow drifts (i.e. varying in time
during individual sequences), constant overrotations, and added
state-preparation and measurement (SPAM) errors. While these do
not form part of this manuscript, they might help inform further
studies by other authors in the future. All data sets, corresponding
pyGSTi analysis files and resultant reports are included as part of
the Supplementary Material.

DISCUSSION

In our studies we have employed a simple analytic framework - a
formalism mapping noise to error accumulation in sequences of
Clifford operations - to explore the sensitivity of RB and GST to
slowly varying noise processes. Theoretical predictions derived
from this framework match RB experiments employing engi-
neered noise with known characteristics: either slowly varying or

simulate

data

estimate

GST

calculated
estimated

c

prob.

10
-2

1

RB walk length rms

GST walk length

a

0

10

20

30

0

Sequence Length (Gates)

Constant      error

analytic error

added

10 20 30

W
a

lk
 l
e

n
g

th

b
0

10 20 30

10
-4

10
-6

10
-4

10
-2

10
0

D
ia

m
o

n
d

 N
o

rm

10
-4

10
-2

10
0

10
-4

10
-2

10
0

10
-4

10
-2

10
0

10
-4

10
-2

10
0

D
ia

m
o

n
d

 N
o

rm

10
-4

10
-2

10
0

Overrotation Error Detuning Error

S
td

. 
G

a
te

s
e

t

S
im

u
la

ti
o

n

E
x
t.

 G
a

te
s
e

t

S
im

u
la

ti
o

n

Calc. No GO

Error

   Calc.

   GO 

d e

f g

Error

10
-4

10
-2

10
0

1
/2

-D
ia

m
o

n
d

 N
o

rm

10
-4

10
-2

10
0

Detuning Error, 

S
td

. 
G

a
te

s
e

t

E
x
p

e
ri
m

e
n

t

10
-4

10
-2

10
0

10
-4

10
-2

10
0

Constant      error

h

Fig. 4 Demonstration of GST sensitivity to correlated error models.
a, b Sensitivity of GST sequences to σ̂x , σ̂z errors using the length of

the sequence-dependent walk vector ~V2D. GST sequence walks are
shown as red crosses on a background colour scale illustrating the
distribution over 106 RB walks and their average (yellow line). Here
gates are defined as constituent Clifford operations of length τπ/2. c
Flow diagram for the numerical analysis of the diamond norm
estimation under correlated errors concurrent with gates G. d, e
Results of the analysis for the standard gate set GI, Gx, Gy with the
calculated diamond distance shown as solid lines (dashed lines)
without (with) gauge optimisation on all graphs, and GST estimation
depicted as symbols. Both overrotation errors on the Gx, Gy gates d
and concurrent detuning errors e are studied. For overrotation
errors the ideal rotation angle, θ ! 1þ ϵð Þθ. f, g Analysis is repeated
by extending the gate set to include −Gx, −Gy. In panels (d) and (f )
which employ only overrotation errors, the calculated diamond
distance for GI vanishes and we do not show the noise floor for
visual clarity. h Experimental investigation of concurrent detuning σ̂z
errors via a deliberately engineered detuning Δ. Markers indicate
GST estimates from experimental data and solid lines represent
analytical calculations performed within the pyGSTi toolkit
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rapidly varying on the sequence timescale. This highlights the
utility of the random-walk analysis in determining sequence-
dependent sensitivities of QCVV protocols in the presence of
temporally correlated noise.
We have compared RB survival probabilities over sequences to

a gamma distribution Γ α ¼ 1; βð Þ, where β is determined by the
type of error model employed in the experiment, and shown good
agreement using no free parameters. In addition we have
demonstrated that in the presence of slowly varying noise, the
mode of the distribution of survival probabilities over sequences is
shifted towards lower error rates than the mean and that a long
tail of high-error outcomes appears as predicted in.17

Overall, the experiments reported here give a clear experi-
mental signature of the violation of the assumption that errors
between gates are independent. While we do not claim that the
features we observe are in general uniquely derived from this
interpretation, we hope these results may help experimentalists
seeking to interpret complex RB data sets. We believe that more
detailed reporting of RB outcomes including the publication of
distributions of the survival probability P, as well as the sequences
employed, will facilitate more meaningful comparisons between
RB data sets derived from different physical systems, as the
relevance of pRB is diminished when error processes exhibit
temporal correlations.
Through a combination of analytic calculations, numerics, and

experiments with engineered errors we have found a similar bias
towards lower estimates of diamond distance in experimental GST
procedures when using the standard GI,x,y gate set subjected to
strongly correlated, unitary σ̂z errors. The asymmetry we observe
between the manifestation of correlated σ̂x=σ̂y and σ̂z error-
sensitivity has previously only been reported in the context of
RB.23 We have shown explicitly how the low diamond-distance
estimates under this kind of noise are related to the gauge
optimisation performed as part of the protocol; limiting the gauge
freedom by extending the gate set under application of an
identical error process dramatically changed the estimated
diamond distance of the very same gates in numerical simulations.
This highlights that estimates are always reported up to an implicit
gauge degree of freedom, making absolute comparisons of
diamond norms challenging.
These observations are commensurate with a simple physical

interpretation of the effect of an optimised gauge transformation
in the circumstances we examine. In the presence of correlated σ̂z
errors, when the gate set is limited to GI,x,y gates, the
reconstructed operator includes an extra error component along
the z-axis. The effect of gauge optimisation is to rotate the
axis of rotation of the Gx and Gy operators back to the equatorial
plane, effectively cancelling this error. Under this circumstance
the magnitude of rotation of these gates is smaller than
expected in a fixed lab frame, and the second-order nature of
the residual errors result in a steeper gradient of the dotted line in
Fig. 4e. In contrast the GI rotation should have no net rotation and
therefore this error will not be cancelled by a simple gauge
transformation.
Gauge optimisation is designed to produce the best estimate

for errors over the entire gate set in relation to a given target, and
in a sense acts to “distribute” nominal errors over all constituent
rotations in the gate set. The validity of such a gauge
transformation in the presence of independent protocols for
establishing a measurement basis remains an open question and
has been highlighted recently by Rudnicki et al.24 The variation of
calculated and estimated diamond distances under correlated σ̂z
errors when subjected to seemingly small modifications of the
default gate set has again not been reported previously in the
context of GST, and indicates an important dependence of its
output on the specific gate set employed, the characteristics of
the underlying error source, and the gauge optimisation
procedure.

Clearly the observed performance of experimental GST in the
presence of correlated σ̂x noise, such as resulting from experi-
mental overrotations, can make GST a valuable tool in debugging
an experimental system,25 although precise calibrations can also
be carried out efficiently using a subset of the full experimental
GST protocol.26 The effect of gauge optimisation in the presence
of σ̂z errors and with use of the default gate set, however, is
concerning as a key implied benefit of experimental GST is its
ability to provide a rigorous upper bound on gate errors using a
fully self-contained analysis package. Recent experimental work10

on the topic claimed such upper bounds on gate errors using
experimental GST and compared these to the fault-tolerance
threshold with high reported confidence and tight uncertainties.
The results above and observations made24 suggest that there
may be residual uncertainty in interpretation of such data due to
the potential unresolved conflict between full gauge freedom and
the nominal existence of a measurement basis constraining that
freedom. Furthermore, when acquiring and evaluating data, care
has to be taken to to suppress any form of model violations
reported by the GST toolkit in its likelihood analysis, as otherwise
the extracted performance metrics may become unreliable. These
deviations are currently not reflected in the uncertainties (i.e. error
bars) calculated for those metrics by the toolkit and discussions
with its authors suggest that a connection between the two is a
non-trivial process.
In light of the investigations reported here, we believe that

there is a need for greater awareness of the subtleties of the use of
both RB and experimental GST in the presence of temporally
correlated noise environments. In order to enhance the meaning
and utility of reported results we advocate that QCVV benchmarks
such as pRB and experimental GST diamond distances should be
reported together with a quantitative measure of violation from a
purely Markovian, temporally uncorrelated model. In the case of
RB, this could be the difference between the extracted pRB of long
and short walk sequences; in experimental GST the deviation is
already being reported as part of the routine, yet the question
about the impact of gauge optimisation that we identified
remains. Similarly, if using experimental GST as a standalone
gate evaluation procedure one cannot know a priori the form of
the underlying noise - and hence any associated experimental
GST insensitivities. Increasing the rigour of resultant upper bounds
on diamond distances could require performing experimental
GST using multiple different gate sets in order to identify
potential “blind spots”, owing to the implicitly required gauge
transformations. Given the experimental overhead, however, this
brute force approach is not necessarily attractive and further
modifications to experimental GST could resolve the issue with
considerably greater efficiency. Overall, we hope that these
observations will assist in both the interpretation of QCVV
experiments when model violation may occur, and the develop-
ment of new techniques with improved rigour and efficiency for
larger scale systems.

METHODS

Experimental gate implementation
Quantum gates are implemented on a single 171Yb+ ion by driving its qubit
transition at 12.6 GHz with microwave pulses produced by a vector signal
generator (VSG, model Keysight E8267D). The phase of the driving field is
adjustable via I–Q modulation allowing us to implement rotations around
any axis lying in the xy-plane of the Bloch sphere. Rotations around the z-
axis are carried out as frame-updates, i.e. pre-calculated, instantaneous
changes of the generator I–Q values. Identity operations are realised as idle
periods, whereby no signals are applied for a time equivalent to that of a π
or π/2 rotation. We additionally implement pulse modulation (RF blanking)
to suppress transients in microwave power at pulse edges. In this way, we
implement the full set of Clifford gates as listed in supplementary
materials.
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All RB and GST sequences are uploaded to the VSG prior to the
experiments and selected when required. When the number of
implemented sequences is large, as is the case with GST, the latter step
is the bottleneck in our experiments as sequence selection, depending on
the constituent number of gates J, can take up to tens of seconds using
our signal generator due to the use of the in-built, high-suppression, RF
blanking switch which adds significant overhead.

Experimental noise implementation
In RB experiments correlated noise is implemented by shifting the VSG
drive frequency by a fixed amount based on a list of N = 200 samples from
a Gaussian noise distribution (see Supplementary Material). The same list
of noise realisations is repeated for each RB sequence in a set of given
length J, yielding sets of noise-averaged fidelities. In GST experiments we
implement constant noise of the same strength over all the sequences. In
addition to a baseline experiment, only a small set of noise detunings are
implemented due to the large overhead imposed by sequence selection
prior to execution.
Rapidly varying noise in RB is implemented via the VSG’s external

frequency modulation, whereby the frequency offset is encoded as a series
of calibrated offset voltages on an arbitrary waveform generator (Keysight
33622A) and supplied time-synchronous to each gate within a sequence.
Again, N = 200 different realisations, each consisting of J samples are
applied to each RB sequence to extract a noise-averaged fidelity. Further
details can be found in the Supplementary Material.

Concurrent noise model and gate-dependent errors
Deliberately induced σ̂z errors are implemented via a fixed detuning Δ
from the qubit’s transition frequency, which is tracked by regularly spaced
Ramsey experiments to better than 1 Hz accuracy relative to a Rabi
frequency of Ω = 22.5 kHz. We apply noisy gates in which a concurrent σ̂z
rotation modifies the unitary evolution of our physically implemented
gates (only σ̂I � Î, σ̂x and σ̂y ) given by matrix-exponentiation of the
corresponding Pauli-matrices σ̂ I;x;yf g as

~U θ;Δ;Ωð Þ ¼ exp �i
θ

2
σ̂ I;x;yf g þ

θj j

2

Δ

Ω
σ̂z

� � �

: (2)

The first term in the exponential corresponds to the unperturbed unitary
where the rotation angle θ is chosen to be either θ = ±π or θ = ±π/2. Here
the effective error magnitude scales in relation to the Rabi frequency Ω,
and the absolute value of θ ensures that the sign of the detuning term is
preserved under positive and negative gate rotations.
This implementation leads to gate-dependent errors. Hence π rotations

accumulate twice the phase in the presence of a nonzero Δ as π/2
rotations.

Gate Set Tomography
Initial Fα and final Fβ fiducial operations are taken from the set
;;Gx ;Gy ;GxGx ;GxGxGx ;GyGyGy

� �

, where ; stands for no gate operation,
and Gx and Gy stand for π/2 rotations around the x and y-axes of the Bloch
sphere. They are chosen to form an informationally complete set of input
states and measurement bases akin to quantum process tomography. The
germs used in our experiments are

Gxð Þ; Gy

� �

; GIð Þ; GxGy

� �

;

GxGyGI

� �

; GxGIGy

� �

; GxGIGIð Þ; GyGIGI

� �

;

GxGxGIGy

� �

; GxGyGyGI

� �

;

GxGxGyGxGyGy

� �

;

identical to those used in reference10 and recommended as standard GST
in the pyGSTi tutorials. In our numerical analysis, we extend the standard
gate set from {GI, Gx, Gy}→ {GI, Gx, Gy, −Gx, −Gy} while also expanding the
germ set from 11 to 39 elements to maintain amplificational completeness
(see Supplementary Material for details). Each of these germs is
concatenated with itself up to a maximum length that successively
increases as L = {1, 2, 4, 8, 16, 32, 64, 128, 256} and measured in all 36
combinations of the fiducials Fα and Fβ. In the experimental implementa-
tion, we first record a baseline measurement without added error and then
step through the cases of added detunings Δ = {75, 500, 1000, 1400} Hz for
all 2737 sequences of the standard set. Due to overhead associated with
switching between sequences, we recorded 220 repetitions for each
sequence in consecutive order. The toolkit’s authors advise to instead

interleave sequences and repetitions to spread slow drifts across the data
set in order to reduce model violations in the fitting routines (Erik Nielsen,
private communications 2017).

Data availability
Data and analysis files in addition to those included in the Supplementary
Material are available from the authors on request.
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